7Alkenes and Alkynes I: Properties and Synthesis

Total Page:16

File Type:pdf, Size:1020Kb

7Alkenes and Alkynes I: Properties and Synthesis P1: PBU/OVY P2: PBU/OVY QC: PBU/OVY T1: PBU Printer: Bind Rite JWCL234-07 JWCL234-Solomons-v1 December 8, 2009 21:37 7 ALKENES AND ALKYNES I: PROPERTIES AND SYNTHESIS. ELIMINATION REACTIONS OF ALKYL HALIDES SOLUTIONS TO PROBLEMS 7.1 (a) (E )-1-Bromo-1-chloro-1-pentene or (E )-1-Bromo-1-chloropent-1-ene (b) (E )-2-Bromo-1-chloro-1-iodo-1-butene or (E )-2-Bromo-1-chloro-1-iodobut-1-ene (c) (Z )-3,5-Dimethyl-2-hexene or (Z )-3,5-Dimethylhex-2-ene (d) (Z )-1-Chloro-1-iodo-2-methyl-1-butene or (Z )-1-Chloro-1-iodo-2-methylbut-1-ene (e) (Z,4S )-3,4-Dimethyl-2-hexene or (Z,4S )-3,4-Dimethylhex-2-ene (f) (Z,3S )-1-Bromo-2-chloro-3-methyl-1-hexene or (Z,3S )-1-Bromo-2-chloro-3-methylhex-1-ene 7.2 <<Order of increasing stability 7.3 (a), (b) H 2 Δ H° = − 119 kJ mol−1 Pt 2-Methyl-1-butene pressure (disubstituted) H 2 Δ H° = − 127 kJ mol−1 Pt 3-Methyl-1-butene pressure (monosubstituted) H2 − Δ H° = − 113 kJ mol 1 Pt 2-Methyl-2-butene pressure (trisubstituted) (c) Yes, because hydrogenation converts each alkene into the same product. 106 CONFIRMING PAGES P1: PBU/OVY P2: PBU/OVY QC: PBU/OVY T1: PBU Printer: Bind Rite JWCL234-07 JWCL234-Solomons-v1 December 8, 2009 21:37 ALKENES AND ALKYNES I: PROPERTIES AND SYNTHESIS 107 H H (d) >> H H H (trisubstituted) (disubstituted) (monosubstituted) Notice that this predicted order of stability is confirmed by the heats of hydro- genation. 2-Methyl-2-butene evolves the least heat; therefore, it is the most stable. 3-Methyl-1-butene evolves the most heat; therefore, it is the least stable. H H (e) H H H H H 1-Pentene cis-2-Pentene trans-2-Pentene (f) Order of stability: trans-2-pentene > cis-2-pentene >1-pentene 7.4 (a) 2,3-Dimethyl-2-butene would be the more stable because the double bond is tetra- substituted. 2-Methyl-2-pentene has a trisubstituted double bond. (b) trans-3-Hexene would be the more stable because alkenes with trans double bonds are more stable than those with cis double bonds. (c) cis-3-Hexene would be more stable because its double bond is disubstituted. The double bond of 1-hexene is monosubstituted. (d) 2-Methyl-2-pentene would be the more stable because its double bond is trisubstituted. The double bond of trans-2-hexene is disubstituted. 7.5 The location of IR absorptions between 600 cm−1 and 1000 cm−1 due to out-of-plane bending of alkene C—H bonds can be the basis of differentiation. (a) 2-Methyl-2-pentene, ∼800 cm−1 2,3-Dimethyl-2-butene, no alkene C—H bonds (b) cis-3-Hexene, 650–750 cm−1 trans-3-Hexene, ∼960 cm−1 (c) 1-Hexene, ∼900 cm−1 and ∼1000 cm−1 cis-3-Hexene, 650–750 cm−1 (d) trans-2-Hexene, ∼960 cm−1 2-Methyl-2-pentene, ∼800 cm−1 7.6 Br NaOEt most EtOH, 55°C less least CONFIRMING PAGES P1: PBU/OVY P2: PBU/OVY QC: PBU/OVY T1: PBU Printer: Bind