Faster Matroid Intersection

Total Page:16

File Type:pdf, Size:1020Kb

Faster Matroid Intersection 2019 IEEE 60th Annual Symposium on Foundations of Computer Science (FOCS) Faster Matroid Intersection Deeparnab Chakrabarty Yin Tat Lee Aaron Sidford Dartmouth College University of Washington Stanford University [email protected] Microsoft Research [email protected] [email protected] Sahil Singla Sam Chiu-wai Wong Princeton University Microsoft Research Institute for Advanced Study [email protected] [email protected] Abstract—In this paper we consider the classic matroid I. Matroids are fundamental objects in combinatorics, and intersection problem: given two matroids M1 =(V,I1) and the abstract definition above generalizes a wide range of M V,I V 2 =( 2) defined over a common ground set , compute concepts ranging from acyclic graphs to linearly independent a set S ∈I1 ∩I2 of largest possible cardinality, denoted by r. We consider this problem both in the setting where each matrices. M V,I M V,I Mi is accessed through an independence oracle, i.e. a routine Given two matroids 1 =( 1) and 2 =( 2) which returns whether or not a set S ∈Ii in Tind time, and over the same ground set, the matroid intersection problem is Mi the setting where each is accessed through a rank oracle, to find a set I ∈I1 ∩I2 with the largest cardinality |I|. This i.e. a routine which returns the size of the largest independent problem generalizes many important combinatorial opti- subset of S in Mi in Trank time. mization problems such as bipartite matching, arborescences In each setting we provide faster exact and approximate in digraphs, and packing spanning trees. Unsurprisingly, algorithms. Given an independence oracle, we provide an exact this problem has applications in areas such as electrical O(nr log r ·Tind) time algorithm. This improves upon previous 1.5 best known running times of O(nr ·Tind) due to Cunningham engineering [4], [5] and network coding [6], [7], [8]. 2 3 in 1986 and O˜(n ·Tind + n ) due to Lee, Sidford, and Wong To define the problem algorithmically, one needs to spec- in 2015. We also provide two algorithms which compute a ify access to these matroids. In the literature it is common (1 − )-approximate solution to matroid intersection running in 1.5 1.5 2 −1 −2 1.5 −4.5 to assume access to an independence oracle which takes as times O˜(n / ·Tind) and O˜((n r + r ) ·Tind), S ⊆ V S ∈I O nr/ ·T input a subset and returns whether or not. respectively. These results improve upon the ( ind)- T time algorithm of Cunningham (noted recently by Chekuri We use ind to denote the maximum time taken by such an and Quanrud). oracle to answer a single query. This raises an algorithmic Given a rank oracle, we provide algorithms√ with even better question: in how few queries can the matroid intersection dependence on n and r. We provide an O(n r log n ·Trank)- problem be solved? −1 time exact algorithm and an O(n log n ·Trank)-time algo- Starting from the work of Edmonds [9], many polynomial − rithm which obtains a (1 )-approximation to the matroid time algorithms [10], [11], [1], [12], [13], [2] have been intersection problem. The former result improves over the 3 proposed for the matroid intersection problem. The previous O˜(nr ·Trank + n )-time algorithm by Lee, Sidford, and Wong. The rank oracle is of particular interest as the matroid state-of-the-art captured by two works. One is a classic 1.5 intersection problem with this oracle is a special case (via O(nr ·Tind) time combinatorial algorithm by Cunning- Edmond’s minimax characterization of matroid intersection) ham [1] where r is the cardinality of the largest common of the submodular function minimization (SFM) problem with independent set of the two matroids. The second algorithm an evaluation oracle, and understanding SFM query complexity O˜ n2 ·T n3 is an outstanding open question. is an ( ind + )-time algorithm by Lee, Sidford, and Wong [2] based on fast algorithms implementing the Keywords -Matroids; Combinatorial Optimization; Submod- ellipsoid method. Note that this pays a higher overhead ular Functions than Cunningham’s result and makes many more queries if r n2/3. This raises the important question, “Is there an I. INTRODUCTION algorithm which obtains the best of both results?” Our first A matroid M =(V,I) is an abstract set system defined result answers this affirmatively (restated as Theorem 18 in over a finite ground set (universe) V of size n where the the main body). collection I⊆2V of independent sets satisfy two properties: Theorem 1. There is an O(nr log r ·T )-time algorithm to (a) A ∈I implies every subset B ⊆ A is also independent, ind solve the matroid intersection problem exactly. i.e., B ∈I, and (b) for any two sets A, B ∈Iwith |A| < |B|, there exists an element e ∈ B \ A such that A + e ∈ Our next result looks at approximate matroid intersection. 