Froglog, Along with Reports of Cases of Parasitic Infections and Vestigate the Pattern of Malforma- Conservation Successes Elsewhere

Total Page:16

File Type:pdf, Size:1020Kb

Froglog, Along with Reports of Cases of Parasitic Infections and Vestigate the Pattern of Malforma- Conservation Successes Elsewhere Atelopus exiguus © Luis Coloma ROGLOG FNewsletter of the IUCN/SSC Amphibian Specialist Group Colorful Harlequin Frog Re-discovered in Colombia Luis Alberto Rueda Solano VOL 86 APRIL 2008 telopus carrikeri is a toad typically of uniform black color WHAt’s INSIDE Athat inhabits the paramos (3500 – 4800 msnm) of the Sierra Nevada de Santa Marta (Ruthven 1916). This species belongs to ignescens group since it has a robust body, with relatively short limbs and tubered skin (Lötters 1996). Until Cover story recently, there were no recent reports on Atelopus carrikeri, Colorful Harlequin Frog due to a lack of new explorations in the Sierra Nevada. The Re-discovered in Colombia Page 1 last report was from 1994 at El Paramo de Macostama, De- Around the World partamento de la Guajira and La Serrania de Cebolleta, De- Amphibians of Pakistan Page 2 partamento de Magdalena, Colombia. Amphibian Activities in Sri Lanka Page 4 Seed Grants 2008 Projects Funded Page 5 DAPTF Seed Grants Page 5 CEPF Reports Threatened Amphibians in the suc- culent Karoo hotspot of southern Namibia Page 6 Announcements Sabin Award for Amphibian Conservation Page 8 Instructions to Authors Page 9 Atelopus carrikeri © Luis Alberto Rueda Solano 1 ATELOPUS CARRIKERI DISCOVERED IN COLOMBIA Continued from Cover page important to note that 2 of these de Santa Marta a sanctuary for harle- In early February 2008 in La Ser- adults were sick. The re-discovery quin frogs in Colombia in contrast to rania de Cebolleta, I discovered of Atelopus carrikeri is significant other upperland areas where Atelo- an abundance of tadpoles and because it adds to the list of Atelo- pus are apparently already extinct. six adult males of a red mor- pus species that persist in the Sierra Author email: biobetorue@hotmail. pho of Atelopus carrikeri. It is Nevada, making the Sierra Nevada com AROUND THE WORLD Amphibians of Pakistan Muhammad Sharif Khan he arid sub tropical climate Tin Pakistan places constraints on the local amphibians. Howev- er, because of riparian Indus Val- ley, torrents in the sub Himalayas and subterranean karez channels in Balochistan, twenty four amphib- ian species and subspecies belong- ing to four families Bufonidae (10 species), Megophryidae (1), Mi- crohylidae (2), and Ranidae (11) are known from Pakistan (Khan. Bufo melanostictus © Muhammad Sharif Khan 2006, 2008). malayan and sub-Himalayan spe- Family Megophryidae Family Bufonidae cies. The olive toad B. olivaceus is The Tibetan lazy toad Scutiger Bufo stomaticus, excluding higher spottily distribution from the sub- nyingchiensis is the sole represen- mountain ranges, is the most com- Himalayas through plains to Bal- tative of this Tibetan family. It is mon toad throughout Pakistan. ochistan. However, B. surdus and known from the Himalayas be- Other species of toad: latastii, B. viridis zugmayeri are confined to tween 3000 and 3500 m and has baturae, pseudoraddei, siacheninsis, karez waters in Balochistan. been collected from Azad Kash- himalayanus and hazarensis are Hi- Bufo tadpoles are small, drab in mir, Gilgit and Dosai Plains in color, with char- the northwestern Himalayas. The acteristic bulg- tadpole has a long tail, and is a ing round body, rasper feeder. and a weak tail. They form loose Family Microhylidae schools along The ant frogs are represented by marginal waters, two species. The tiny Microhyla possess two rows ornata is widely distributed in the of denticles, with sub Himalayas and Punjab ripar- biting jaws, and ian system. The recently discov- are rasper feeders. ered larger south Indian species Uperodon systoma is a burrower, Bufo stomasticus © Muhammad Sharif Khan living underground in termite 2 AMPHIBIANS OF PaKISTAN Continued from previous page frogs from the genus Paa: P. bar- cash crops. Run-off of the chemi- and ant tunnels, and only com- moachensis and