Physics/0409010V1 [Physics.Gen-Ph] 1 Sep 2004 Ri Ihteclsilshr Sntfound

Total Page:16

File Type:pdf, Size:1020Kb

Physics/0409010V1 [Physics.Gen-Ph] 1 Sep 2004 Ri Ihteclsilshr Sntfound Physical Interpretations of Relativity Theory Conference IX London, Imperial College, September, 2004 ............... Mach’s Principle II by James G. Gilson∗ School of Mathematical Sciences Queen Mary College University of London October 29, 2018 Abstract 1 Introduction The question of the validity or otherwise of Mach’s The meaning and significance of Mach’s Principle Principle[5] has been with us for almost a century and and its dependence on ideas about relativistic rotat- has been vigorously analysed and discussed for all of ing frame theory and the celestial sphere is explained that time and is, up to date, still not resolved. One and discussed. Two new relativistic rotation trans- contentious issue is, does general[7] relativity theory formations are introduced by using a linear simula- imply that Mach’s Principle is operative in that theo- tion for the rotating disc situation. The accepted retical structure or does it not? A deduction[4] from formula for centrifugal acceleration in general rela- general relativity that the classical Newtonian cen- tivity is then analysed with the use of one of these trifugal acceleration formula should be modified by transformations. It is shown that for this general rel- an additional relativistic γ2(v) factor, see equations ativity formula to be valid throughout all space-time (2.11) and (2.27), will help us in the analysis of that there has to be everywhere a local standard of ab- question. Here I shall attempt to throw some light solutely zero rotation. It is then concluded that the on the nature and technical basis of the collection of field off all possible space-time null geodesics or pho- arXiv:physics/0409010v1 [physics.gen-ph] 1 Sep 2004 technical and philosophical problems generated from ton paths unify the absolute local non-rotation stan- Mach’s Principle and give some suggestions about dard throughout space-time. Thus it is suggested how it can, at the very least, be clarified techni- that Mach’s principle holds in the restricted sense cally and philosophically. Firstly, let us review the that there is a universal standard of absolute local physical issues involved and try to give a clear defi- rotation rate related to the apparent rotation of the nition of exactly what the problem is. It is usually celestial sphere. However this apparent rotation is explained in terms of what is called Newton’s bucket actually the earth’s rotation relative to a local map- experiment[6]. A bucket containing water is spun ping of null geodesic endpoints from that time and about a vertical axis through its centre. The con- space distant sphere to the local time in the local tained water picks up motion because of frictional zero-rotation environment. A connection of local in- drag by the bucket wall and then assumes a concave ertia with the celestial sphere is not found. downwards surface form as a result of the outward centrifugal force causing the rise in level from the cen- tre towards the wall. This is a very simple sequence of physical events which each of us can or has experi- ∗[email protected] enced in some form or other but it prompts a philo- 1 1 INTRODUCTION 2 sophical question which is difficult to answer. That momentum if it is rotated about an axis. If further such a fundamental physical-philosophical dilemma the body is not subjected to any additional external as exposed by this simple experiment is so immedi- couples, the axis of rotation of the body then main- ately accessible to everyone’s understanding makes it tains a fixed direction with respect to the celestial unique among scientific problems. The question is sphere, with an axis of rotation aligned with respect how does the water in the bucket get the information to a specific galaxy of choice. This line axis locking that it is rotating so as to respond with the concave system is an available gyroscopic device which is also surface? Certainly the wall of the bucket has caused well within existing modern technology and its equiv- the rotation via friction but it has not caused the alent is to be found in all space vehicular guidance centrifugal force response. The situation is further systems. It is important to realise two things about confused when one asks what is the water rotation this coupling of local angular momentum to a distant relative to? Certainly there is the rotation relative object. One is that the locking can be disturbed by to the room in which the experiment takes place but applying couples to the object and the other is that what if that room is itself rotating so slowly as