Insect Host Location Remarks Spearmarked Black Paper Birch

Total Page:16

File Type:pdf, Size:1020Kb

Insect Host Location Remarks Spearmarked Black Paper Birch Insect Host Location Remarks Spearmarked black Paper birch Interior Alaska Black-moth populations were once again at moth low levels in interior Alaska. Only 500 acres of Rhaumaptera hastata defoliated birch were detected; a slight increase over levels in 1988. Spruce aphid Sitka spruce Southeast Alaska In sharp contrast to severe defoliation in Elatobium abietinum 1987 and 1988, aphid populations and their defoliation diminished greatly in 1989. Near-record cold temperatures during the 1988-1989 winter may have resulted in the population collapse. Spruce beetle Lutz spruce, Alaska Active infestations in 1989 covered 117,250 Dendroctonus rufipennis Sitka spruce, acres, 270,000 acres less than in 1988. White spruce Infestations continued on 10,690 acres of the Chugach National Forest and on 6,913 acres of the Kenai National Wildlife Refuge. Spruce beetle populations were low and fairly stable in southeast Alaska. In Yakutat, 2,000 acres of Sitka spruce were infested near windthrow salvage units, but mortality was low. In Glacier Bay National Park, 15,000 acres were infested, but little mortality occurred in 1989. Along the Yukon River south of Galena, 100,000 acres of white spruce were infested, and 15,000 acres were infested along the Kuskokwim River. Spruce beetle activity was expected to decline further in south-central Alaska and increase in interior Alaska's white spruce stands. Spruce bud midge Black spruce, South-central Bud midge damage was prevalent on sunny Dasineura swainei White spruce Alaska regeneration sites throughout the Kenai Peninsula. In many cases, multiple leaders resulted. Spruce bud moth Sitka spruce Southeast Alaska Light to moderate defoliation of Sitka spruce Zeiraphera sp. occurred on 89,000 acres along coastal areas from Dry Bay to Yakutat. Spruce budworm Sitka spruce, South-central Defoliation was not apparent in Alaska's Choristonaura sp. White spruce and southeast spruce stands. Alaska Tent caterpillar Mountain ash, South-central Introduced (1988) western tent caterpillar Ma/acosoma sp. Red cherry Alaska populations were successfully eradicated in the Anchorage area. No tent caterpillar populations were observed in 1989 during intensive ground checks. Alaska Reglon--Status of insects in Alaska 98 .
Recommended publications
  • Spruce Beetle
    QUICK GUIDE SERIES FM 2014-1 Spruce Beetle An Agent of Subalpine Change The spruce beetle is a native species in Colorado’s spruce forest ecosystem. Endemic populations are always present, and epidemics are a natural part of the changing forest. There usually are long intervals between such events as insect and disease epidemics and wildfires, giving spruce forests time to regenerate. Prior to their occurrence, the potential impacts of these natural disturbances can be reduced through proactive forest management. The spruce beetle (Dendroctonus rufipennis) is responsible for the death of more spruce trees in North America than any other natural agent. Spruce beetle populations range from Alaska and Newfoundland to as far south as Arizona and New Mexico. The subalpine Engelmann spruce is the primary host tree, but the beetles will infest any Figure 1. Engelmann spruce trees infested spruce tree species within their geographical range, including blue spruce. In with spruce beetles on Spring Creek Pass. Colorado, the beetles are most commonly observed in high-elevation spruce Photo: William M. Ciesla forests above 9,000 feet. At endemic or low population levels, spruce beetles generally infest only downed trees. However, as spruce beetle population levels in downed trees increase, usually following an avalanche or windthrow event – a high-wind event that topples trees over a large area – the beetles also will infest live standing trees. Spruce beetles prefer large (16 inches in diameter or greater), mature and over- mature spruce trees in slow-growing, spruce-dominated stands. However, at epidemic levels, or when large-scale, rapid population increases occur, spruce beetles may attack trees as small as 3 inches in diameter.