P. hazarensis are sub- cals into nearby ponds and puddles ing to the surface to breed during Himalayan, while P. sternosignata is kills eggs, tadpoles, and adults, and heavy rains. confined to the karez subterranean deter breeding individuals. The microhylid tadpole is water channels in Balochistan. Moreover, considerable num- transparent, filter feeds, and forms The ranid tadpoles are large, with ber of amphibians are crushed daily a long, strong muscular tail, and most under passing traffic while cross- are bottom macrophagus. The oral ing roads to reach their potential disc possesses simple or multicusped breeding sites. denticles, and most are macrophagus Frogs and toads at egg, tadpole carnivores. and adult stages are used in school, college and hospital laboratories Threats and conservation of Paki- for experimentation and tests and stani amphibians demonstration of vertebrate anat- The causes of global amphibian de- omy, causing considerable damage Euphlyctis cyanophictis clines are complex and vary from to the natural populations. Consid- place to place. Some of the main erable depletion has been observed midstream schools. factors implicated include ozone in natural population of Hoploba- layer depletion, global warming, ag- trachus tigerinus around the labora- Family Ranidae ricultural chemicals and chytrid fun- tories where this species is used as a Frogs of the family Ranidae are a gus. model animal for demonstration of heterogeneous assemblage, widely The aridity in Pakistan restricts vertebrate anatomy. Thankfully, as distributed in Indo-Pakistan sub- the local amphibian species to those yet no amphibians are used as food continent and Southeast Asia. Eu- areas retaining water for longer peri- in Pakistani culture. What will phlyctis cyanophlyctis is the most ods of time. As soon as summer sets happen in the future can’t be pre- widely distributed species in plains in they become active and feed, well dicted, however, because fast foot and sub-Himalayas. It comprises before monsoon rains; the boom restaurants are appearing rapidly in three subspecies: E. c. cyanophlyctis period of their activity. They utilize food markets. widely distributed in plains, E. c. To ensure the persistence of microspinulata known from Bal- healthy prosperous amphibian ochistan, and E. c. seistanica which communities in Pakistan, we need occurs along Afghan/Pakistan to establish protected swamps and border. Of the two cricket frogs wetlands as amphibian reserves Fejervarya limnocharis is widely throughout the plains and sub- distributed in the sub Himalayas montane areas of Pakistan. More- and upper Indus Valley, while F. over, under-road pathways (“frog- syhadrensis occurs in the lower In- ways”) need to be constructed dus Valley. The bull frog Hoploba- close to the wetlands which are trachus tigerinus is the largest and Hoplobatrachus tigerinus used as potential breeding sites by most widely distributed species in the local amphibian species to re- the plains. rains mostly for breeding and disper- duce considerably “road slaughter” The sub-Himalayan burrowing sal. of the amphibian species. frog Sphaeroteca breviceps is carried Amphibian activity is, however, by river waters in the plains, where marred by spraying of pesticide and Author email: typhlops2004@ya- it has a spotty distribution. agri-boost chemicals, since it is also hoo.com Of the three peculiar brook the peak period when pests attack 3 2008 - Year of the Frog - Activities from Sri Lanka Anslem de Silva Co-Chair, ASG Working Group, Sri Lanka. embers of the newly formed progress under the Co-Chair (AdS) MAmphibian Specialist Group along with a few members of the of Sri Lanka are undertaking the Executive Committee of the ASG following activities: (Sri Lanka), academics, veterinar- ians and ammeter herpetologists . 1. Conducting awareness programs for schools and the general public. 2. Conducting Status survey on amphibians Lankanectes corrugatus (Corrugated water 3. Survey to investigate the pat- frog)with ectromella © Anslem de Silva tern of malformations and para- sitic infection in amphibians of Sri The major threats posed to am- Lanka. phibians of the country are habitat loss, alterations and degradation. 