Ultrahigh Precision Absolute and Relative Rotation Sensing Using Fast and Slow Light

Total Page:16

File Type:pdf, Size:1020Kb

Ultrahigh Precision Absolute and Relative Rotation Sensing Using Fast and Slow Light Ultrahigh Precision Absolute and Relative Rotation Sensing using Fast and Slow Light M.S. Shahriar, G.S. Pati, R. Tripathi, V. Gopal, M. Messall and K. Salit Department of Electrical and Computer Engineering Northwestern University, Evanston, IL 60208 We describe a passive resonator based optical gyroscope whose sensitivity for measuring absolute rotation is enhanced via use of the anomalous dispersion characteristic of superluminal light propagation. The enhancement is given by the inverse of the group index, saturating to a bound determined by the group velocity dispersion. For realistic conditions, the enhancement factor is as high as 108. We also show how normal dispersion used for slow light can enhance relative rotation sensing in a specially designed Sagnac interferometer, with the enhancement given by the slowing factor. PACS numbers: 42.5, 42.50.Ct,42.50.Gy, 42.60.Da Recent experiments have demonstrated very slow as rotation. Recently, Leonhardt and Piwnicki [6] well as superluminal group velocities of light using proposed a slow-light enhanced gyroscope; however, many different processes [1-5]. Extreme dispersion in a they did not point out that this enhancement can not be slow-light medium has been recently considered to achieved when measuring absolute rotation. Later, boost the rotational sensitivity of optical gyroscopes Zimmer and Fleischhauer [9] refuted, incorrectly, the via the Sagnac effect [6]. However, the mechanism by idea of any slow light based sensitivity enhancement in which strong material dispersion affects relativistic rotation sensing, and proposed an alternative hybrid Sagnac effect has remained somewhat controversial. It light and matter-wave interferometer, based on slow is commonly perceived that the Sagnac time delay or light momentum transfer from light to atoms. Matsko phase shift in the presence of a dielectric medium is et al. [10] proposed a variation of the idea presented in independent of the refractive property of the medium ref. 6, where they consider the use of microresonators [7,8]. Although this is true for a co-moving medium instead of atoms to provide the normal dispersion. As and absolute inertial rotation, it is not true if the such, this gyroscope is also unable to achieve the medium is moving with respect to the inertial frame of enhancement when measuring absolute rotation. The authors do not point this out. Furthermore, the medium [11-13]. We discuss the effect of dispersion on analysis in this paper makes use of the classical (non- such a passive resonator gyroscope, and show that the relativistic) model, which yields results that are rotation sensitivity can be increased by many orders of incorrect when a material medium of non-unity index magnitude by using what we call critically anomalous is present, as we show later. dispersion (CAD). The CAD condition corresponds to the group index approaching a null value, and occurs in In an interferometric optical gyroscope that allows experiments demonstrating superluminal light relative motion between the medium and the propagation in a medium. We show how the presence interferometer, the dispersive drag coefficient can of group velocity dispersion prevents divergence in the influence the Sagnac fringe shift. Precise experimental degree of enhancement, limiting it to a value of the measurements of light drag in a moving optical order of 108 in a realistic system. Such a sensor can be medium have been analyzed and interpreted [8,11] implemented using bi-frequency pumped Raman gain long before the inception of resonantly dispersive slow- in an atomic medium [14], for example, and can be light phenomena. Here, we first use axioms of special used in navigational or geophysical applications for relativity (SR) to review briefly the light dragging ultrahigh precision absolute inertial rotation sensing. phenomena in a moving dielectric medium. We then identify clearly the conditions under which the use of Let us consider first waves in a Mach-Zehnder slow light can enhance the rotational sensitivity by a interferometer (MZI), as shown in Fig. 1, that are factor as large as the group index in the medium, as constrained to propagate in a circular path (for well as the conditions under which the enhancement convenience in analysis) with a radius R (the effect does not occur. A slow-light enhanced sensor of this occurs for paths that are rectilinear as well, as shown in type is suitable only for precise sensing of the relative the diagram). In general, the wave could be of any rotation of a local