2575-8454/19/$31.00 ©2019 IEEE 1146 DOI 10.1109/FOCS.2019.00072 Due to both theoretical and practical reasons, there has been Another reason is that our main ideas with independence extensive recent work [14], [15], [16], [17], [18], [3], [19], oracle arose out of understanding the question with rank [20], [21] in trying to obtain faster (1 ± )-approximation oracle, and so rank oracle forms a good warm-up. In this algorithms for problems which already have polynomial paper we provide the following results on solving matroid time exact algorithms. A (1 − )-approximate algorithm for intersection (both approximately and exactly with a rank 3 matroid intersection would return a set I ∈I1 ∩I2 with oracle), improving over the O˜(nr·Trank +n )-time algorithm |I|≥(1 − )r for r being the cardinality of largest common by Lee, Sidford, and Wong [2]. Later in the paper these are independent set. restated as Theorem 16 and Theorem 17. For matroid intersection, in fact Cunningham’s [1] al- √ Theorem 4. There is an O(n r log n·T )-time algorithm gorithm already gives a (1 − )-approximate solution in rank to exactly solve the matroid intersection problem. There is O(nr/ ·T ) time. This observation was made explicit − ind an O(n 1 log n ·T )-time algorithm to obtain a (1 − )- in a recent paper by Chekuri and Quanrud [3]. Given our rank approximation to the matroid intersection problem. exact algorithm result above, it is natural to wonder if one can obtain faster approximation algorithms. In particular, A. Our Techniques can there be subquadratic approximation algorithms for the matroid intersection algorithm problem? Our second result At a high level our algorithms build upon existing combi- gives an affirmative answer (restated as Theorem 21 in the natorial algorithms, a la Edmonds [9] and Cunningham [1]. main body). We extend these algorithms leveraging the following key √ ideas: the binary search idea which allows fast explo- O n1.5 r/1.5 ·T Theorem 2. There is an ( log ind)-time ration through the exchange graph, the augmenting sets − algorithm to obtain a (1 )-approximation to the matroid methodology which allows multiple parallel augmentations intersection problem. in the exchange graph, and first-order methods which allow efficient sparsification of the ground set. In this section we The above theorem√ has no significant dependence on r, and indeed when r n, as it stands, it is better to use the explain each idea in greater depth, leaving the full details to subsequent sections. We begin with a refresher and a high- exact algorithm. However, we can get a better result√ (restated as Theorem 55 in the main body) in the regime n r level overview of existing combinatorial algorithms. n ; concretely, assume r =Θ(nc) where 1 <c<1. The Exchange Graph and Algorithms of Edmonds and 2 Cunningham.: The key object behind almost all combina- ˜ n2 r1.5 Theorem 3. There is an O r2 + 4.5 ·Tind -time al- torial algorithms for matroid intersection is the exchange S ∈I ∩I gorithm to obtain a (1 − )-approximation to the matroid graph. Given a current solution 1 2, the exchange G S intersection problem. graph ( ) is a directed bipartite graph where the endpoints of arcs correspond to valid exchanges in respective matroids The Rank Oracle.: Another common model for access- depending on the direction. There is a source s and sink t. ing matroids is a rank oracle. Given a subset S ⊆ V , the The source is connected to all vertices in V \S which can be rank oracle outputs rank(S), i.e., the size of the maximum freely added in one matroid, and the sink is connected from S T cardinality independent subset of .Welet rank denote all vertices in V \ S which can be freely added to the other the maximum time taken by the rank oracle to answer any matroid. Much as in network flow theory, an improvement in query. The rank oracle is clearly at least as powerful as the the size of S arises on finding shortest augmenting source- independence oracle. sink paths in this exchange graph. At a very high level, Similar to the independence oracle, Lee, Sidford, and there are O(nr) possible edges in the graph (since |S|≤r), Wong [2] also gave an algorithm for the rank oracle with each edge can be constructed with O(1) independence oracle 3 a runtime of O˜(nr ·Trank + n ). This suggests that perhaps queries, and in at most r-augmentations one obtains the matroid intersection can be solved strictly faster in the rank maximum sized common independent set. This gives an 2 oracle model.