not the strength of the lock does depends on the magni- to have caused a noticeable concavity initially. Is the tude of the angular momentum and only reduces to water responding to just that initially induced room zero that is it becomes unlocked if the magnitude of relative rotation or to some combination of the two the angular momentum is reduced to zero. It is this conceivable contribution to the water angular veloc- gyroscopic type of set up which is usually quoted to ity? It is usually taken to be the case that the water explain one of the aspects of Mach’s Principle. This rotation and the induced centrifugal force are conse- can be expressed as the following question. How is it quential upon a totality of any rotational motions of that a locally rotating object can for some substan- the body about the direction involved. tial finite length of time hook onto a distant galaxy to which it is obviously not connected? This exper- Another much discussed example and the one imental fact is the source of the idea that inertia or which seems most impressive to me is that of the mass controlled influences locally are determined by influence of the rotating state on a physical elastic the mass space fabric of the rest of the universe. An- sphere. It is certainly true that such a sphere set other manifestations of the mystery link between here into rotation will expand in girth about the equa- and the distant universe should be mentioned. The tor of its rotary axis and to a degree dependent on Foucault Pendulum swings in a moving plane with a its angular velocity. Then the question is how does it motion that is locked onto the apparent motion of the acquire the information of the magnitude of its angu- celestial sphere. This gives the impression that the lar velocity unless there is some local standard of zero celestial sphere determines the local state of no rota- rotation? From astronomy technology, we know that tion against which the earth actually rotates. This a telescope can be locked on to a distant galaxy for device can be seen in museums and indeed can be some finite time in order to photograph it. This re- easily constructed by ordinary people. quires mechanical and computer equipment to negate the effect of the earth’s rotation so that the axis of the The two main answers given to these questions are telescope can be kept on a fixed line direction point- what would be Newton’s that there is an absolute ing towards the galaxy so that it remains in view space background everywhere and this defines the lo- at a central fixed position for the finite time neces- cal angular velocity condition for any physical body. sary. All such viewable galaxies are part of what There is then what would be Mach’s explanation that is called the celestial sphere and a specific known the angular velocity of a body anywhere should be re- galaxy can be used to indicate a definite coordinate ferred to a frame of reference attached to the celestial position on that sphere. The mechanisms and sys- sphere of so called fixed stars. This is a rather con- tems required to construct such a viewing system for densed translation of the two points of view, not ex- studying the celestial sphere is a commonplace avail- actly as expressed by either Newton or Mach. In fact, able technology of the present day. This telescopic what these two researchers actually meant by their viewing system can be regarded as giving an identifi- theoretic constructs is also a matter of much debate. cation and measuring device for the geometry of the One can see this interpretational type of difficulty by celestial sphere. There is another way to lock a local reading the following quotation from Mach’s writings line axis onto an object on the celestial spheres and given by Soshichi Uchii [1] on his website. that is by using a property of angular momentum. The comportment of terrestrial bodies with respect An extended body which is of material construction to the earth is reducible to the comportment of the so that it is composed of some distribution of mass earth with respect to the remote heavenly bodies. If we within its physical boundaries will acquire angular were to assert that we knew more of moving objects 1 INTRODUCTION 3 than this their last-mentioned, experimentally-given led some authors[15] to remark that the change of comportment with respect to the celestial bodies, we geometry that would seem to occur as a result of should render ourselves culpable of a falsity. When, relativity theory when a flat object rotates cannot accordingly, we say, that a body preserves unchanged realistically physically be seen as embedded in the its direction and velocity in space, our assertion is space of three dimensional Euclidean geometry.