    [Show full text]
  • The Green Spruce Aphid in Western Europe
    Forestry Commission The Green Spruce Aphid in Western Europe: Ecology, Status, Impacts and Prospects for Management Edited by Keith R. Day, Gudmundur Halldorsson, Susanne Harding and Nigel A. Straw Forestry Commission ARCHIVE Technical Paper & f FORESTRY COMMISSION TECHNICAL PAPER 24 The Green Spruce Aphid in Western Europe: Ecology, Status, Impacts and Prospects for Management A research initiative undertaken through European Community Concerted Action AIR3-CT94-1883 with the co-operation of European Communities Directorate-General XII Science Research and Development (Agro-Industrial Research) Edited by Keith R. t)ay‘, Gudmundur Halldorssorr, Susanne Harding3 and Nigel A. Straw4 ' University of Ulster, School of Environmental Studies, Coleraine BT52 ISA, Northern Ireland, U.K. 2 2 Iceland Forest Research Station, Mogilsa, 270 Mossfellsbaer, Iceland 3 Royal Veterinary and Agricultural University, Department of Ecology and Molecular Biology, Thorvaldsenvej 40, Copenhagen, 1871 Frederiksberg C., Denmark 4 Forest Research, Alice Holt Lodge, Wrecclesham, Farnham, Surrey GU10 4LH, U.K. KVL & Iceland forestry m research station Forest Research FORESTRY COMMISSION, EDINBURGH © Crown copyright 1998 First published 1998 ISBN 0 85538 354 2 FDC 145.7:453:(4) KEYWORDS: Biological control, Elatobium , Entomology, Forestry, Forest Management, Insect pests, Picea, Population dynamics, Spruce, Tree breeding Enquiries relating to this publication should be addressed to: The Research Communications Officer Forest Research Alice Holt Lodge Wrecclesham, Farnham Surrey GU10 4LH Front Cover: The green spruce aphid Elatobium abietinum. (Photo: G. Halldorsson) Back Cover: Distribution of the green spruce aphid. CONTENTS Page List of contributors IV Preface 1. Origins and background to the green spruce aphid C. I. Carter and G. Hallddrsson in Europe 2.
    [Show full text]
  • Fungi Associated with the North American Spruce Beetle, Dendroctonus Rufipennis
    Color profile: Generic CMYK printer profile Composite Default screen 1815 NOTE / NOTE Fungi associated with the North American spruce beetle, Dendroctonus rufipennis Diana L. Six and Barbara J. Bentz Abstract: Fungi were isolated from individual Dendroctonus rufipennis (Kirby) collected from six populations in Alaska, Colorado, Utah, and Minnesota, U.S.A. In all populations, Leptographium abietinum (Peck) Wingfield was the most commonly isolated mycelial fungus (91–100% of beetles). All beetles in all populations were associated with yeasts and some with only yeasts (0–5%). In one population, Ophiostoma ips (Rumbold) Nannf. was also present on 5% of the beetles but always in combination with L. abietinum and yeasts. Ophiostoma piceae (Munch) H. & P. Sydow was found on 2% of beetles in another population. Ceratocystis rufipenni Wingfield, Harrington & Solheim, previously reported as an associate of D. rufipennis, was not isolated from beetles in this study. Ceratocystis rufipenni is a viru- lent pathogen of host Picea, which has led to speculation that C. rufipenni aids the beetle in overcoming tree defenses and therefore contributes positively to the overall success of the beetle during colonization. However, our results, con- sidered along with those of others, indicate that C. rufipenni may be absent from many populations of D. rufipennis and may be relatively rare in those populations in which it is found. If this is true, C. rufipenni may be only a minor or incidental associate of D. rufipennis and, as such, not likely to have significant impacts on beetle success or popula- tion dynamics. Alternatively, the rarity of C. rufipenni in our and others isolations may be due to difficulties in isolat- ing this fungus in the presence of other faster growing fungi such as L.