system. We also consider a passive kind: optical, matter or acoustic. For the clockwise resonator based gyroscope for absolute rotation CW(+) and counter-clockwise CCW(-) directions, the sensing where the Sagnac effect manifests itself in the ± relativistic velocities VR of the phase fronts (PFs), the form of the frequency splitting of cavity modes. Unlike time T ± of PFs to travel from BS1 to BS2, and the an interferometer, frequency-splitting in a resonator effective distances L± from the BS1 to BS2 are related gyroscope is governed by optical path lengths that are as follows always dependent on the refractive property of the V ± v L± Df=4pWmA/h, can be obtained from eqn. 2 by V ± = P , L± = p R ± vT ± , T ± = (1) R 2 ± 1± VP v / C o VR 2 inserting the Compton frequency w=(mco /)h . Note that the Sagnac effect can be explained fully within SR, where VP is the velocity of each PF in the absence of without invoking general relativity, if the degree of rotation, Co is the velocity of light in vacuum, v=WR is space-time curvature is insignificant, which is the case the tangential velocity of rotation, and W is the rotation for optical loops typically used in Sagnac rate. interferometers [8]. Thus, the time delay between the propagating For the case of optical waves in a Sagnac waves and their relative phase shift at the detector are interferometer consisting of a refractive medium, the given by phase shift Dfo in eqn. 2 is independent of the - + + - é (VR - VR ) + 2v ù Dt o = T - T = pRê - + ú refractive index n. This result is somewhat ë(VR + v)(VR - v)û counterintuitive, since it is expected that the light 2AW 2AW æ v ö = » , b çº ÷ << 1 2 2 2 ç ÷ C o (1- b ) C o è C o ø beams experience index-dependent drag in the moving medium. Thus the travel time delay around the optical 4pAW Df = wDt = o o circuit could be expected to depend on n. However, this l o C o (2) is not true for a co-rotating medium in the Sagnac where A=pR2 is the enclosed area, w is the angular interferometer. One can explicitly show this by re- expressing the velocities V ± of the CW and CCW frequency, lo is the vacuum wavelength of the wave R and b is the boost parameter, assumed to be much less phase fronts in terms of the Fresnel drag: than unity for typical rotations. The form of the time delay in eqn. 2 due to Sagnac effect attests to the fact C 1 V ± = o ± v a , a = (1 - ) (3) R n F F n 2 that the time delay is simply a geometric effect, attributable to relativistic time dilations, and does not where Co/n is the velocity Vp of the phase fronts in the depend at all on the velocity of the wave. It only absence of rotation, and the term ‘aF’ is the Fresnel involves the free space velocity of light, even if drag coefficient. Using eqns. 2, one can write the time acoustic waves or matter waves are used. The familiar delay and the phase shift in a generalized form result of matter-wave Sagnac phase shift, 2 2 rotating the source. If the source is stationary while the Dt » (n (1- a F ))Dt o , Df = (n (1- a F ))Dfo (4) frame and the medium co-rotate, a Doppler shift is produced at the first BS. However, this shift does not Substituting ‘aF’ from eqn. 3 in eqn. 4, one gets the affect the phase shift, since the BS effectively serves as same results as in eqn. 2. This is because the derivation the source for both arms. Therefore, the fringe shift using SR already includes the effect of the medium described in eqn. 2 still holds. Thus, even in the most motion on light propagation. However, the magnitude general case, a relative motion between the first BS and of this effect is independent of the Fresnel drag the source has no effect on the Sagnac interference. coefficient, as well as the refractive index, for a Sagnac Next, consider the case where the medium inside the interferometer that uses a common frame of rotation MZI paths is allowed to move at a velocity V with for light source, interferometer as well as the medium. M respect to the MZI frame (i.e. the mirrors and beam Such a system is commonly employed for absolute splitters). As seen by medium, the CW(+) and CCW(-) rotation sensing in navigational systems. This system beams are now Doppler shifted by equal and opposite does not possess (to first-order) Doppler shift of any ± kind between the medium and the source or the amounts, given by Dw = ±wVM / C o . Expressions for interferometer, since they are all co-rotating at the relativistic velocities can be given by including first- same rate W. order dispersion in n(w) as One can relax this constraint and allow several ± ± CCooDw¶¶nnVM VR=(1-)mvvaFF=mmwa nnn¶wn2 ¶w modifications of the Sagnac interferometer where oooo C (nngo- ) =ao Vv relative motion between the frame and the medium mmMF2 no no introduces a Doppler shift.