Recommended publications
  • General Relativity and Spatial Flows: I
    1 GENERAL RELATIVITY AND SPATIAL FLOWS: I. ABSOLUTE RELATIVISTIC DYNAMICS* Tom Martin Gravity Research Institute Boulder, Colorado 80306-1258 [email protected] Abstract Two complementary and equally important approaches to relativistic physics are explained. One is the standard approach, and the other is based on a study of the flows of an underlying physical substratum. Previous results concerning the substratum flow approach are reviewed, expanded, and more closely related to the formalism of General Relativity. An absolute relativistic dynamics is derived in which energy and momentum take on absolute significance with respect to the substratum. Possible new effects on satellites are described. 1. Introduction There are two fundamentally different ways to approach relativistic physics. The first approach, which was Einstein's way [1], and which is the standard way it has been practiced in modern times, recognizes the measurement reality of the impossibility of detecting the absolute translational motion of physical systems through the underlying physical substratum and the measurement reality of the limitations imposed by the finite speed of light with respect to clock synchronization procedures. The second approach, which was Lorentz's way [2] (at least for Special Relativity), recognizes the conceptual superiority of retaining the physical substratum as an important element of the physical theory and of using conceptually useful frames of reference for the understanding of underlying physical principles. Whether one does relativistic physics the Einsteinian way or the Lorentzian way really depends on one's motives. The Einsteinian approach is primarily concerned with * http://xxx.lanl.gov/ftp/gr-qc/papers/0006/0006029.pdf 2 being able to carry out practical space-time experiments and to relate the results of these experiments among variously moving observers in as efficient and uncomplicated manner as possible.
    [Show full text]
  • Arxiv:1007.1861V1 [Gr-Qc] 12 Jul 2010 Feulms N Hp.Temaueeto Uhagravito-Mag a Such of Measurement 10 the Is Shape
    A laser gyroscope system to detect the Gravito-Magnetic effect on Earth A. Di Virgilio∗ INFN Sez. di Pisa, Pisa, Italy K. U. Schreiber and A. Gebauer† Technische Universitaet Muenchen, Forschungseinrichtung Satellitengeodaesie Fundamentalstation Wettzell, 93444 Bad K¨otzting, Germany J-P. R. Wells‡ Department of Physics and Astronomy, University of Canterbury, PB4800, Christchurch 8020, New Zealand A. Tartaglia§ Polit. of Torino and INFN, Torino, Italy J. Belfi and N. Beverini¶ Univ. of Pisa and CNISM, Pisa, Italy A.Ortolan∗∗ Laboratori Nazionali di Legnaro, INFN Legnaro (Padova), Italy Large scale square ring laser gyros with a length of four meters on each side are approaching a sensitivity of 1 10−11rad/s/√Hz. This is about the regime required to measure the gravito- magnetic effect (Lense× Thirring) of the Earth. For an ensemble of linearly independent gyros each measurement signal depends upon the orientation of each single axis gyro with respect to the rotational axis of the Earth. Therefore at least 3 gyros are necessary to reconstruct the complete angular orientation of the apparatus. In general, the setup consists of several laser gyroscopes (we would prefer more than 3 for sufficient redundancy), rigidly referenced to each other. Adding more gyros for one plane of observation provides a cross-check against intra-system biases and furthermore has the advantage of improving the signal to noise ratio by the square root of the number of gyros. In this paper we analyze a system of two pairs of identical gyros (twins) with a slightly different orientation with respect to the Earth axis. The twin gyro configuration has several interesting properties.
    [Show full text]
  • An Essay on the Coriolis Force
    James F. Price Woods Hole Oceanographic Institution Woods Hole, Massachusetts, 02543 http:// www.whoi.edu/science/PO/people/jprice [email protected] Version 3.3 January 10, 2006 Summary: An Earth-attached and thus rotating reference frame is almost always used for the analysis of geophysical flows. The equation of motion transformed into a steadily rotating reference frame includes two terms that involve the rotation vector; a centrifugal term and a Coriolis term. In the special case of an Earth-attached reference frame, the centrifugal term is exactly canceled by gravitational mass attraction and drops out of the equation of motion. When we solve for the acceleration seen from an Earth-attached frame, the Coriolis term is interpreted as a force. The rotating frame perspective gives up the properties of global momentum conservation and invariance to Galilean transformation. Nevertheless, it leads to a greatly simplified analysis of geophysical flows since only the comparatively small relative velocity, i.e., winds and currents, need be considered. The Coriolis force has a simple mathematical form, 2˝ V 0M , where ˝ is Earth’s rotation vector, V 0 is the velocity observed from the rotating frame and M is the particle mass. The Coriolis force is perpendicular to the velocity and can do no work. It tends to cause a deflection of velocity, and gives rise to two important modes of motion: (1) If the Coriolis force is the only force acting on a moving particle, then the velocity vector of the particle will be continually deflected and rotate clockwise in the northern hemisphere and anticlockwise in the southern hemisphere.