4. Taxonomy projects. In addition, preliminary observa- tion made on Polypedates eques, an Sphaerotheca species with a sever wound. 5.Conservation of threatened spe- endemic frog inhabiting the high- © Anslem de Silva cies est plain of the country (Horton Plains National Park, 2000-2300 The researchers hope to exchange Sri Lanka is an island of 65,610 m) showed the presence of a life their findings with others doing km2 in area. The amphibian diver- threatening Proteocephalan Cestode similar projects in other countries sity and species richness per unit infection in 19 (31%) males of the as well as applying the results to area of land is one of the highest 61 studied. Recently (2006) frogs devising management strategies, in the world. Presently, a total of were observed with ectromella, a conduct awareness programs and 106 amphibian species are known malformation condition as reported in the preparation of Conservation from Sri Lanka. However, of these, by Meteyer (2000) in addition to Action Plan for amphibians of Sri 21 species are considered extinct. frogs with large wounds (similar to Lanka. Recent observations indicate that carcinoma). amphibians of the country are fac- Author email: [email protected] ing many threats. Additionally, many malformations and parasitic Editor’s note: The ASG’s Don infections were observed in frogs. Church recently returned from Sri Sri Lanka is an agricultural coun- Lanka, where he made significant try, and presently agrochemicals progress in advancing amphibian are widely used in agriculture and conservation by facilitating an un- plantations and the runoff water precedented agreement with the from these lands and industrial government to protect some of the Lankanectes corrugatus (Corrugated water waste accumulate in waters inhab- frog)with ectromella © Anslem de Silva most critical amphibian habitat. A ited by some frogs as well as pollute full report will be provided in the the natural habitats of frogs. Sever Thus, an island-wide project to in- next Froglog, along with reports of cases of parasitic infections and vestigate the pattern of malforma- conservation successes elsewhere.
Recommended publications
  • Distribution of Bufotes Latastii (Boulenger, 1882), Endemic to the Western Himalaya
    Alytes, 2018, 36 (1–4): 314–327. Distribution of Bufotes latastii (Boulenger, 1882), endemic to the Western Himalaya 1* 1 2,3 4 Spartak N. LITVINCHUK , Dmitriy V. SKORINOV , Glib O. MAZEPA & LeO J. BORKIN 1Institute Of Cytology, Russian Academy Of Sciences, Tikhoretsky pr. 4, St. Petersburg 194064, Russia. 2Department of Ecology and EvolutiOn, University of LauSanne, BiOphOre Building, 1015 Lausanne, Switzerland. 3 Department Of EvOlutiOnary BiOlOgy, EvOlutiOnary BiOlOgy Centre (EBC), Uppsala University, Uppsala, Sweden. 4ZoOlOgical Institute, Russian Academy Of Sciences, Universitetskaya nab. 1, St. PeterSburg 199034, Russia. * CorreSpOnding author <[email protected]>. The distribution of Bufotes latastii, a diploid green toad species, is analyzed based on field observations and literature data. 74 localities are known, although 7 ones should be confirmed. The range of B. latastii is confined to northern Pakistan, Kashmir Valley and western Ladakh in India. All records of “green toads” (“Bufo viridis”) beyond this region belong to other species, both to green toads of the genus Bufotes or to toads of the genus Duttaphrynus. B. latastii is endemic to the Western Himalaya. Its allopatric range lies between those of bisexual triploid green toads in the west and in the east. B. latastii was found at altitudes from 780 to 3200 m above sea level. Environmental niche modelling was applied to predict the potential distribution range of the species. Altitude was the variable with the highest percent contribution for the explanation of the species distribution (36 %). urn:lSid:zOobank.Org:pub:0C76EE11-5D11-4FAB-9FA9-918959833BA5 INTRODUCTION Bufotes latastii (fig. 1) iS a relatively cOmmOn green toad species which spreads in KaShmir Valley, Ladakh and adjacent regiOnS Of nOrthern India and PakiStan.