Recommended publications
  • Physics/0409010V1 [Physics.Gen-Ph] 1 Sep 2004 Ri Ihteclsilshr Sntfound
    Physical Interpretations of Relativity Theory Conference IX London, Imperial College, September, 2004 ............... Mach’s Principle II by James G. Gilson∗ School of Mathematical Sciences Queen Mary College University of London October 29, 2018 Abstract 1 Introduction The question of the validity or otherwise of Mach’s The meaning and significance of Mach’s Principle Principle[5] has been with us for almost a century and and its dependence on ideas about relativistic rotat- has been vigorously analysed and discussed for all of ing frame theory and the celestial sphere is explained that time and is, up to date, still not resolved. One and discussed. Two new relativistic rotation trans- contentious issue is, does general[7] relativity theory formations are introduced by using a linear simula- imply that Mach’s Principle is operative in that theo- tion for the rotating disc situation. The accepted retical structure or does it not? A deduction[4] from formula for centrifugal acceleration in general rela- general relativity that the classical Newtonian cen- tivity is then analysed with the use of one of these trifugal acceleration formula should be modified by transformations. It is shown that for this general rel- an additional relativistic γ2(v) factor, see equations ativity formula to be valid throughout all space-time (2.11) and (2.27), will help us in the analysis of that there has to be everywhere a local standard of ab- question. Here I shall attempt to throw some light solutely zero rotation. It is then concluded that the on the nature and technical basis of the collection of field off all possible space-time null geodesics or pho- arXiv:physics/0409010v1 [physics.gen-ph] 1 Sep 2004 technical and philosophical problems generated from ton paths unify the absolute local non-rotation stan- Mach’s Principle and give some suggestions about dard throughout space-time.
    [Show full text]
  • General Relativity and Spatial Flows: I
    1 GENERAL RELATIVITY AND SPATIAL FLOWS: I. ABSOLUTE RELATIVISTIC DYNAMICS* Tom Martin Gravity Research Institute Boulder, Colorado 80306-1258 [email protected] Abstract Two complementary and equally important approaches to relativistic physics are explained. One is the standard approach, and the other is based on a study of the flows of an underlying physical substratum. Previous results concerning the substratum flow approach are reviewed, expanded, and more closely related to the formalism of General Relativity. An absolute relativistic dynamics is derived in which energy and momentum take on absolute significance with respect to the substratum. Possible new effects on satellites are described. 1. Introduction There are two fundamentally different ways to approach relativistic physics. The first approach, which was Einstein's way [1], and which is the standard way it has been practiced in modern times, recognizes the measurement reality of the impossibility of detecting the absolute translational motion of physical systems through the underlying physical substratum and the measurement reality of the limitations imposed by the finite speed of light with respect to clock synchronization procedures. The second approach, which was Lorentz's way [2] (at least for Special Relativity), recognizes the conceptual superiority of retaining the physical substratum as an important element of the physical theory and of using conceptually useful frames of reference for the understanding of underlying physical principles. Whether one does relativistic physics the Einsteinian way or the Lorentzian way really depends on one's motives. The Einsteinian approach is primarily concerned with * http://xxx.lanl.gov/ftp/gr-qc/papers/0006/0006029.pdf 2 being able to carry out practical space-time experiments and to relate the results of these experiments among variously moving observers in as efficient and uncomplicated manner as possible.