    [Show full text]
  • The Dynamical Velocity Superposition Effect in the Quantum-Foam In
    The Dynamical Velocity Superposition Effect in the Quantum-Foam In-Flow Theory of Gravity Reginald T. Cahill School of Chemistry, Physics and Earth Sciences Flinders University GPO Box 2100, Adelaide 5001, Australia (Reg.Cahill@flinders.edu.au) arXiv:physics/0407133 July 26, 2004 To be published in Relativity, Gravitation, Cosmology Abstract The new ‘quantum-foam in-flow’ theory of gravity has explained numerous so-called gravitational anomalies, particularly the ‘dark matter’ effect which is now seen to be a dynamical effect of space itself, and whose strength is determined by the fine structure constant, and not by Newton’s gravitational constant G. Here we show an experimen- tally significant approximate dynamical effect, namely a vector superposition effect which arises under certain dynamical conditions when we have absolute motion and gravitational in-flows: the velocities for these processes are shown to be approximately vectorially additive under these conditions. This effect plays a key role in interpreting the data from the numerous experiments that detected the absolute linear motion of the earth. The violations of this superposition effect lead to observable effects, such as the generation of turbulence. The flow theory also leads to vorticity effects that the Grav- ity Probe B gyroscope experiment will soon begin observing. As previously reported General Relativity predicts a smaller vorticity effect (therein called the Lense-Thirring ‘frame-dragging’ effect) than the new theory of gravity. arXiv:physics/0407133v3 [physics.gen-ph] 10 Nov
    [Show full text]
  • Anisotropy of Inertia from the CMB Anisotropy
    9 June 2004 TEXsis 2.18 Anisotropy of Inertia from the CMB Anisotropy Daniel J. Cross Advisor: Dr. Robert Gilmore ABSTRACT Mach's principle states that the local inertial properies of matter are determined by the global matter distribution in the universe. In 1958 Cocconi and Salpeter suggested that due to the quadrupolar assymetry of matter in the local galaxy about the earth, inertia on earth would be slightly anisotropic, leading to unequal level splittings of nuclei in a mag- netic ¯eld [1,2]. Hughes, et al., Drever, and more recently Prestage, et al. found no such quadrupole splitting [3{5]. However, recent cosmological overservations show an anisotropy in the Cosmic Microwave Background, indicating anisotropy of the matter at much greater distances. Since the in- ertial interaction acts as a power law of order unity, the e®ect of this matter would far outweigh the relatively local contribution from the galaxy [1,6]. Thus, the present article extends the work of Cocconi and Salpeter to higher multipoles leading to unequal level splittings that should be measurable by magnetic resonance experiments on nuclei of appropriate spin. 2 1. A Brief History of Inertia The problem of inertia has been and continues to be just that - a problem. This problem must be faced in any attempt to formulate a system of dynamics since the inertia of a body describes its response to external forces as well as the motion of that body in the absence of forces (and, perhaps more importantly, its motion in the presence and in the absence of other bodies).