Rite JWCL234-07 JWCL234-Solomons-v1 December 8, 2009 21:37 108 ALKENES AND ALKYNES I: PROPERTIES AND SYNTHESIS Br OK + 7.7 (a) OH heat (trisubstituted, (monosubstituted, more stable) less stable) Major product Minor product Br OK (b) + OH heat (tetrasubstituted, (disubstituted, more stable) less stable) Major product Minor product 7.8 t-BuOK in t-BuOH 7.9 An anti coplanar transition state allows the molecule to assume the more stable staggered conformation, H H H H H Br whereas a syn coplanar transition state requires the molecule to assume the less stable eclipsed conformation. H Br 7.10 cis-1-Bromo-4-tert-butylcyclohexane can assume an anti coplanar transition state in which the bulky tert-butyl group is equatorial. Br H H H H • B • The conformation (above), because it is relatively stable, is assumed by most of the molecules present, and, therefore, the reaction is rapid. CONFIRMING PAGES P1: PBU/OVY P2: PBU/OVY QC: PBU/OVY T1: PBU Printer: Bind Rite JWCL234-07 JWCL234-Solomons-v1 December 8, 2009 21:37 ALKENES AND ALKYNES I: PROPERTIES AND SYNTHESIS 109 On the other hand, for trans-1-bromo-4-tert-butylcyclohexane to assume an anti copla- nar transition state, the molecule must assume a conformation in which the large tert-butyl group is axial: H Br Br H H H H H • B • Such a conformation is of high energy; therefore, very few molecules assume this confor- mation. The reaction, consequently, is very slow. 7.11 (a) Anti coplanar elimination can occur in two ways with the cis isomer. Br (a) H CH3 H CH3 H (a) H CH (major product) • 3 B • (b) (b) cis-1-Bromo-2-methylcyclohexane (b) Anti coplanar elimination can occur in only one way with the trans isomer. H Br H H CH3 H • B • CH3 trans-1-Bromo-2-methylcyclohexane O 7.12 (a) (1) CH3 CH OH HHO S O CH3 O H O CH3 CH O H O S O H CH3 O H (2) CH CH O H CH CH 3 3 H2O CH3 CH3 (3) CH3 CH CH2 H OSO3H CH3 CH CH2 HOSO3H CONFIRMING PAGES P1: PBU/OVY P2: PBU/OVY QC: PBU/OVY T1: PBU Printer: Bind Rite JWCL234-07 JWCL234-Solomons-v1 December 8, 2009 21:37 110 ALKENES AND ALKYNES I: PROPERTIES AND SYNTHESIS (b) By donating a proton to the OH group of the alcohol in step (1), the acid allows the loss of a relatively stable, weakly basic, leaving group (H2O) in step (2). In the absence of an acid, the leaving group would have to be the strongly basic OH− ion, and such steps almost never occur. OH 7.13 >> OH OH 1° 2° 3° Order of increasing case of dehydration CH3 CH3 + − 7.14 + + (1) CH3CCH2OH H A CH3CCH2OH2 A CH3 CH3 CH3 CH3 + + + (2) CH3CCH2 OH2 CH3CCH2 H2O CH3 CH3 1° Carbocation + + CH3 CH3 CH3 + (3) CH CCH CH CCH CH CCH CH 3 2 3 2 3 + 2 3 + CH3 CH3 1° Carbocation Transition state 3° Carbocation [Steps (2) and (3), ionization and rearrangement, may occur simultaneously.] CH3 CH3 H (4) CH C CH CH CC + HA 3 + 3 − CH H A 3 CH3 2-Methyl-2-butene CONFIRMING PAGES P1: PBU/OVY P2: PBU/OVY QC: PBU/OVY T1: PBU Printer: Bind Rite JWCL234-07 JWCL234-Solomons-v1 December 8, 2009 21:37 ALKENES AND ALKYNES I: PROPERTIES AND SYNTHESIS 111 (−H O) (−H O) •• •• + 2 + 2 7.15 CH CH CHCH OH+ HHO CH CH CHCH OH 3 2 2 •• + 3 2 2 •• 2 + ( H2O) ( H2O) CH3 H CH3 2-Methyl-1-butanol H H OH + 1,2-hydride + 2 CH CH C CH CH CH C CH 3 2 2 shift* 3 3 CH3 CH3 1° Cation 3° Cation + + CH3CHC CH3 H3O CH3 2-Methyl-2-butene (−H O) (−H O) •• •• + 2 + 2 CH CHCH CH OH+ HHO CH CHCH CH OH 3 2 2 •• + 3 2 2 2 + ( H2O) ( H2O) CH3 H CH3 3-Methyl-1-butanol H H + 1,2-hydride + OH2 CH CHCH CH CH C CH CH 3 2 shift* 3 3 CH3 CH3 + + CH3CCHCH 3 H3O * The hydride shift may occur simultaneously with the preceding step. CH3 2-Methyl-2-butene CH CH 7.16 HO CH3 3 CH3 3 H O+ = CH 3 CH HO 3 − 3 ( H2O) + Isoborneol H OH2 CH CH3 CH2 3 + CH2 = CH2 CH3 + + CH3 CH2 CH3 H3O + CH CH3 3 CH2 Camphene CONFIRMING PAGES P1: PBU/OVY P2: PBU/OVY QC: PBU/OVY T1: PBU Printer: Bind Rite JWCL234-07 JWCL234-Solomons-v1 December 8, 2009 21:37 112 ALKENES AND ALKYNES I: PROPERTIES AND SYNTHESIS + 7.17 (a) CH3CH CH2 NaNH2 No reaction +++ − − + (b) CH3C C H Na NH2 CH3CCNa NH3 Stronger Stronger Weaker Weaker acid base base acid + (c) CH3CH2CH3 NaNH2 No reaction − ++− (d) CH3C C H OCH2CH3 CH3CCH OCH2CH3 Stronger Stronger Weaker Weaker base acid acid base + − ++ (e) CH3C C H NH3 CH3CCH NH3 Stronger Stronger acid Weaker Weaker base acid base O Cl Cl (1) 3 equiv. PCl NaNH2 7.18 5 0°C mineral oil, heat (2) HA O PCl5 (1) 3 NaNH2 7.19 (a) CH CCH CH CCl CH CH C CH 3 3 0°C 3 2 3 mineral oil, heat 3 + (2) NH4 (1) 3 NaNH2 (b) CH CH CHBr CH C CH 3 2 2 mineral oil, heat 3 + (2) NH4 [same as (b)] (c) CH3CHBrCH2Br CH3C CH Br2 [same as (b)] (d) CH3CH CH2 CH3CHCH2Br CH3C CH CCl4 Br CH3 CH3 − − CH C CHC + Na+ CH C CCNa+ 7.20 3 NH2 − 3 ( NH3) CH3 CH3 (Starting the synthesis with 1-propyne and CH3 I attempting to alkylate with a tert-butyl substrate would not work because elimination would occur CH3 instead of substitution.) CH3 C CCCH3 CH3 CONFIRMING PAGES P1: PBU/OVY P2: PBU/OVY QC: PBU/OVY T1: PBU Printer: Bind Rite JWCL234-07 JWCL234-Solomons-v1 December 8, 2009 21:37 ALKENES AND ALKYNES I: PROPERTIES AND SYNTHESIS 113 O 7.21 Compound A − ° (1) Li, C2H5NH2, 78 C 7.22 (2) NH4Cl 2-Nonyne (E)-2-Nonene 7.23 Route 1 CH3 CH3 NaNH2 + − CH3 Br HC CCH2CHCH3 − Na C CCH2CHCH3 − ( NH3) ( NaBr) CH3 CH3 H2 CH C CCH CHCH CH CH CH CH CHCH 3 2 3 Pd, Pt, or Ni 3 2 2 2 3 pressure Route 2 CH3 NaNH − + Br CH CH CHCH 2 Na 2 2 3 HC CH − HC C − ( NH3) ( NaBr) CH3 CH3 H2 HC C CH CH CHCH CH CH CH CH CHCH 2 2 3 Pd, Pt, or Ni 3 2 2 2 3 pressure Route 3 CH3 CH3 NaNH2 + − CH3CH2Br HC CCHCH3 − Na C CCHCH3 − ( NH3) ( NaBr) CH3 CH3 H2 CH CH C CCHCH CH CH CH CH CHCH 3 2 3 Pd, Pt, or Ni 3 2 2 2 3 CONFIRMING PAGES P1: PBU/OVY P2: PBU/OVY QC: PBU/OVY T1: PBU Printer: Bind Rite JWCL234-07 JWCL234-Solomons-v1 December 8, 2009 21:37 114 ALKENES AND ALKYNES I: PROPERTIES AND SYNTHESIS Etc.