    [Show full text]
  • Freshwater Fishes
    WESTERN CAPE PROVINCE state oF BIODIVERSITY 2007 TABLE OF CONTENTS Chapter 1 Introduction 2 Chapter 2 Methods 17 Chapter 3 Freshwater fishes 18 Chapter 4 Amphibians 36 Chapter 5 Reptiles 55 Chapter 6 Mammals 75 Chapter 7 Avifauna 89 Chapter 8 Flora & Vegetation 112 Chapter 9 Land and Protected Areas 139 Chapter 10 Status of River Health 159 Cover page photographs by Andrew Turner (CapeNature), Roger Bills (SAIAB) & Wicus Leeuwner. ISBN 978-0-620-39289-1 SCIENTIFIC SERVICES 2 Western Cape Province State of Biodiversity 2007 CHAPTER 1 INTRODUCTION Andrew Turner [email protected] 1 “We live at a historic moment, a time in which the world’s biological diversity is being rapidly destroyed. The present geological period has more species than any other, yet the current rate of extinction of species is greater now than at any time in the past. Ecosystems and communities are being degraded and destroyed, and species are being driven to extinction. The species that persist are losing genetic variation as the number of individuals in populations shrinks, unique populations and subspecies are destroyed, and remaining populations become increasingly isolated from one another. The cause of this loss of biological diversity at all levels is the range of human activity that alters and destroys natural habitats to suit human needs.” (Primack, 2002). CapeNature launched its State of Biodiversity Programme (SoBP) to assess and monitor the state of biodiversity in the Western Cape in 1999. This programme delivered its first report in 2002 and these reports are updated every five years. The current report (2007) reports on the changes to the state of vertebrate biodiversity and land under conservation usage.
    [Show full text]
  • Catalogue of the Amphibians of Venezuela: Illustrated and Annotated Species List, Distribution, and Conservation 1,2César L
    Mannophryne vulcano, Male carrying tadpoles. El Ávila (Parque Nacional Guairarepano), Distrito Federal. Photo: Jose Vieira. We want to dedicate this work to some outstanding individuals who encouraged us, directly or indirectly, and are no longer with us. They were colleagues and close friends, and their friendship will remain for years to come. César Molina Rodríguez (1960–2015) Erik Arrieta Márquez (1978–2008) Jose Ayarzagüena Sanz (1952–2011) Saúl Gutiérrez Eljuri (1960–2012) Juan Rivero (1923–2014) Luis Scott (1948–2011) Marco Natera Mumaw (1972–2010) Official journal website: Amphibian & Reptile Conservation amphibian-reptile-conservation.org 13(1) [Special Section]: 1–198 (e180). Catalogue of the amphibians of Venezuela: Illustrated and annotated species list, distribution, and conservation 1,2César L. Barrio-Amorós, 3,4Fernando J. M. Rojas-Runjaic, and 5J. Celsa Señaris 1Fundación AndígenA, Apartado Postal 210, Mérida, VENEZUELA 2Current address: Doc Frog Expeditions, Uvita de Osa, COSTA RICA 3Fundación La Salle de Ciencias Naturales, Museo de Historia Natural La Salle, Apartado Postal 1930, Caracas 1010-A, VENEZUELA 4Current address: Pontifícia Universidade Católica do Río Grande do Sul (PUCRS), Laboratório de Sistemática de Vertebrados, Av. Ipiranga 6681, Porto Alegre, RS 90619–900, BRAZIL 5Instituto Venezolano de Investigaciones Científicas, Altos de Pipe, apartado 20632, Caracas 1020, VENEZUELA Abstract.—Presented is an annotated checklist of the amphibians of Venezuela, current as of December 2018. The last comprehensive list (Barrio-Amorós 2009c) included a total of 333 species, while the current catalogue lists 387 species (370 anurans, 10 caecilians, and seven salamanders), including 28 species not yet described or properly identified. Fifty species and four genera are added to the previous list, 25 species are deleted, and 47 experienced nomenclatural changes.