    [Show full text]
  • Postprint (333.0Kb)
    An interesting consequence of the general principle of relativity Øyvind Grøn and Torkild Jemterud Oslo and Akershus University College of Applied Sciences, Norway We show that Einstein’s general theory of relativity, together with the assumption that the principle of relativity encompasses rotational motion, predicts that in a flat Friedmann- Lemaitre-Robertson-Walker (FLRW) universe model with dust and Lorentz Invariant Vacuum Energy (LIVE), the density parameter of vacuum energy must have the value 0 0.737 . The physical mechanism connecting the relativity of rotational motion with the energy density of dark energy is the inertial dragging effect. The predicted value is necessary in order to have perfect inertial dragging, which is required for rotational motion to be relative. If one accepts that due to the impossibility of defining motion for a single particle in an otherwise empty universe, the universe must be constructed so that all types of motion are relative, then this solves the so-called cosmological constant problem. 1 Introduction Celebrating that it is now a hundred years since Einstein completed the general theory of relativity, we shall here investigate a consequence of this theory in the spirit of Einstein when he presented the theory in his great article that appeared in the spring 1916 [1]. The extension of the principle of relativity from rectilinear motion with constant velocity to accelerated and rotational motion was an important motivating factor for Einstein when he constructed the general theory of relativity.
    [Show full text]
  • Interpreting Newton
    INTERPRETING NEWTON This collection of specially commissioned essays by leading scholars presents new research on Isaac Newton and his main philosophical inter- locutors and critics. The essays analyze Newton’s relation to his contem- poraries, especially Barrow, Descartes, Leibniz, and Locke, and discuss the ways in which a broad range of figures, including Hume, MacLaurin, Maupertuis, and Kant, reacted to his thought. The wide range of topics discussed includes the laws of nature, the notion of force, the relation of mathematics to nature, Newton’s argument for universal gravitation, his attitude toward philosophical empiricism, his use of “fluxions,” his approach toward measurement problems, and his concept of absolute motion, together with new interpretations of Newton’s matter theory. The volume concludes with an extended essay that analyzes the changes in physics wrought by Newton’s Principia. A substantial introduction and bibliography provide essential reference guides. andrew janiak is Creed C. Black Associate Professor of Philosophy at Duke University. He is the editor of Newton: Philosophical Writings (Cambridge, 2004) and author of Newton as Philosopher (Cambridge, 2008). eric schliesser is BOF Research Professor, Philosophy and Moral Sciences at Ghent University. He has published widely on Newton, Huygens, and their eighteenth-century reception (especially by Hume and Adam Smith) as well as in philosophy of economics. Downloaded from Cambridge Books Online by IP 130.194.20.173 on Fri Nov 02 04:45:13 GMT 2012. http://ebooks.cambridge.org/ebook.jsf?bid=CBO9780511994845 Cambridge Books Online © Cambridge University Press, 2012 INTERPRETING NEWTON Critical Essays Edited by ANDREW JANIAK AND ERIC SCHLIESSER Downloaded from Cambridge Books Online by IP 130.194.20.173 on Fri Nov 02 04:45:13 GMT 2012.
    [Show full text]
  • Some Philowphical Prehistory of General Relativity
    - ----HOWARD STEI N ----- Some Philowphical Prehistory of General Relativity As history, my remarks will form rather a medley. If they can claim any sort of unity (apart from a general concern with space and time), it derives from two or three philosophi<lal motifs: the notion- metaphysical, if you will-of structure in the world, or vera causa; 1 the epistemological princi­ ple of the primacy ofexperience , as touchstone of both the content and the admissibility of knowledge claims; and a somewhat delicate issue of scien­ tific method that arises from the confrontation of that notion and that principle. The historical figures to be touched on are Leibniz, Huygens, Newton; glancingly, Kant; Mach , Helmholtz, and Riemann. The heroes of my story are Newton and Riemann, who seem to me to have expressed (although laconically) the clearest and the deepest views of the matters concerned. The story has no villains; but certain attributions often made to the credit of Leibniz and of Mach will come under criticism. It is well known that Leibniz denied, in some sense, to space the status of a vera ctwsa. Jn what precise sense he intended the denial is perhaps less well known; indeed, as I shall soon explain, I myself consider that sense in some respects difficult if not impossible to determine. The fact !hat Leibniz characterizes space as not "real" but "ideal," or as an "entity of reason" or abstraction, by itself decides nothing; for he also tells us that lhc structure thus abstracted is the structure--or, as he puts it, the "order"- of the situations of coexistent things; furthermore, of the situa­ liuns of all actual or 11ossible coexistent things; or, again (in the fourth lctlcr lo Clarke).
