Downloaded Onto a Dell Inspiron 560 Computer and the Video Was Watched Through the Test and in Particular, the Failure Point
Total Page:16
File Type:pdf, Size:1020Kb
Kent Academic Repository Full text document (pdf) Citation for published version Morris, Andrew James Wulfric (2015) Laboratory Studies of Hypervelocity Impacts on Solar System Analogues. Doctor of Philosophy (PhD) thesis, University of Kent,. DOI Link to record in KAR https://kar.kent.ac.uk/50707/ Document Version UNSPECIFIED Copyright & reuse Content in the Kent Academic Repository is made available for research purposes. Unless otherwise stated all content is protected by copyright and in the absence of an open licence (eg Creative Commons), permissions for further reuse of content should be sought from the publisher, author or other copyright holder. Versions of research The version in the Kent Academic Repository may differ from the final published version. Users are advised to check http://kar.kent.ac.uk for the status of the paper. Users should always cite the published version of record. Enquiries For any further enquiries regarding the licence status of this document, please contact: [email protected] If you believe this document infringes copyright then please contact the KAR admin team with the take-down information provided at http://kar.kent.ac.uk/contact.html Andrew J W Morris Laboratory Studies of Hypervelocity Impacts on Solar System Analogues A thesis submitted in requirement for the degree of Doctor of Philosophy in Astrophysics and Planetary Science in the Faculty of Physical Sciences at the University of Kent in Canterbury 2014/15 Total word count – 50 425 Contents Acknowledgements List of Figures List of Tables Chapter I: Introduction………..………..………………………………….……… 1 1.1 An Historical Review……………………………………………….…...……1 1.2 Late Heavy Bombardment (LHB)………………………………….…………7 1.3 The Main Asteroid Belt and its Evolution…………………………………….9 1.4 Asteroid Families and Detection………………………………………….…12 1.5 Summary………………………………………………………………….…15 Chapter II: Questions to be addressed…….………………….………………….16 2.1 Catastrophic Disruption……………………………………………………..16 2.1.1 Current work into catastrophic disruption events…………………………....21 2.2 Variable Temperature Impacts……………………………………………....23 2.2.1 Current work in cratering physics……………………….……………….….26 2.3 Shock Waves………………………………………………………………...28 2.4 Gruneisen Parameter……………………………………………………...…31 2.5 Summary…………………………………………………………………….32 Chapter III: Experimental Methodology I: The Light Gas Gun………………...33 3.0.1 The First Stage of the Light Gas Gun……………………………………..…34 3.0.2 The Second Stage…………………………………………………………....35 3.1 Firing Mechanism………………………………………………………...…35 3.2 Powder Chamber Coupler………………………………………………...…37 3.3 Pump Tube…………………………………………………………………..38 3.4 Central Breech………………………………………………………………39 3.5 Launch Tube………………………………………………………………...41 3.6 Blast Tank…………………………………………………………………...45 3.7 Vacuum Pump Valves and Vacuum Displays……………………………….47 3.8 Oscilloscope Displays……………………………………………………….49 3.9 Time of Flight Section……………………………………………………….50 3.10 Safety Check Camera………………………………………………………..51 3.11 Small Target Chamber (STC)…………………………………………….…52 3.12 Target Chamber……………………………………………………………..52 3.13 Firing Console………………………………………………………...…….55 3.14 Summary…………………………………………………………………….56 Chapter IV: Experimental Methodology II: Cement Target Manufacture…….…...57 4.1 Ratio Tests on Cement……………………………………………………....59 4.1.1 Experimental Outline…………………………………………………..……60 4.1.2 Optimum strength…………………………………………………………...61 4.1.3 Brazilian Strength Testing……………………………………………….….65 4.1.4 Brazilian Test Results……………………………………………………….68 4.2 Curing Related Weakness………………………………………...…………70 4.3 Porosity Testing……………………………………………………………..71 4.3.1 The Test……………………………………………………………………..72 4.3.2 Results from Tests…………………………………………………...………73 4.4 Summary……………..…………………………………………………..….81 Chapter V: Experimental Methodology III: The Target Holders……...….……82 5.1 The Rotating Target Holder…………………………………………………82 5.2 MeX Stereomount…………………………………………………..……….90 5.3 The Variable Temperature Target Holder…………………………………...93 Chapter VI Rotational Catastrophic Disruption: The Experiment……...……...99 6.0 Mould Preparation…………………………………………………………..99 6.0.1 Cement Target Manufacture…………………………………………….....100 6.0.2 Setting the Moulds………………………………………………..……..…101 6.0.3 Curing………………………………………………………………...........103 6.0.4 Installation of the Targets………………………………………….……….104 6.0.5 Removal of Target and Data Acquisition…………………………………..105 6.1 Q* Determination………………………………………………………….107 6.1.1 Static Shots……………………………………………………...…………111 6.1.2 Finding Q*………………………………………………………………....111 6.1.3 Rotation Shots……………………………………………………………...115 6.1.4 Cratering-Disruption Regime Cross-Over or ‘Knee-Joint’…………...……115 6.1.5 Finding Q*…………………………………………………………...