    [Show full text]
  • Anura, Rhacophoridae)
    Zoologica Scripta Patterns of reproductive-mode evolution in Old World tree frogs (Anura, Rhacophoridae) MADHAVA MEEGASKUMBURA,GAYANI SENEVIRATHNE,S.D.BIJU,SONALI GARG,SUYAMA MEEGASKUMBURA,ROHAN PETHIYAGODA,JAMES HANKEN &CHRISTOPHER J. SCHNEIDER Submitted: 3 December 2014 Meegaskumbura, M., Senevirathne, G., Biju, S. D., Garg, S., Meegaskumbura, S., Pethiya- Accepted: 7 May 2015 goda, R., Hanken, J., Schneider, C. J. (2015). Patterns of reproductive-mode evolution in doi:10.1111/zsc.12121 Old World tree frogs (Anura, Rhacophoridae). —Zoologica Scripta, 00, 000–000. The Old World tree frogs (Anura: Rhacophoridae), with 387 species, display a remarkable diversity of reproductive modes – aquatic breeding, terrestrial gel nesting, terrestrial foam nesting and terrestrial direct development. The evolution of these modes has until now remained poorly studied in the context of recent phylogenies for the clade. Here, we use newly obtained DNA sequences from three nuclear and two mitochondrial gene fragments, together with previously published sequence data, to generate a well-resolved phylogeny from which we determine major patterns of reproductive-mode evolution. We show that basal rhacophorids have fully aquatic eggs and larvae. Bayesian ancestral-state reconstruc- tions suggest that terrestrial gel-encapsulated eggs, with early stages of larval development completed within the egg outside of water, are an intermediate stage in the evolution of ter- restrial direct development and foam nesting. The ancestral forms of almost all currently recognized genera (except the fully aquatic basal forms) have a high likelihood of being ter- restrial gel nesters. Direct development and foam nesting each appear to have evolved at least twice within Rhacophoridae, suggesting that reproductive modes are labile and may arise multiple times independently.
    [Show full text]
  • Breviceps Adspersus” Documents B
    Herpetology Notes, volume 14: 397-406 (2021) (published online on 22 February 2021) Phylogenetic analysis of “Breviceps adspersus” documents B. passmorei Minter et al., 2017 in Limpopo Province, South Africa Matthew P. Heinicke1,*, Mohamad H. Beidoun1, Stuart V. Nielsen1,2, and Aaron M. Bauer3 Abstract. Recent systematic work has shown the Breviceps mossambicus species group to be more species-rich than previously documented and has brought into question the identity of many populations, especially in northeastern South Africa. We obtained genetic data for eight specimens originally identified as B. adspersus from Limpopo Province, South Africa, as well as numerous specimens from the core range of B. adspersus in Namibia and Zimbabwe. Phylogenetic analysis shows that there is little genetic variation across the range of B. adspersus. However, most of our Limpopo specimens are not B. adspersus but rather B. passmorei, a species previously known only from the immediate vicinity of its type locality in KwaZulu-Natal. These new records extend the known range of B. passmorei by 360 km to the north. Our results emphasize the need to obtain fine- scale range-wide genetic data for Breviceps to better delimit the diversity and biogeography of the genus. Keywords. Brevicipitidae, cryptic species, Microhylidae, rain frog, systematics, Transvaal Introduction Breviceps adspersus, with a lectotype locality listed as “Damaraland” [= north-central Namibia], and other The genus Breviceps Merrem, 1820 includes 18 or 19 syntypes from both Damaraland and “Transvaal” [= described species of rain frogs distributed across eastern northeastern South Africa], has a southern distribution, and southern Africa (AmphibiaWeb, 2020; Frost, 2020). ranging from Namibia across much of Botswana, The genus includes two major clades: the gibbosus Zimbabwe, and South Africa to western Mozambique.