Recommended publications
  • Matroid Theory
    MATROID THEORY HAYLEY HILLMAN 1 2 HAYLEY HILLMAN Contents 1. Introduction to Matroids 3 1.1. Basic Graph Theory 3 1.2. Basic Linear Algebra 4 2. Bases 5 2.1. An Example in Linear Algebra 6 2.2. An Example in Graph Theory 6 3. Rank Function 8 3.1. The Rank Function in Graph Theory 9 3.2. The Rank Function in Linear Algebra 11 4. Independent Sets 14 4.1. Independent Sets in Graph Theory 14 4.2. Independent Sets in Linear Algebra 17 5. Cycles 21 5.1. Cycles in Graph Theory 22 5.2. Cycles in Linear Algebra 24 6. Vertex-Edge Incidence Matrix 25 References 27 MATROID THEORY 3 1. Introduction to Matroids A matroid is a structure that generalizes the properties of indepen- dence. Relevant applications are found in graph theory and linear algebra. There are several ways to define a matroid, each relate to the concept of independence. This paper will focus on the the definitions of a matroid in terms of bases, the rank function, independent sets and cycles. Throughout this paper, we observe how both graphs and matrices can be viewed as matroids. Then we translate graph theory to linear algebra, and vice versa, using the language of matroids to facilitate our discussion. Many proofs for the properties of each definition of a matroid have been omitted from this paper, but you may find complete proofs in Oxley[2], Whitney[3], and Wilson[4]. The four definitions of a matroid introduced in this paper are equiv- alent to each other.
    [Show full text]
  • Matroids and Tropical Geometry
    matroids unimodality and log concavity strategy: geometric models tropical models directions Matroids and Tropical Geometry Federico Ardila San Francisco State University (San Francisco, California) Mathematical Sciences Research Institute (Berkeley, California) Universidad de Los Andes (Bogotá, Colombia) Introductory Workshop: Geometric and Topological Combinatorics MSRI, September 5, 2017 (3,-2,0) Who is here? • This is the Introductory Workshop. • Focus on accessibility for grad students and junior faculty. • # (questions by students + postdocs) # (questions by others) • ≥ matroids unimodality and log concavity strategy: geometric models tropical models directions Preface. Thank you, organizers! • This is the Introductory Workshop. • Focus on accessibility for grad students and junior faculty. • # (questions by students + postdocs) # (questions by others) • ≥ matroids unimodality and log concavity strategy: geometric models tropical models directions Preface. Thank you, organizers! • Who is here? • matroids unimodality and log concavity strategy: geometric models tropical models directions Preface. Thank you, organizers! • Who is here? • This is the Introductory Workshop. • Focus on accessibility for grad students and junior faculty. • # (questions by students + postdocs) # (questions by others) • ≥ matroids unimodality and log concavity strategy: geometric models tropical models directions Summary. Matroids are everywhere. • Many matroid sequences are (conj.) unimodal, log-concave. • Geometry helps matroids. • Tropical geometry helps matroids and needs matroids. • (If time) Some new constructions and results. • Joint with Carly Klivans (06), Graham Denham+June Huh (17). Properties: (B1) B = /0 6 (B2) If A;B B and a A B, 2 2 − then there exists b B A 2 − such that (A a) b B. − [ 2 Definition. A set E and a collection B of subsets of E are a matroid if they satisfies properties (B1) and (B2).