    [Show full text]
  • Arxiv:1007.1861V1 [Gr-Qc] 12 Jul 2010 Feulms N Hp.Temaueeto Uhagravito-Mag a Such of Measurement 10 the Is Shape
    A laser gyroscope system to detect the Gravito-Magnetic effect on Earth A. Di Virgilio∗ INFN Sez. di Pisa, Pisa, Italy K. U. Schreiber and A. Gebauer† Technische Universitaet Muenchen, Forschungseinrichtung Satellitengeodaesie Fundamentalstation Wettzell, 93444 Bad K¨otzting, Germany J-P. R. Wells‡ Department of Physics and Astronomy, University of Canterbury, PB4800, Christchurch 8020, New Zealand A. Tartaglia§ Polit. of Torino and INFN, Torino, Italy J. Belfi and N. Beverini¶ Univ. of Pisa and CNISM, Pisa, Italy A.Ortolan∗∗ Laboratori Nazionali di Legnaro, INFN Legnaro (Padova), Italy Large scale square ring laser gyros with a length of four meters on each side are approaching a sensitivity of 1 10−11rad/s/√Hz. This is about the regime required to measure the gravito- magnetic effect (Lense× Thirring) of the Earth. For an ensemble of linearly independent gyros each measurement signal depends upon the orientation of each single axis gyro with respect to the rotational axis of the Earth. Therefore at least 3 gyros are necessary to reconstruct the complete angular orientation of the apparatus. In general, the setup consists of several laser gyroscopes (we would prefer more than 3 for sufficient redundancy), rigidly referenced to each other. Adding more gyros for one plane of observation provides a cross-check against intra-system biases and furthermore has the advantage of improving the signal to noise ratio by the square root of the number of gyros. In this paper we analyze a system of two pairs of identical gyros (twins) with a slightly different orientation with respect to the Earth axis. The twin gyro configuration has several interesting properties.
    [Show full text]
  • An Essay on the Coriolis Force
    James F. Price Woods Hole Oceanographic Institution Woods Hole, Massachusetts, 02543 http:// www.whoi.edu/science/PO/people/jprice [email protected] Version 3.3 January 10, 2006 Summary: An Earth-attached and thus rotating reference frame is almost always used for the analysis of geophysical flows. The equation of motion transformed into a steadily rotating reference frame includes two terms that involve the rotation vector; a centrifugal term and a Coriolis term. In the special case of an Earth-attached reference frame, the centrifugal term is exactly canceled by gravitational mass attraction and drops out of the equation of motion. When we solve for the acceleration seen from an Earth-attached frame, the Coriolis term is interpreted as a force. The rotating frame perspective gives up the properties of global momentum conservation and invariance to Galilean transformation. Nevertheless, it leads to a greatly simplified analysis of geophysical flows since only the comparatively small relative velocity, i.e., winds and currents, need be considered. The Coriolis force has a simple mathematical form, 2˝ V 0M , where ˝ is Earth’s rotation vector, V 0 is the velocity observed from the rotating frame and M is the particle mass. The Coriolis force is perpendicular to the velocity and can do no work. It tends to cause a deflection of velocity, and gives rise to two important modes of motion: (1) If the Coriolis force is the only force acting on a moving particle, then the velocity vector of the particle will be continually deflected and rotate clockwise in the northern hemisphere and anticlockwise in the southern hemisphere.