    [Show full text]
  • Bell MSC 2009.Pdf (8.762Mb)
    THE DISTRIBUTION OF THE DESERT RAIN FROG (Breviceps macrops) IN SOUTH AFRICA Kirsty Jane Bell A thesis submitted in partial fulfilment of the requirements for the degree of Magister Scientiae in the Department of Biodiversity and Conservation Biology, University of the Western Cape Supervisor: Dr. Alan Channing April 2009 ii THE DISTRIBUTION OF THE DESERT RAIN FROG (Breviceps macrops) IN SOUTH AFRICA Kirsty Jane Bell Keywords: Desert Rain Frog Breviceps macrops Distribution Southern Africa Diamond Coast Environmental influences Genetics Conservation status Anthropogenic disturbances Current threats iii ABSTRACT The Distribution of the Desert Rain Frog (Breviceps macrops) in South Africa Kirsty Jane Bell M.Sc. Thesis, Department of Biodiversity and Conservation Biology, University of the Western Cape. The desert rain frog (Breviceps macrops) is an arid adapted anuran found on the west coast of southern Africa occurring within the Sandveld of the Succulent Karoo Biome. It is associated with white aeolian sand deposits, sparse desert vegetation and coastal fog. Little is known of its behaviour and life history strategy. Its distribution is recognised in the Atlas and Red Data Book of the Frogs of South Africa, Lesotho, and Swaziland as stretching from Koiingnaas in the South to Lüderitz in the North and 10 km inland. This distribution has been called into question due to misidentification and ambiguous historical records. This study examines the distribution of B. macrops in order to clarify these discrepancies, and found that its distribution does not stretch beyond 2 km south of the town of Kleinzee nor further than 6 km inland throughout its range in South Africa.
    [Show full text]
  • Bioseries12-Amphibians-Taita-English
    0c m 12 Symbol key 3456 habitat pond puddle river stream 78 underground day / night day 9101112131415161718 night altitude high low vegetation types shamba forest plantation prelim pages ENGLISH.indd ii 2009/10/22 02:03:47 PM SANBI Biodiversity Series Amphibians of the Taita Hills by G.J. Measey, P.K. Malonza and V. Muchai 2009 prelim pages ENGLISH.indd Sec1:i 2009/10/27 07:51:49 AM SANBI Biodiversity Series The South African National Biodiversity Institute (SANBI) was established on 1 September 2004 through the signing into force of the National Environmental Management: Biodiversity Act (NEMBA) No. 10 of 2004 by President Thabo Mbeki. The Act expands the mandate of the former National Botanical Institute to include responsibilities relating to the full diversity of South Africa’s fauna and ora, and builds on the internationally respected programmes in conservation, research, education and visitor services developed by the National Botanical Institute and its predecessors over the past century. The vision of SANBI: Biodiversity richness for all South Africans. SANBI’s mission is to champion the exploration, conservation, sustainable use, appreciation and enjoyment of South Africa’s exceptionally rich biodiversity for all people. SANBI Biodiversity Series publishes occasional reports on projects, technologies, workshops, symposia and other activities initiated by or executed in partnership with SANBI. Technical editor: Gerrit Germishuizen Design & layout: Elizma Fouché Cover design: Elizma Fouché How to cite this publication MEASEY, G.J., MALONZA, P.K. & MUCHAI, V. 2009. Amphibians of the Taita Hills / Am bia wa milima ya Taita. SANBI Biodiversity Series 12. South African National Biodiversity Institute, Pretoria.