    [Show full text]
  • Matroids You Have Known
    26 MATHEMATICS MAGAZINE Matroids You Have Known DAVID L. NEEL Seattle University Seattle, Washington 98122 [email protected] NANCY ANN NEUDAUER Pacific University Forest Grove, Oregon 97116 nancy@pacificu.edu Anyone who has worked with matroids has come away with the conviction that matroids are one of the richest and most useful ideas of our day. —Gian Carlo Rota [10] Why matroids? Have you noticed hidden connections between seemingly unrelated mathematical ideas? Strange that finding roots of polynomials can tell us important things about how to solve certain ordinary differential equations, or that computing a determinant would have anything to do with finding solutions to a linear system of equations. But this is one of the charming features of mathematics—that disparate objects share similar traits. Properties like independence appear in many contexts. Do you find independence everywhere you look? In 1933, three Harvard Junior Fellows unified this recurring theme in mathematics by defining a new mathematical object that they dubbed matroid [4]. Matroids are everywhere, if only we knew how to look. What led those junior-fellows to matroids? The same thing that will lead us: Ma- troids arise from shared behaviors of vector spaces and graphs. We explore this natural motivation for the matroid through two examples and consider how properties of in- dependence surface. We first consider the two matroids arising from these examples, and later introduce three more that are probably less familiar. Delving deeper, we can find matroids in arrangements of hyperplanes, configurations of points, and geometric lattices, if your tastes run in that direction.
    [Show full text]
  • On Decomposing a Hypergraph Into K Connected Sub-Hypergraphs
    Egervary´ Research Group on Combinatorial Optimization Technical reportS TR-2001-02. Published by the Egrerv´aryResearch Group, P´azm´any P. s´et´any 1/C, H{1117, Budapest, Hungary. Web site: www.cs.elte.hu/egres . ISSN 1587{4451. On decomposing a hypergraph into k connected sub-hypergraphs Andr´asFrank, Tam´asKir´aly,and Matthias Kriesell February 2001 Revised July 2001 EGRES Technical Report No. 2001-02 1 On decomposing a hypergraph into k connected sub-hypergraphs Andr´asFrank?, Tam´asKir´aly??, and Matthias Kriesell??? Abstract By applying the matroid partition theorem of J. Edmonds [1] to a hyper- graphic generalization of graphic matroids, due to M. Lorea [3], we obtain a gen- eralization of Tutte's disjoint trees theorem for hypergraphs. As a corollary, we prove for positive integers k and q that every (kq)-edge-connected hypergraph of rank q can be decomposed into k connected sub-hypergraphs, a well-known result for q = 2. Another by-product is a connectivity-type sufficient condition for the existence of k edge-disjoint Steiner trees in a bipartite graph. Keywords: Hypergraph; Matroid; Steiner tree 1 Introduction An undirected graph G = (V; E) is called connected if there is an edge connecting X and V X for every nonempty, proper subset X of V . Connectivity of a graph is equivalent− to the existence of a spanning tree. As a connected graph on t nodes contains at least t 1 edges, one has the following alternative characterization of connectivity. − Proposition 1.1. A graph G = (V; E) is connected if and only if the number of edges connecting distinct classes of is at least t 1 for every partition := V1;V2;:::;Vt of V into non-empty subsets.P − P f g ?Department of Operations Research, E¨otv¨osUniversity, Kecskem´etiu.
    [Show full text]
  • Parity Systems and the Delta-Matroid Intersection Problem
    Parity Systems and the Delta-Matroid Intersection Problem Andr´eBouchet ∗ and Bill Jackson † Submitted: February 16, 1998; Accepted: September 3, 1999. Abstract We consider the problem of determining when two delta-matroids on the same ground-set have a common base. Our approach is to adapt the theory of matchings in 2-polymatroids developed by Lov´asz to a new abstract system, which we call a parity system. Examples of parity systems may be obtained by combining either, two delta- matroids, or two orthogonal 2-polymatroids, on the same ground-sets. We show that many of the results of Lov´aszconcerning ‘double flowers’ and ‘projections’ carry over to parity systems. 1 Introduction: the delta-matroid intersec- tion problem A delta-matroid is a pair (V, ) with a finite set V and a nonempty collection of subsets of V , called theBfeasible sets or bases, satisfying the following axiom:B ∗D´epartement d’informatique, Universit´edu Maine, 72017 Le Mans Cedex, France. [email protected] †Department of Mathematical and Computing Sciences, Goldsmiths’ College, London SE14 6NW, England. [email protected] 1 the electronic journal of combinatorics 7 (2000), #R14 2 1.1 For B1 and B2 in and v1 in B1∆B2, there is v2 in B1∆B2 such that B B1∆ v1, v2 belongs to . { } B Here P ∆Q = (P Q) (Q P ) is the symmetric difference of two subsets P and Q of V . If X\ is a∪ subset\ of V and if we set ∆X = B∆X : B , then we note that (V, ∆X) is a new delta-matroid.B The{ transformation∈ B} (V, ) (V, ∆X) is calledB a twisting.