    [Show full text]
  • How Will Aphids Respond to More Frequent Drought?
    bioRxiv preprint doi: https://doi.org/10.1101/2020.06.24.168112; this version posted December 10, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. 1 1 Stressful times in a climate crisis: how will aphids respond to more 2 frequent drought? 3 Running title: Aphid-plant interactions under drought stress 4 Abstract 5 Aim 6 Aphids are abundant in natural and managed vegetation, supporting a diverse 7 community of organisms and causing damage to agricultural crops. Using a meta- 8 analysis approach, we aimed to advance understanding of how increased drought 9 incidence will affect this ecologically and economically important insect group, and to 10 characterise the underlying mechanisms. 11 Location 12 Global. 13 Time period 14 1958–2020. 15 Major taxa studied 16 Aphids. 17 Methods 18 We used qualitative and quantitative synthesis techniques to determine whether 19 drought stress has a negative, positive, or null effect on aphid fitness. We examined 20 these effects in relation to 1) aphid biology, 2) the aphid-plant. species combination. 21 We compiled two datasets: 1) a “global” dataset (n = 55 from 55 published studies) 22 comprising one pooled effect size per study, and 2) an “expanded” dataset (n = 93) 23 containing multiple datapoints per study, separated into different measures of aphid 24 fitness but pooled across aphid-plant combinations. Where reported, we extracted 25 data on the effect of drought on plant vigour, and plant tissue concentrations of 26 nutrients and defensive compounds, to capture the potential causes of aphid 27 responses.
    [Show full text]
  • A Revision of the Bark Beetle Genus Dendroctonus Erichson (Coleoptera: Scolytidae)
    Great Basin Naturalist Volume 23 Number 1 – Number 2 Article 1 6-14-1963 A revision of the bark beetle genus Dendroctonus Erichson (Coleoptera: Scolytidae) Stephen L. Wood Brigham Young University Follow this and additional works at: https://scholarsarchive.byu.edu/gbn Recommended Citation Wood, Stephen L. (1963) "A revision of the bark beetle genus Dendroctonus Erichson (Coleoptera: Scolytidae)," Great Basin Naturalist: Vol. 23 : No. 1 , Article 1. Available at: https://scholarsarchive.byu.edu/gbn/vol23/iss1/1 This Article is brought to you for free and open access by the Western North American Naturalist Publications at BYU ScholarsArchive. It has been accepted for inclusion in Great Basin Naturalist by an authorized editor of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. Y The Great Basin Naturalist Published at Provo, Utah by Brigham Young University Volume XXIII June 14, 1963 ' Jj'^^^^^ljS^ AUG 1 8 1966 hMrxvMrXLJ A REVISION OF THE BARK BEETLE GENUS ^ SIT DENDROCTONUS ERICHSON (COLEOPTERA: SCOLYTIDAE)^ Stephen L. Wood' Abstract This taxonomic revision of all known species of Dendroctonus is based on an analysis of anatomical and biological characters. Among the anatomical structures found to be of greatest use in char- acterizing species were the seminal rod of the male genital capsule, the surface features of the frons, and the features of the elytral declivity. Characters of the egg gallery, position and arrangement of egg niches and grooves, and the character and position of the larval mines provided features for field recognition of species that were equal to, if not superior to, anatomical characters.
    [Show full text]
  • Integrating Cultural Tactics Into the Management of Bark Beetle and Reforestation Pests1
    DA United States US Department of Proceedings --z:;;-;;; Agriculture Forest Service Integrating Cultural Tactics into Northeastern Forest Experiment Station the Management of Bark Beetle General Technical Report NE-236 and Reforestation Pests Edited by: Forest Health Technology Enterprise Team J.C. Gregoire A.M. Liebhold F.M. Stephen K.R. Day S.M.Salom Vallombrosa, Italy September 1-3, 1996 Most of the papers in this publication were submitted electronically and were edited to achieve a uniform format and type face. Each contributor is responsible for the accuracy and content of his or her own paper. Statements of the contributors from outside the U.S. Department of Agriculture may not necessarily reflect the policy of the Department. Some participants did not submit papers so they have not been included. The use of trade, firm, or corporation names in this publication is for the information and convenience of the reader. Such use does not constitute an official endorsement or approval by the U.S. Department of Agriculture or the Forest Service of any product or service to the exclusion of others that may be suitable. Remarks about pesticides appear in some technical papers contained in these proceedings. Publication of these statements does not constitute endorsement or recommendation of them by the conference sponsors, nor does it imply that uses discussed have been registered. Use of most pesticides is regulated by State and Federal Law. Applicable regulations must be obtained from the appropriate regulatory agencies. CAUTION: Pesticides can be injurious to humans, domestic animals, desirable plants, and fish and other wildlife - if they are not handled and applied properly.