    [Show full text]
  • The Dynamical Velocity Superposition Effect in the Quantum-Foam In
    The Dynamical Velocity Superposition Effect in the Quantum-Foam In-Flow Theory of Gravity Reginald T. Cahill School of Chemistry, Physics and Earth Sciences Flinders University GPO Box 2100, Adelaide 5001, Australia (Reg.Cahill@flinders.edu.au) arXiv:physics/0407133 July 26, 2004 To be published in Relativity, Gravitation, Cosmology Abstract The new ‘quantum-foam in-flow’ theory of gravity has explained numerous so-called gravitational anomalies, particularly the ‘dark matter’ effect which is now seen to be a dynamical effect of space itself, and whose strength is determined by the fine structure constant, and not by Newton’s gravitational constant G. Here we show an experimen- tally significant approximate dynamical effect, namely a vector superposition effect which arises under certain dynamical conditions when we have absolute motion and gravitational in-flows: the velocities for these processes are shown to be approximately vectorially additive under these conditions. This effect plays a key role in interpreting the data from the numerous experiments that detected the absolute linear motion of the earth. The violations of this superposition effect lead to observable effects, such as the generation of turbulence. The flow theory also leads to vorticity effects that the Grav- ity Probe B gyroscope experiment will soon begin observing. As previously reported General Relativity predicts a smaller vorticity effect (therein called the Lense-Thirring ‘frame-dragging’ effect) than the new theory of gravity. arXiv:physics/0407133v3 [physics.gen-ph] 10 Nov
    [Show full text]
  • Anisotropy of Inertia from the CMB Anisotropy
    9 June 2004 TEXsis 2.18 Anisotropy of Inertia from the CMB Anisotropy Daniel J. Cross Advisor: Dr. Robert Gilmore ABSTRACT Mach's principle states that the local inertial properies of matter are determined by the global matter distribution in the universe. In 1958 Cocconi and Salpeter suggested that due to the quadrupolar assymetry of matter in the local galaxy about the earth, inertia on earth would be slightly anisotropic, leading to unequal level splittings of nuclei in a mag- netic ¯eld [1,2]. Hughes, et al., Drever, and more recently Prestage, et al. found no such quadrupole splitting [3{5]. However, recent cosmological overservations show an anisotropy in the Cosmic Microwave Background, indicating anisotropy of the matter at much greater distances. Since the in- ertial interaction acts as a power law of order unity, the e®ect of this matter would far outweigh the relatively local contribution from the galaxy [1,6]. Thus, the present article extends the work of Cocconi and Salpeter to higher multipoles leading to unequal level splittings that should be measurable by magnetic resonance experiments on nuclei of appropriate spin. 2 1. A Brief History of Inertia The problem of inertia has been and continues to be just that - a problem. This problem must be faced in any attempt to formulate a system of dynamics since the inertia of a body describes its response to external forces as well as the motion of that body in the absence of forces (and, perhaps more importantly, its motion in the presence and in the absence of other bodies).
    [Show full text]
  • Postprint (333.0Kb)
    An interesting consequence of the general principle of relativity Øyvind Grøn and Torkild Jemterud Oslo and Akershus University College of Applied Sciences, Norway We show that Einstein’s general theory of relativity, together with the assumption that the principle of relativity encompasses rotational motion, predicts that in a flat Friedmann- Lemaitre-Robertson-Walker (FLRW) universe model with dust and Lorentz Invariant Vacuum Energy (LIVE), the density parameter of vacuum energy must have the value 0 0.737 . The physical mechanism connecting the relativity of rotational motion with the energy density of dark energy is the inertial dragging effect. The predicted value is necessary in order to have perfect inertial dragging, which is required for rotational motion to be relative. If one accepts that due to the impossibility of defining motion for a single particle in an otherwise empty universe, the universe must be constructed so that all types of motion are relative, then this solves the so-called cosmological constant problem. 1 Introduction Celebrating that it is now a hundred years since Einstein completed the general theory of relativity, we shall here investigate a consequence of this theory in the spirit of Einstein when he presented the theory in his great article that appeared in the spring 1916 [1]. The extension of the principle of relativity from rectilinear motion with constant velocity to accelerated and rotational motion was an important motivating factor for Einstein when he constructed the general theory of relativity.