    [Show full text]
  • CS675: Convex and Combinatorial Optimization Spring 2018 Introduction to Matroid Theory
    CS675: Convex and Combinatorial Optimization Spring 2018 Introduction to Matroid Theory Instructor: Shaddin Dughmi Set system: Pair (X ; I) where X is a finite ground set and I ⊆ 2X are the feasible sets Objective: often “linear”, referred to as modular Analogues of concave and convex: submodular and supermodular (in no particular order!) Today, we will look only at optimizing modular objectives over an extremely prolific family of set systems Related, directly or indirectly, to a large fraction of optimization problems in P Also pops up in submodular/supermodular optimization problems Optimization over Sets Most combinatorial optimization problems can be thought of as choosing the best set from a family of allowable sets Shortest paths Max-weight matching Independent set ... 1/30 Objective: often “linear”, referred to as modular Analogues of concave and convex: submodular and supermodular (in no particular order!) Today, we will look only at optimizing modular objectives over an extremely prolific family of set systems Related, directly or indirectly, to a large fraction of optimization problems in P Also pops up in submodular/supermodular optimization problems Optimization over Sets Most combinatorial optimization problems can be thought of as choosing the best set from a family of allowable sets Shortest paths Max-weight matching Independent set ... Set system: Pair (X ; I) where X is a finite ground set and I ⊆ 2X are the feasible sets 1/30 Analogues of concave and convex: submodular and supermodular (in no particular order!) Today, we will look only at optimizing modular objectives over an extremely prolific family of set systems Related, directly or indirectly, to a large fraction of optimization problems in P Also pops up in submodular/supermodular optimization problems Optimization over Sets Most combinatorial optimization problems can be thought of as choosing the best set from a family of allowable sets Shortest paths Max-weight matching Independent set ..
    [Show full text]
  • Matroid Bundles
    New Perspectives in Geometric Combinatorics MSRI Publications Volume 38, 1999 Matroid Bundles LAURA ANDERSON Abstract. Combinatorial vector bundles, or matroid bundles,areacom- binatorial analog to real vector bundles. Combinatorial objects called ori- ented matroids play the role of real vector spaces. This combinatorial anal- ogy is remarkably strong, and has led to combinatorial results in topology and bundle-theoretic proofs in combinatorics. This paper surveys recent results on matroid bundles, and describes a canonical functor from real vector bundles to matroid bundles. 1. Introduction Matroid bundles are combinatorial objects that mimic real vector bundles. They were first defined in [MacPherson 1993] in connection with combinatorial differential manifolds,orCD manifolds. Matroid bundles generalize the notion of the “combinatorial tangent bundle” of a CD manifold. Since the appearance of McPherson’s article, the theory has filled out considerably; in particular, ma- troid bundles have proved to provide a beautiful combinatorial formulation for characteristic classes. We will recapitulate many of the ideas introduced by McPherson, both for the sake of a self-contained exposition and to describe them in terms more suited to our present context. However, we refer the reader to [MacPherson 1993] for background not given here. We recommend the same paper, as well as [Mn¨ev and Ziegler 1993] on the combinatorial Grassmannian, for related discussions. We begin with a key intuitive point of the theory: the notion of an oriented matroid as a combinatorial analog to a vector space. From this we develop matroid bundles as a combinatorial bundle theory with oriented matroids as fibers. Section 2 will describe the category of matroid bundles and its relation to the category of real vector bundles.