    [Show full text]
  • An Addendum to Spruce Beetle in the Rockies
    Forests 2014, 5, 21-71; doi:10.3390/f5010021 OPEN ACCESS forests ISSN 1999-4907 www.mdpi.com/journal/forests Review Spruce Beetle Biology, Ecology and Management in the Rocky Mountains: An Addendum to Spruce Beetle in the Rockies Michael J. Jenkins 1,*, Elizabeth G. Hebertson 2 and A. Steven Munson 2 1 Department of Wildland Resources, Utah State University, Logan, UT 84322, USA 2 US Department of Agriculture, Forest Service, Forest Health Protection, Ogden, UT 84403, USA; E-Mails: [email protected] (E.G.H.); [email protected] (A.S.M.) * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +1-435-797-2531; Fax: +1-435-797-3796. Received: 4 November 2013; in revised form: 15 December 2013 / Accepted: 18 December 2013 / Published: 3 January 2014 Abstract: Spruce beetle outbreaks have been reported in the Rocky Mountains of western North America since the late 1800s. In their classic paper, Spruce Beetle in the Rockies, Schmid and Frye reviewed the literature that emerged from the extensive outbreaks in Colorado in the 1940s. A new wave of outbreaks has affected Rocky Mountain subalpine spruce-fir forests beginning in the mid-1980s and continuing to the present. These outbreaks have spurred another surge of basic and applied research in the biology, ecology and management of spruce and spruce beetle populations. This paper is a review of literature on spruce beetle focusing on work published since the late 1970s and is intended as an addendum to Spruce Beetle in the Rockies. Keywords: Dendroctonus rufipennis; spruce beetle; Engelmann spruce; central Rocky Mountains 1.
    [Show full text]
  • Dispersal Flight and Attack of the Spruce Beetle, Dendroctonus Rufipennis, in South-Central Alaska
    United States Department of Agriculture Dispersal Flight and Attack Forest Service of the Spruce Beetle, Pacific Northwest Research Station Research Paper Dendroctonus rufipennis, PNW-RP-536 February 2002 in South-Central Alaska Edward H. Holsten and John S. Hard Authors Edward H. Holsten is a research entomologist and John S. Hard was a research entomologist (now retired), Forestry Sciences Laboratory, 3301 C Street, Suite 300, Anchorage, AK 99503. Abstract Holsten, Edward H.; Hard, John S. 2001. Dispersal flight and attack of the spruce beetle, Dendroctonus rufipennis, in south-central Alaska. Res. Pap. PNW-RP-536. Portland, OR: U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station. 13 p. Data from 1999 and 2000 field studies regarding the dispersal flight and initial attack behavior of the spruce beetle (Dendroctonus rufipennis Kirby) are summarized. More dispersing beetles were trapped in flight near the middle to upper tree bole than the lower bole. There were no significant differences between trap location and ambient temperatures. Initial attacks, however, were concentrated on the lower tree bole. Dispersal flight preceded initial attacks by 1 to 2 weeks. Keywords: Bark beetles, Dendroctonus rufipennis, dispersal, flight, attack patterns, white spruce, Picea glauca, Lutz spruce, Picea X lutzii, Alaska (south-central), Kenai Peninsula. Summary Field tests regarding the dispersal flight and initial attack of the spruce beetle (Dendroctonus rufipennis Kirby) were conducted on the Kenai Peninsula in stands of Lutz (Picea X lutzii (Little)) and Sitka spruce (P. sitchensis (Bong.) Carr.). Adult beetles disperse more commonly in the area surrounding the upper clear bole of the tree and the lower live crown, although initial attacks were concentrated on the lower tree bole.