    [Show full text]
  • Ultrahigh Precision Absolute and Relative Rotation Sensing Using Fast and Slow Light
    Ultrahigh Precision Absolute and Relative Rotation Sensing using Fast and Slow Light M.S. Shahriar, G.S. Pati, R. Tripathi, V. Gopal, M. Messall and K. Salit Department of Electrical and Computer Engineering Northwestern University, Evanston, IL 60208 We describe a passive resonator based optical gyroscope whose sensitivity for measuring absolute rotation is enhanced via use of the anomalous dispersion characteristic of superluminal light propagation. The enhancement is given by the inverse of the group index, saturating to a bound determined by the group velocity dispersion. For realistic conditions, the enhancement factor is as high as 108. We also show how normal dispersion used for slow light can enhance relative rotation sensing in a specially designed Sagnac interferometer, with the enhancement given by the slowing factor. PACS numbers: 42.5, 42.50.Ct,42.50.Gy, 42.60.Da Recent experiments have demonstrated very slow as rotation. Recently, Leonhardt and Piwnicki [6] well as superluminal group velocities of light using proposed a slow-light enhanced gyroscope; however, many different processes [1-5]. Extreme dispersion in a they did not point out that this enhancement can not be slow-light medium has been recently considered to achieved when measuring absolute rotation. Later, boost the rotational sensitivity of optical gyroscopes Zimmer and Fleischhauer [9] refuted, incorrectly, the via the Sagnac effect [6]. However, the mechanism by idea of any slow light based sensitivity enhancement in which strong material dispersion affects relativistic rotation sensing, and proposed an alternative hybrid Sagnac effect has remained somewhat controversial. It light and matter-wave interferometer, based on slow is commonly perceived that the Sagnac time delay or light momentum transfer from light to atoms.
    [Show full text]
  • Mach's Principle Revisited James W
    Document généré le 27 sept. 2021 17:34 Laval théologique et philosophique Mach's Principle Revisited James W. Felt Volume 20, numéro 1, 1964 URI : https://id.erudit.org/iderudit/1020052ar DOI : https://doi.org/10.7202/1020052ar Aller au sommaire du numéro Éditeur(s) Laval théologique et philosophique, Université Laval ISSN 0023-9054 (imprimé) 1703-8804 (numérique) Découvrir la revue Citer cet article Felt, J. W. (1964). Mach's Principle Revisited. Laval théologique et philosophique, 20(1), 35–49. https://doi.org/10.7202/1020052ar Tous droits réservés © Laval théologique et philosophique, Université Laval, Ce document est protégé par la loi sur le droit d’auteur. L’utilisation des 1964 services d’Érudit (y compris la reproduction) est assujettie à sa politique d’utilisation que vous pouvez consulter en ligne. https://apropos.erudit.org/fr/usagers/politique-dutilisation/ Cet article est diffusé et préservé par Érudit. Érudit est un consortium interuniversitaire sans but lucratif composé de l’Université de Montréal, l’Université Laval et l’Université du Québec à Montréal. Il a pour mission la promotion et la valorisation de la recherche. https://www.erudit.org/fr/ Mach’s Principle Revisited Greek intellectual curiosity bore philosophy and science as twins, and it was centuries before anyone could tell them apart. It is no surprise, then, that philosophy should have fathered some of modem physics’ most fundamental concepts. One of these has come to be known as Mach’s principle. It began in germ with the epistemology of Bishop Berkeley, was developed by Mach, advocated by Einstein, and today commands considerable attention among physicists.