    [Show full text]
  • Applications of Matroid Theory and Combinatorial Optimization to Information and Coding Theory
    Applications of Matroid Theory and Combinatorial Optimization to Information and Coding Theory Navin Kashyap (Queen’s University), Emina Soljanin (Alcatel-Lucent Bell Labs) Pascal Vontobel (Hewlett-Packard Laboratories) August 2–7, 2009 The aim of this workshop was to bring together experts and students from pure and applied mathematics, computer science, and engineering, who are working on related problems in the areas of matroid theory, combinatorial optimization, coding theory, secret sharing, network coding, and information inequalities. The goal was to foster exchange of mathematical ideas and tools that can help tackle some of the open problems of central importance in coding theory, secret sharing, and network coding, and at the same time, to get pure mathematicians and computer scientists to be interested in the kind of problems that arise in these applied fields. 1 Introduction Matroids are structures that abstract certain fundamental properties of dependence common to graphs and vector spaces. The theory of matroids has its origins in graph theory and linear algebra, and its most successful applications in the past have been in the areas of combinatorial optimization and network theory. Recently, however, there has been a flurry of new applications of this theory in the fields of information and coding theory. It is only natural to expect matroid theory to have an influence on the theory of error-correcting codes, as matrices over finite fields are objects of fundamental importance in both these areas of mathematics. Indeed, as far back as 1976, Greene [7] (re-)derived the MacWilliams identities — which relate the Hamming weight enumerators of a linear code and its dual — as special cases of an identity for the Tutte polynomial of a matroid.
    [Show full text]
  • SHIFTED MATROID COMPLEXES 1. Introduction We Want to Consider
    SHIFTED MATROID COMPLEXES CAROLINE J. KLIVANS Abstract. We study the class of matroids whose independent set complexes are shifted simplicial complexes. We prove two characterization theorems, one of which is constructive. In addition, we show this class is closed under taking minors and duality. Finally, we give results on shifted broken circuit complexes. 1. Introduction We want to consider those matroids whose complexes of independent sets are shifted. This class of shifted matroids has been significantly investigated before, in a variety of guises. They seem to have been first used in [5] by Crapo. He used them to show that there are at least 2n non-isomorphic matroids on n elements. They were later investigated in [11] as a particular kind of transversal matroid. This work includes a characterization in terms of forbidden minors. Shifted matroids appeared again in [2] and [3] as a kind of lattice path matroid. Mostly closely related to the presentation here is [1], where these matroids arise in the context of Catalan matroids. We refer the reader to [3] for a more complete history of these matroids. Our approach is to consider the matroid complexes specifically from a shifted perspective. We provide new proofs utilizing the structure of a shifted complex to show the class is constructible, closed under taking minors and duality, and exactly the set of principal order ideals in the shifted partial ordering. 2. Shifted complexes A simplicial complex on n vertices is shifted if there exists a labeling of the vertices by one through n such that for any face fv1; v2; : : : ; vkg, replacing any vi by a vertex with a smaller label results in a collection which is also a face.
    [Show full text]
  • Matroid Intersection
    EECS 495: Combinatorial Optimization Lecture 8 Matroid Intersection Reading: Schrijver, Chapter 41 • colorful spanning forests: for graph G with edges partitioned into color classes fE1;:::;Ekg, colorful spanning forest is Matroid Intersection a forest with edges of different colors. Define M1;M2 on ground set E with: Problem: { I1 = fF ⊂ E : F is acyclicg { I = fF ⊂ E : 8i; jF \ E j ≤ 1g • Given: matroids M1 = (S; I1) and M2 = 2 i (S; I ) on same ground set S 2 Then • Find: max weight (cardinality) common { these are matroids (graphic, parti- independent set J ⊆ I \I 1 2 tion) { common independent sets = color- Applications ful spanning forests Generalizes: Note: In second two examples, (S; I1 \I2) not a matroid, so more general than matroid • max weight independent set of M (take optimization. M = M1 = M2) Claim: Matroid intersection of three ma- troids NP-hard. • matching in bipartite graphs Proof: Reduction from directed Hamilto- For bipartite graph G = ((V1;V2);E), let nian path: given digraph D = (V; E) and Mi = (E; Ii) where vertices s; t, is there a path from s to t that goes through each vertex exactly once. Ii = fJ : 8v 2 Vi; v incident to ≤ one e 2 Jg • M1 graphic matroid of underlying undi- Then rected graph { these are matroids (partition ma- • M2 partition matroid in which F ⊆ E troids) indep if each v has at most one incoming edge in F , except s which has none { common independent sets = match- ings of G • M3 partition :::, except t which has none 1 Intersection is set of vertex-disjoint directed = r1(E) +r2(E)− min(r1(F ) +r2(E nF ) paths with one starting at s and one ending F ⊆E at t, so Hamiltonian path iff max cardinality which is number of vertices minus min intersection has size n − 1.