    [Show full text]
  • Interpreting Newton
    INTERPRETING NEWTON This collection of specially commissioned essays by leading scholars presents new research on Isaac Newton and his main philosophical inter- locutors and critics. The essays analyze Newton’s relation to his contem- poraries, especially Barrow, Descartes, Leibniz, and Locke, and discuss the ways in which a broad range of figures, including Hume, MacLaurin, Maupertuis, and Kant, reacted to his thought. The wide range of topics discussed includes the laws of nature, the notion of force, the relation of mathematics to nature, Newton’s argument for universal gravitation, his attitude toward philosophical empiricism, his use of “fluxions,” his approach toward measurement problems, and his concept of absolute motion, together with new interpretations of Newton’s matter theory. The volume concludes with an extended essay that analyzes the changes in physics wrought by Newton’s Principia. A substantial introduction and bibliography provide essential reference guides. andrew janiak is Creed C. Black Associate Professor of Philosophy at Duke University. He is the editor of Newton: Philosophical Writings (Cambridge, 2004) and author of Newton as Philosopher (Cambridge, 2008). eric schliesser is BOF Research Professor, Philosophy and Moral Sciences at Ghent University. He has published widely on Newton, Huygens, and their eighteenth-century reception (especially by Hume and Adam Smith) as well as in philosophy of economics. Downloaded from Cambridge Books Online by IP 130.194.20.173 on Fri Nov 02 04:45:13 GMT 2012. http://ebooks.cambridge.org/ebook.jsf?bid=CBO9780511994845 Cambridge Books Online © Cambridge University Press, 2012 INTERPRETING NEWTON Critical Essays Edited by ANDREW JANIAK AND ERIC SCHLIESSER Downloaded from Cambridge Books Online by IP 130.194.20.173 on Fri Nov 02 04:45:13 GMT 2012.
    [Show full text]
  • Some Philowphical Prehistory of General Relativity
    - ----HOWARD STEI N ----- Some Philowphical Prehistory of General Relativity As history, my remarks will form rather a medley. If they can claim any sort of unity (apart from a general concern with space and time), it derives from two or three philosophi<lal motifs: the notion- metaphysical, if you will-of structure in the world, or vera causa; 1 the epistemological princi­ ple of the primacy ofexperience , as touchstone of both the content and the admissibility of knowledge claims; and a somewhat delicate issue of scien­ tific method that arises from the confrontation of that notion and that principle. The historical figures to be touched on are Leibniz, Huygens, Newton; glancingly, Kant; Mach , Helmholtz, and Riemann. The heroes of my story are Newton and Riemann, who seem to me to have expressed (although laconically) the clearest and the deepest views of the matters concerned. The story has no villains; but certain attributions often made to the credit of Leibniz and of Mach will come under criticism. It is well known that Leibniz denied, in some sense, to space the status of a vera ctwsa. Jn what precise sense he intended the denial is perhaps less well known; indeed, as I shall soon explain, I myself consider that sense in some respects difficult if not impossible to determine. The fact !hat Leibniz characterizes space as not "real" but "ideal," or as an "entity of reason" or abstraction, by itself decides nothing; for he also tells us that lhc structure thus abstracted is the structure--or, as he puts it, the "order"- of the situations of coexistent things; furthermore, of the situa­ liuns of all actual or 11ossible coexistent things; or, again (in the fourth lctlcr lo Clarke).
    [Show full text]
  • Mach's Principle Revisited James W
    Document généré le 27 sept. 2021 17:34 Laval théologique et philosophique Mach's Principle Revisited James W. Felt Volume 20, numéro 1, 1964 URI : https://id.erudit.org/iderudit/1020052ar DOI : https://doi.org/10.7202/1020052ar Aller au sommaire du numéro Éditeur(s) Laval théologique et philosophique, Université Laval ISSN 0023-9054 (imprimé) 1703-8804 (numérique) Découvrir la revue Citer cet article Felt, J. W. (1964). Mach's Principle Revisited. Laval théologique et philosophique, 20(1), 35–49. https://doi.org/10.7202/1020052ar Tous droits réservés © Laval théologique et philosophique, Université Laval, Ce document est protégé par la loi sur le droit d’auteur. L’utilisation des 1964 services d’Érudit (y compris la reproduction) est assujettie à sa politique d’utilisation que vous pouvez consulter en ligne. https://apropos.erudit.org/fr/usagers/politique-dutilisation/ Cet article est diffusé et préservé par Érudit. Érudit est un consortium interuniversitaire sans but lucratif composé de l’Université de Montréal, l’Université Laval et l’Université du Québec à Montréal. Il a pour mission la promotion et la valorisation de la recherche. https://www.erudit.org/fr/ Mach’s Principle Revisited Greek intellectual curiosity bore philosophy and science as twins, and it was centuries before anyone could tell them apart. It is no surprise, then, that philosophy should have fathered some of modem physics’ most fundamental concepts. One of these has come to be known as Mach’s principle. It began in germ with the epistemology of Bishop Berkeley, was developed by Mach, advocated by Einstein, and today commands considerable attention among physicists.