    [Show full text]
  • Data Sheet on Dendroctonus Rufipennis
    EPPO quarantine pest Prepared by CABI and EPPO for the EU under Contract 90/399003 Data Sheets on Quarantine Pests Dendroctonus rufipennis IDENTITY Name: Dendroctonus rufipennis (Kirby) Synonyms: Dendroctonus borealis Hopkins Dendroctonus engelmanni Hopkins Dendroctonus piceaperda Hopkins Dendroctonus similis LeConte Hylurgus rufipennis Kirby Taxonomic position: Insecta: Coleoptera: Scolytidae Common names: Spruce beetle, Engelmann spruce beetle, red-winged pine beetle (English) Bayer computer code: DENCRU EPPO A1 list: No. 267 EU Annex designation: II/A1 HOSTS D. rufipennis attacks North American Picea spp. generally, including in particular P. glauca and P. mariana in the north, P. engelmannii and P. sitchensis in the west, and P. rubens in the east. GEOGRAPHICAL DISTRIBUTION EPPO region: Absent. North America: Throughout the range of Picea; Canada (specific records in Alberta, British Columbia, Manitoba, Northwest Territory, Saskatchewan, Yukon; presumably present also throughout the eastern provinces, where Picea spp. are widespread, but specific record found only for Nova Scotia), Mexico, USA (specific records in Alaska, Arizona, Colorado, Idaho, Montana, New Mexico, Utah, Wyoming; presumably present also throughout New England and the Lake States, where Picea spp. are widespread, but specific record found only for New Hampshire). EU: Absent. BIOLOGY The adults and larvae of Dendroctonus spp. are phloeophagous or bark-feeding. D. rufipennis mostly overwinters as adults and half-grown larvae. Adults emerge from overwintering sites between February and June. Activity is resumed when subcortical temperatures become sufficiently high, about 7-10°C. Terpenes in the oleoresin are the primary source of attraction, guiding pioneer beetles in the selection of a new host. Pheromones are responsible for the secondary attraction of other members of the same species and are the means by which individuals communicate after colonization.
    [Show full text]
  • Full Issue, Vol. 64 No. 1
    Western North American Naturalist Volume 64 Number 1 Article 21 2-20-2004 Full Issue, Vol. 64 No. 1 Follow this and additional works at: https://scholarsarchive.byu.edu/wnan Recommended Citation (2004) "Full Issue, Vol. 64 No. 1," Western North American Naturalist: Vol. 64 : No. 1 , Article 21. Available at: https://scholarsarchive.byu.edu/wnan/vol64/iss1/21 This Full Issue is brought to you for free and open access by the Western North American Naturalist Publications at BYU ScholarsArchive. It has been accepted for inclusion in Western North American Naturalist by an authorized editor of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. Western North American Naturalist 64(1), ©2004, pp. 1–6 BIOGEOGRAPHIC AND CONSERVATION IMPLICATIONS OF LATE QUATERNARY PYGMY RABBITS (BRACHYLAGUS IDAHOENSIS) IN EASTERN WASHINGTON R. Lee Lyman1 ABSTRACT.—Five implications of a biogeographic model of pygmy rabbits (Brachylagus idahoensis) in eastern Washing- ton proposed in 1991 are confirmed by 11 new late-Quaternary records. Pygmy rabbits from eastern Oregon colonized eastern Washington during the late Pleistocene and occupied their largest range during the middle and late Holocene. Disjunction of the eastern Washington population from that in eastern Oregon occurred during at least the late Holo- cene. Nineteenth-century cattle grazing and 20th-century agricultural practices reduced habitat preferred by pygmy rabbits. Conservation of the small remaining population of pygmy rabbits will necessitate altered land use practices. Key words: agriculture, biogeography, Brachylagus idahoensis, conservation, grazing, pygmy rabbit, Washington. Populations of pygmy rabbits (Brachylagus MATERIALS AND METHODS idahoensis) in eastern Washington are isolated from conspecific populations in southeastern Records reported by Lyman (1991) were Oregon, Nevada, and portions of adjacent states reviewed, and documents that appeared since (Fig.