    [Show full text]
  • Packing of Arborescences with Matroid Constraints Via Matroid Intersection
    Mathematical Programming (2020) 181:85–117 https://doi.org/10.1007/s10107-019-01377-0 FULL LENGTH PAPER Series A Packing of arborescences with matroid constraints via matroid intersection Csaba Király1 · Zoltán Szigeti2 · Shin-ichi Tanigawa3 Received: 29 May 2018 / Accepted: 8 February 2019 / Published online: 2 April 2019 © The Author(s) 2019 Abstract Edmonds’ arborescence packing theorem characterizes directed graphs that have arc- disjoint spanning arborescences in terms of connectivity. Later he also observed a characterization in terms of matroid intersection. Since these fundamental results, intensive research has been done for understanding and extending these results. In this paper we shall extend the second characterization to the setting of reachability-based packing of arborescences. The reachability-based packing problem was introduced by Cs. Király as a common generalization of two different extensions of the spanning arborescence packing problem, one is due to Kamiyama, Katoh, and Takizawa, and the other is due to Durand de Gevigney, Nguyen, and Szigeti. Our new characterization of the arc sets of reachability-based packing in terms of matroid intersection gives an efficient algorithm for the minimum weight reachability-based packing problem, and it also enables us to unify further arborescence packing theorems and Edmonds’ matroid intersection theorem. For the proof, we also show how a new class of matroids can be defined by extending an earlier construction of matroids from intersecting submodular functions to bi-set functions based on an idea of Frank. Mathematics Subject Classification 05C05 · 05C20 · 05C70 · 05B35 · 05C22 B Csaba Király [email protected] Zoltán Szigeti [email protected] Shin-ichi Tanigawa [email protected] 1 Department of Operations Research, ELTE Eötvös Loránd University and the MTA-ELTE Egerváry Research Group on Combinatorial Optimization, Budapest Pázmány Péter sétány 1/C, 1117, Hungary 2 Univ.
    [Show full text]
  • Topics in Combinatorial Optimization
    Topics in Combinatorial Optimization Orlando Lee – Unicamp 4 de junho de 2014 Orlando Lee – Unicamp Topics in Combinatorial Optimization Agradecimentos Este conjunto de slides foram preparados originalmente para o curso T´opicos de Otimiza¸c˜ao Combinat´oria no primeiro semestre de 2014 no Instituto de Computa¸c˜ao da Unicamp. Preparei os slides em inglˆes simplesmente porque me deu vontade, mas as aulas ser˜ao em portuguˆes (do Brasil)! Agradecimentos especiais ao Prof. M´ario Leston Rey. Sem sua ajuda, certamente estes slides nunca ficariam prontos a tempo. Qualquer erro encontrado nestes slide ´ede minha inteira responsabilidade (Orlando Lee, 2014). Orlando Lee – Unicamp Topics in Combinatorial Optimization Independent sets A matroid is a pair M = (E, I) in which I ⊆ 2E that satisfies the following properties: (I1) ∅∈ I. (I2) If I ∈ I and I ′ ⊆ I , then I ′ ∈ I. (I3) If I 1, I 2 ∈ I and |I 1| < |I 2|, then there exists e ∈ I 2 − I 1 such that I 1 ∪ {e}∈ I. (Independence augmenting axiom) We say that the members of I are the independent sets of M. Orlando Lee – Unicamp Topics in Combinatorial Optimization Matroid intersection We have seen how to determine efficiently (via an independence oracle) a maximum basis (independent set) of a matroid. Let M1 = (E, I1) and M2 = (E , I2) be two matroids. We are interested in finding a maximum element I ∈ I1 ∩ I2, that is, a maximum common independent set I of both matroids. We consider the unweighted version, in which we want to maximize |I | for I ∈ I1 ∩ I2, and the weighted version in which given c : E 7→ R we want to maximum c(I ) for I ∈ I1 ∩ I2.
    [Show full text]