    [Show full text]
  • Amphibian Alliance for Zero Extinction Sites in Chiapas and Oaxaca
    Amphibian Alliance for Zero Extinction Sites in Chiapas and Oaxaca John F. Lamoreux, Meghan W. McKnight, and Rodolfo Cabrera Hernandez Occasional Paper of the IUCN Species Survival Commission No. 53 Amphibian Alliance for Zero Extinction Sites in Chiapas and Oaxaca John F. Lamoreux, Meghan W. McKnight, and Rodolfo Cabrera Hernandez Occasional Paper of the IUCN Species Survival Commission No. 53 The designation of geographical entities in this book, and the presentation of the material, do not imply the expression of any opinion whatsoever on the part of IUCN concerning the legal status of any country, territory, or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries. The views expressed in this publication do not necessarily reflect those of IUCN or other participating organizations. Published by: IUCN, Gland, Switzerland Copyright: © 2015 International Union for Conservation of Nature and Natural Resources Reproduction of this publication for educational or other non-commercial purposes is authorized without prior written permission from the copyright holder provided the source is fully acknowledged. Reproduction of this publication for resale or other commercial purposes is prohibited without prior written permission of the copyright holder. Citation: Lamoreux, J. F., McKnight, M. W., and R. Cabrera Hernandez (2015). Amphibian Alliance for Zero Extinction Sites in Chiapas and Oaxaca. Gland, Switzerland: IUCN. xxiv + 320pp. ISBN: 978-2-8317-1717-3 DOI: 10.2305/IUCN.CH.2015.SSC-OP.53.en Cover photographs: Totontepec landscape; new Plectrohyla species, Ixalotriton niger, Concepción Pápalo, Thorius minutissimus, Craugastor pozo (panels, left to right) Back cover photograph: Collecting in Chamula, Chiapas Photo credits: The cover photographs were taken by the authors under grant agreements with the two main project funders: NGS and CEPF.
    [Show full text]
  • (Amphibia: Anura: Megophryidae) from Heishiding Nature Reserve, Fengkai, Guangdong, China, Based on Molecular and Morphological Data
    Zootaxa 3795 (4): 449–471 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2014 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.3795.4.5 http://zoobank.org/urn:lsid:zoobank.org:pub:59C8EDD8-DF54-43A7-987B-691395B78586 Description of two new species of the genus Megophrys (Amphibia: Anura: Megophryidae) from Heishiding Nature Reserve, Fengkai, Guangdong, China, based on molecular and morphological data YU-LONG LI1, MENG-JIE JIN1, JIAN ZHAO1, ZU-YAO LIU1, YING-YONG WANG1, 2 & HONG PANG1,2 1State Key Laboratory of Biocontrol / The Museum of Biology, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P.R. China 2Corresponding author. E-mail: [email protected], [email protected] Abstract Two new species, Megophrys acuta sp. nov. and Megophrys obesa sp. nov., are described based on a series of specimens collected from Heishiding Nature Reserve, Fengkai County, Guangdong Province, China. They can be distinguished from other known congeners occurred in southern and eastern China by morphological characters and molecular divergence in the mitochondrial 16S rRNA gene. M. acuta is characterized by small and slender body with adult females measuring 28.1–33.6 mm and adult males measuring 27.1–33.0 mm in snout-vent length; snout pointed, strongly protruding well be- yond margin of lower jaw; canthus rostralis well developed and sharp; hindlimbs short, the heels not meeting, tibio-tarsal articulation reaching forward the pupil of eye. M. obesa is characterized by stout and slightly small body with adult fe- males measuring 37.5–41.2 mm, adult male measuring 35.6 mm in snout-vent length; snout round in dorsal view; canthus rostralis developed; hindlimbs short, the heels not meeting, tibio-tarsal articulation reaching forward the posterior margin of eye.
    [Show full text]
  • Aspects of the Ecology and Conservation of Frogs in Urban Habitats of South Africa
    Frogs about town: Aspects of the ecology and conservation of frogs in urban habitats of South Africa DJD Kruger 20428405 Thesis submitted for the degree Philosophiae Doctor in Zoology at the Potchefstroom Campus of the North-West University Supervisor: Prof LH du Preez Co-supervisor: Prof C Weldon September 2014 i In loving memory of my grandmother, Kitty Lombaard (1934/07/09 – 2012/05/18), who has made an invaluable difference in all aspects of my life. ii Acknowledgements A project with a time scale and magnitude this large leaves one indebted by numerous people that contributed to the end result of this study. I would like to thank the following people for their invaluable contributions over the past three years, in no particular order: To my supervisor, Prof. Louis du Preez I am indebted, not only for the help, guidance and support he has provided throughout this study, but also for his mentorship and example he set in all aspects of life. I also appreciate the help of my co-supervisor, Prof. Ché Weldon, for the numerous contributions, constructive comments and hours spent on proofreading. I owe thanks to all contributors for proofreading and language editing and thereby correcting my “boerseun” English grammar but also providing me with professional guidance. Prof. Louis du Preez, Prof. Ché Weldon, Dr. Andrew Hamer, Dr. Kirsten Parris, Prof. John Malone and Dr. Jeanne Tarrant are all dearly thanked for invaluable comments on earlier drafts of parts/the entirety of this thesis. For statistical contributions I am especially also grateful to Dr. Andrew Hamer for help with Bayesian analysis and to the North-West Statistical Services consultant, Dr.