…….118 6.1.6 Analysis of the Data Spread in the Knee-Joint……………………………..119 6.2 Fragment Size Distribution………………………………………………...123 6.2.1 Cratering Distributions……………………………………………….……126 6.2.2 Q* Region Impacts…………………………………………………………129 6.2.3 Q > Q*: Catastrophic Disruption Regime………………………………….131 6.3 Theoretical Catastrophic Disruption (SPH Hydrocode Models)………...…136 6.3.1 Material and Equation of State………………………………………….….136 6.3.2 Setting Up………………………………………………………………….137 6.3.3 Results……………………………………………………………………..140 6.4 Summary……………………………………………………………….…..147 Chapter VII Variable Temperature Impact Cratering: The Experiment……149 7.0 Introduction…………………………………………………………….….149 7.1 Experimental Processes………………………………………………...….149 7.1a The Initial Shots…………………………………………………………...149 7.2 Data Analysis of the Targets…………………………………………...…..152 7.2a Crater Diameter………………………………………………………….....153 7.2b Crater Depth……………………………………………………………..…154 7.3c The Crater Volume…………………………………………………………154 7.3 Variable Temperature Rock Impacts – Phase II…………………………...156 7.3a Rock Types……………………………………………………………...…157 7.3b Advanced Cooling of the Samples………………………………………...157 7.3c Advanced Heating of the Samples…………………………………..…….159 7.4 Calculation of Cratering Efficiency……………………………………….163 7.5 The KDM Method…………………………………………………...……..165 7.6 MeX………………………………………………………………….…….168 7.6 a Measuring Crater Diameter with MeX………………………………..……170 7.6 b Calculation of the Crater Depth and Profile…………………………….…..171 7.6c Crater Volumes with MeX………………………………………………....172 7.7 Variable Temperature Impact Result………………………………………174 7.7 a Video Capture Analysis………………………………………………...….174 7.7 b Impact Data…………………………………………………………….…..178 7.7 c Crater Profiles………………………………………………………...……179 7.7 d The KDM Method………………………………………………………….180 7.7 e Treatment of Errors…………………………………………………….…..180 7.8 Basalt Results………………………………………………………………183 7.8.1 Basalt Discussion……………………………………………………..……184 7.9 Limestone Results…………………………………………………...……..185 7.9.1 Limestone Discussion………………………………………………...……186 7.10 Sandstone Results……………………………………………….…………187 7.10.1 Sandstone Discussion………………………………………………...……188 7.11 Ancaster Hard White Data…………………………………………………189 7.11.1 Ancaster Hard White………………………………………………….…....190 7.12 Beestone Red Sandstone Data……………………………………….……..191 7.12.1 Beestone Red Sandstone Discussion……………………………………….192 7.13 Spall Zones………………………………………………………………...193 7.13.1 Limestone Room Temperature……………………………………………..194 7.13.2 Hot Limestone……………………………………………………………..195 7.13.3 Very Hot Limestone……………………………………………………….196 7.13.4 Very Cold Sandstone………………………………………………………197 7.13.5 Room Temperature Sandstone……………………………………………..198 7.13.6 Hot Sandstone……………………………………………………………...199 7.13.7 Very Cold Basalt…………………………………………………………...199 7.13.8 Room Temperature Basalt…………………………………………………200 7.13.9 Hot Basalt………………………………………………………………….201 7.14 MeX Crater Profiles (Single Form)…….……………………………..……201 7.14.1 Basalt Discussion………………………………………………………..…203 7.14.2 Limestone Discussion……………………………………………………...205 7.14.3 Sandstone Discussion……………………………………………………...206 7.15 Orthogonal Profiles………………………………………………………...207 7.15.1 Sandstone Orthogonal Profiles……………………………………………..207 7.15.2 Basalt Orthogonal Profiles……………………………………..…………..207 7.15.3 Limestone Orthogonal Profiles…………………………...………………..207 7.16 KDM Method Results………………………………………...……………208 7.17 Summary……………………………………………………………..…….215 Chapter VIII : Conclusions…………..………...………………………………..222 8.1 Catastrophic Disruption – Key Conclusions……………………………….223 8.2 Variable Temperature Impact Cratering – Key Conclusions……………….225 8.2.1 Basalt – Key Conclusions………………………………………………….226 8.2.2 Limestone – Key Conclusions…………………………………………...…226 8.2.3 Sandstone – Key Conclusions……………………………………………...227 8.3 Limitations of the work………………………………………………….....228 8.3.1 Catastrophic Disruption………………………………………………...….228 8.3.2 Variable Temperature Impact Cratering………………………………..….228 8.4 Summary……………………………………………………………...……229 Thesis References Annex C – Orthogonally Averaged Crater Profiles Annex D – KDM Method Code Annex E – KDM Method Results Acknowledgements I would like to thank and dedicate my work to all of those who helped me make my dream come true. My main supervisor Prof. Mark Burchell for giving me the chance to fulfil my dream and his never ending continued help and support which has meant so much. My secondary supervisor Dr Stephen Lowry for his help concerning asteroids and having a good chat about Guinness on more than one occasion! Mr Mike Cole the ever dependable scientific officer in the hypervelocity impact lab at Kent University who was always there with his extensive knowledge and rapier- like wit! Sophie Godfrey for continually chasing me to keep me up to date with the wider university side of things! Tim Kinnear and Jacob Deller for their computational expertise on the KDM method.