    [Show full text]
  • Center of Mass and Angular Momentum
    Center of Mass and Angular Momentum (c)2017 van Putten 1 Outline Seesaw balance Anglicisation of French “ci-ça” (back-and-forth); or from "scie" - French for "saw" with Anglo Saxon Center of mass "saw." "scie-saw" became “see saw." (Wikipedia) Force, CM and torque Angular momentum Ice skater - ballerina effect Spinning top Inertial torque Precession Nutation (c)2017 van Putten 2 Center of mass http://www.pbs.org/opb/circus/classroom/circus-physics/center-mass/ (c)2017 van Putten 3 Rotation of center of mass about pivots balanced unbalanced double trouble b' b' b b: horizontal distance CM to pivot (c)2017 van Putten 4 Schematic overview buckling pivot CM (c)2017 van Putten 5 CM defined M 2 M1 CM CM of two bodies is along a line connecting them: M1r1 + M 2r2 = 0 CM is relatively close to the heavy mass (c)2017 van Putten 6 CM defined M q = 2 M 2 M1 Distances to CM: M1 CM M 2 q r1 = r = r M1 + M 2 1+ q M1 1 r r2 = − r = − r 2 M M 1 q r1 1 + 2 + r = r1 − r2 (c)2017 van Putten 7 Balance of seesaw (I) q 1 pivot r = r, r = − r 1 1+ q 2 1+ q Balanced: CM at pivot l l M 2 q = 1: M1 = M 2 pivot M1 CM no net torque, no tendency to rotate (c)2017 van Putten 8 Balance of seesaw (II) Virtual displacement dEi = M igdhi (i = 1,2) pivot Symmetric seesaw: dh1 = −dh2 h1 h2 Zero force from virtual displacements if 0 = dE = dE1 + dE2 = g(M1dh1 + M 2dh2 ) = gdh1 (M1 − M 2 ) No tendency to rotate (in seeking a lowest E) if M1 = M 2 (c)2017 van Putten 9 Imbalanced seesaw CM away from pivot: q < 1: M1 > M 2 (c)2016 van Putten 10 Asymmetric seesaw (I) Pivot coincides
    [Show full text]
  • Detumbling and Nutation Canceling Maneuvers with Complete Analytic Reduction for Axially Symmetric Spacecraft
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Calhoun, Institutional Archive of the Naval Postgraduate School Calhoun: The NPS Institutional Archive Faculty and Researcher Publications Faculty and Researcher Publications 2010 Detumbling and nutation canceling maneuvers with complete analytic reduction for axially symmetric spacecraft Romano, Marcello Acta Astronautica, Vol. 6, 2010, pp. 989-998 http://hdl.handle.net/10945/46462 ARTICLE IN PRESS Acta Astronautica 66 (2010) 989–998 Contents lists available at ScienceDirect Acta Astronautica journal homepage: www.elsevier.com/locate/actaastro Detumbling and nutation canceling maneuvers with complete analytic reduction for axially symmetric spacecraft Marcello Romano à Mechanical and Astronautical Engineering Department, and Space Systems Academic Group, Naval Postgraduate School, 700 Dyer Road, Monterey, CA, USA article info abstract Article history: A new method is introduced to control and analyze the rotational motion of an axially Received 9 April 2009 symmetric rigid-body spacecraft. In particular, this motion is seen as the combination of Accepted 18 September 2009 the rotation of a virtual sphere with respect to the inertial frame, and the rotation of the Available online 7 November 2009 body, about its symmetry axis, with respect to this sphere. Two new exact solutions are Keywords: introduced for the motion of axially symmetric rigid bodies subjected to a constant Rigid-body dynamics and kinematics external torque in the following cases: (1) torque parallel to the angular momentum and Artificial satellites (2) torque parallel to the vectorial component of the angular momentum on the plane Rotation perpendicular to the symmetry axis.
    [Show full text]