    [Show full text]
  • A New Species of Leptolalax (Anura: Megophryidae) from the Western Langbian Plateau, Southern Vietnam
    Zootaxa 3931 (2): 221–252 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2015 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.3931.2.3 http://zoobank.org/urn:lsid:zoobank.org:pub:BC97C37F-FD98-4704-A39A-373C8919C713 A new species of Leptolalax (Anura: Megophryidae) from the western Langbian Plateau, southern Vietnam NIKOLAY A. POYARKOV, JR.1,2,7, JODI J.L. ROWLEY3,4, SVETLANA I. GOGOLEVA2,5, ANNA B. VASSILIEVA1,2, EDUARD A. GALOYAN2,5& NIKOLAI L. ORLOV6 1Department of Vertebrate Zoology, Biological Faculty, Lomonosov Moscow State University, Leninskiye Gory, GSP–1, Moscow 119991, Russia 2Joint Russian-Vietnamese Tropical Research and Technological Center under the A.N. Severtsov Institute of Ecology and Evolution RAS, South Branch, 3, Street 3/2, 10 District, Ho Chi Minh City, Vietnam 3Australian Museum Research Institute, Australian Museum, 6 College St, Sydney, NSW, 2010, Australia 4School of Marine and Tropical Biology, James Cook University, Townsville, QLD, 4811, Australia 5Zoological Museum of the Lomonosov Moscow State University, Bolshaya Nikitskaya st. 6, Moscow 125009, Russia 6Zoological Institute, Russian Academy of Sciences, Universitetskaya nab., 1, St. Petersburg 199034, Russia 7Corresponding author. E-mail: [email protected] Abstract We describe a new species of megophryid frog from Loc Bac forest in the western part of the Langbian Plateau in the southern Annamite Mountains, Vietnam. Leptolalax pyrrhops sp. nov. is distinguished from its congeners
    [Show full text]
  • Bufo Marinus (Amphibian)
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Wildlife Damage Management, Internet Center Other Publications in Wildlife Management for June 2006 Bufo marinus (amphibian) Follow this and additional works at: https://digitalcommons.unl.edu/icwdmother Part of the Environmental Sciences Commons "Bufo marinus (amphibian)" (2006). Other Publications in Wildlife Management. 31. https://digitalcommons.unl.edu/icwdmother/31 This Article is brought to you for free and open access by the Wildlife Damage Management, Internet Center for at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Other Publications in Wildlife Management by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. issg Database: Ecology of Bufo marinus http://www.issg.org/database/species/ecology.asp?si=113&fr=1&sts= all 6 all 6 Bufo marinus (amphibian) Management References Ecology Distribution Impacts Contacts Info and Links Taxonomic name: Bufo marinus (Linnaeus, 1758) Synonyms: Bufo agua Clark 1916, Bufo marinis [sic] Barbour 1916, Bufo marinus marinus Mertens 1972, Bufo marinus Mertens 1969, Bufo marinus Schneider 1799, Bufo strumosus Court 1858 Common names: Aga-Kröte (German), bufo toad, bullfrog, cane toad (English), crapaud (Caribbean), giant American toad (English), giant toad (English), kwapp (Caribbean), macao (Dominican Republic), maco pempen (Dominican Republic), Maco toro (Dominican Republic), marine Toad, Suriname toad Organism type: amphibian The cane toad, Bufo marinus was introduced throughout the world as a biological control for various insect pests of sugarcane and other crops. It has become a pest in its introduced range. It will feed on any organism available. It preys on and competes with native amphibians for food and breeding habitat.
    [Show full text]