    [Show full text]
  • Climate Variability and Spruce Beetle (Dendroctonus Rufipennis) Outbreaks in South-Central and Southwest Alaska
    Ecology, 92(7), 2011, pp. 1459–1470 Ó 2011 by the Ecological Society of America Climate variability and spruce beetle (Dendroctonus rufipennis) outbreaks in south-central and southwest Alaska 1,5 2 3,4 ROSEMARY L. SHERRIFF, EDWARD E. BERG, AND AMY E. MILLER 1Geography Department, Humboldt State University, Arcata, California 95521 USA 2U.S. Fish and Wildlife Service, Kenai National Wildlife Refuge, Soldatna, Alaska 99669 USA 3National Park Service, Alaska Regional Office, Anchorage, Alaska 99501 USA 4Institute of Arctic and Alpine Research, University of Colorado, Boulder, Colorado 80309-0450 USA Abstract. We used tree ring data (AD 1601–2007) to examine the occurrence of and climatic influences on spruce beetle (Dendroctonus rufipennis) outbreaks in south-central and southwest Alaska and found evidence of regional-scale outbreaks dating from the mid-1700s, related to climate variability at multiple temporal scales. Over interannual time scales (;1–3 years), El Nin˜o years, combined with severe late-summer drought, appeared to contribute significantly to spruce beetle outbreaks in the study area. Over multidecadal time scales (up to ;40 years), cool-phase Pacific Decadal Oscillation (PDO) conditions tended to precede beetle outbreaks, regardless of the phase of El Nin˜o-Southern Oscillation (ENSO). All sites showed low-severity disturbances attributed to spruce beetle damage, most notably during the 1810s. During other major periods of disturbance (i.e., 1870s, 1910s, 1970s), the effects of spruce beetle outbreaks were of moderate or higher severity. The highly synchronized timing of spruce beetle outbreaks at interannual to multidecadal scales, and particularly the association between cool-phase PDO conditions and beetle disturbance, suggests that climate (i.e., temperature, precipitation) is a primary driver of outbreaks in the study area.
    [Show full text]
  • Proceedings from the Third Workshop on Genetics of Bark Beetles and Associated Microorganisms
    Genetics of Bark Beetles and Associated Microorganisms: Third Workshop Proceedings United States Department of Agriculture Forest Service May 20 and 21, 2006 Rocky Mountain Research Station Asheville, North Carolina Proceedings RMRS-P-45 June 2007 In Association with IUFRO WP 7.03.05 - Integrated Control of Scolytid Bark Beetles Bentz, Barbara; Cognato, Anthony; Raffa, Kenneth, eds. 2007. Proceedings from the Third Workshop on Genetics of Bark Beetles and Associated Microorganisms. Proc. RMRS- P-45. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. 51 p. These proceedings provide a synopsis of the Third Workshop on Genetics of Bark Beetles and Association Microorganisms, which was held May 20-2, 2006 in Asheville, NC. Twenty- five participants from five countries attended the meeting. The proceedings are structured into four parts: Phylogenetics of Bark Beetles, Population Genetics of Bark Beetles, Bark Beetle Gene Structure and Function, and Genetics of Symbionts, Natural Enemies, and Hosts. The abstracts give a snapshot of our current understanding of the genetics of bark beetles and associated microorganisms. In Association with IUFRO WP 7.03.05 - Integrated Control of Scolytid Bark Beetles Workshop Organizers: Barbara Bentz, Anthony Cognato, and Kenneth Raffa You may order additional copies of this publication by sending your mailing information in label form through one of the following me- dia. Please specify the publication title and series number. Publishing Services Telephone (970)
    [Show full text]