    [Show full text]
  • Center of Mass and Angular Momentum
    Center of Mass and Angular Momentum (c)2017 van Putten 1 Outline Seesaw balance Anglicisation of French “ci-ça” (back-and-forth); or from "scie" - French for "saw" with Anglo Saxon Center of mass "saw." "scie-saw" became “see saw." (Wikipedia) Force, CM and torque Angular momentum Ice skater - ballerina effect Spinning top Inertial torque Precession Nutation (c)2017 van Putten 2 Center of mass http://www.pbs.org/opb/circus/classroom/circus-physics/center-mass/ (c)2017 van Putten 3 Rotation of center of mass about pivots balanced unbalanced double trouble b' b' b b: horizontal distance CM to pivot (c)2017 van Putten 4 Schematic overview buckling pivot CM (c)2017 van Putten 5 CM defined M 2 M1 CM CM of two bodies is along a line connecting them: M1r1 + M 2r2 = 0 CM is relatively close to the heavy mass (c)2017 van Putten 6 CM defined M q = 2 M 2 M1 Distances to CM: M1 CM M 2 q r1 = r = r M1 + M 2 1+ q M1 1 r r2 = − r = − r 2 M M 1 q r1 1 + 2 + r = r1 − r2 (c)2017 van Putten 7 Balance of seesaw (I) q 1 pivot r = r, r = − r 1 1+ q 2 1+ q Balanced: CM at pivot l l M 2 q = 1: M1 = M 2 pivot M1 CM no net torque, no tendency to rotate (c)2017 van Putten 8 Balance of seesaw (II) Virtual displacement dEi = M igdhi (i = 1,2) pivot Symmetric seesaw: dh1 = −dh2 h1 h2 Zero force from virtual displacements if 0 = dE = dE1 + dE2 = g(M1dh1 + M 2dh2 ) = gdh1 (M1 − M 2 ) No tendency to rotate (in seeking a lowest E) if M1 = M 2 (c)2017 van Putten 9 Imbalanced seesaw CM away from pivot: q < 1: M1 > M 2 (c)2016 van Putten 10 Asymmetric seesaw (I) Pivot coincides
    [Show full text]
  • Detumbling and Nutation Canceling Maneuvers with Complete Analytic Reduction for Axially Symmetric Spacecraft
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Calhoun, Institutional Archive of the Naval Postgraduate School Calhoun: The NPS Institutional Archive Faculty and Researcher Publications Faculty and Researcher Publications 2010 Detumbling and nutation canceling maneuvers with complete analytic reduction for axially symmetric spacecraft Romano, Marcello Acta Astronautica, Vol. 6, 2010, pp. 989-998 http://hdl.handle.net/10945/46462 ARTICLE IN PRESS Acta Astronautica 66 (2010) 989–998 Contents lists available at ScienceDirect Acta Astronautica journal homepage: www.elsevier.com/locate/actaastro Detumbling and nutation canceling maneuvers with complete analytic reduction for axially symmetric spacecraft Marcello Romano à Mechanical and Astronautical Engineering Department, and Space Systems Academic Group, Naval Postgraduate School, 700 Dyer Road, Monterey, CA, USA article info abstract Article history: A new method is introduced to control and analyze the rotational motion of an axially Received 9 April 2009 symmetric rigid-body spacecraft. In particular, this motion is seen as the combination of Accepted 18 September 2009 the rotation of a virtual sphere with respect to the inertial frame, and the rotation of the Available online 7 November 2009 body, about its symmetry axis, with respect to this sphere. Two new exact solutions are Keywords: introduced for the motion of axially symmetric rigid bodies subjected to a constant Rigid-body dynamics and kinematics external torque in the following cases: (1) torque parallel to the angular momentum and Artificial satellites (2) torque parallel to the vectorial component of the angular momentum on the plane Rotation perpendicular to the symmetry axis.
    [Show full text]