Recommended publications
  • (Vocs and Svocs) from Warm Mix Asphalt Incorporating Natural Zeolite and Reclaimed Asphalt Pavement for Sustainable Pavements
    sustainability Article Evaluation of Reductions in Fume Emissions (VOCs and SVOCs) from Warm Mix Asphalt Incorporating Natural Zeolite and Reclaimed Asphalt Pavement for Sustainable Pavements Javier Espinoza 1,2 , Cristian Medina 1,2, Alejandra Calabi-Floody 3 , Elsa Sánchez-Alonso 3 , Gonzalo Valdés 3 and Andrés Quiroz 1,2,* 1 Chemical Ecology Laboratory, Department of Chemical Sciences and Natural Resources, University of La Frontera, Temuco 4811230, Chile; [email protected] (J.E.); [email protected] (C.M.) 2 Biotechnological Research Center Applied to the Environment (CIBAMA), University of La Frontera, Temuco 4811230, Chile 3 Department of Civil Works Engineering, University of La Frontera, Temuco 4811230, Chile; [email protected] (A.C.-F.); [email protected] (E.S.-A.); [email protected] (G.V.) * Correspondence: [email protected] Received: 26 September 2020; Accepted: 10 November 2020; Published: 17 November 2020 Abstract: Conventional asphalt mixtures used for road paving require high manufacturing temperatures and therefore high energy expenditure, which has a negative environmental impact and creates risk in the workplace owing to high emissions of pollutants, greenhouse gases, and toxic fumes. Reducing energy consumption and emissions is a continuous challenge for the asphalt industry. Previous studies have focused on the reduction of emissions without characterizing their composition, and detailed characterization of volatile organic compounds (VOCs) and semi-volatile organic compounds (SVOCs) in asphalt fumes is scarce. This communication describes the characterization and evaluation of VOCs and SVOCs from asphalt mixtures prepared at lower production temperatures using natural zeolite; in some cases, reclaimed asphalt pavement (RAP) was used.
    [Show full text]
  • United States Patent (19) 11 Patent Number: 5,731,483 Stabel Et Al
    US005731483A United States Patent (19) 11 Patent Number: 5,731,483 Stabel et al. 45 Date of Patent: Mar. 24, 1998 54 RECYCLING OF PLASTICS IN A STEAM 52 U.S. Cl. .......................... 585/241; 585/648; 208/130 CRACKER 58 Field of Search ..................................... 585/241, 648; 208/130 75) Inventors: Uwe Stabel, Edingen-Neckarhausen; Helmut Woerz, Mannheim; Ruediger 56) References Cited Kotkamp, Limburgerhof; Andreas U.S. PATENT DOCUMENTS Fried, Bobenheim-Roxheim, all of Germany 5,364.995 11/1994 Kirkwood et al. ...................... 585,241 73) Assignee: BASFAktiengesellschaft, FOREIGN PATENT DOCUMENTS Ludwigshafen, Germany 2108.968 9/1983 Canada. 2094.456 10/1993 Canada. 21) Appl. No.: 553,658 502 618 9/1992 European Pat. Off. 567 292 10/1993 European Pat. Off. 22 PCT Filed: May 20, 1994 WO93/1812 9/1993 WIPO. (86 PCT No.: PCT/EP94/01647 Primary Examiner-Glenn Caldarola S371 Date: Nov. 17, 1995 Assistant Examiner-Bekir L. Yildirim Attorney, Agent, or Firm-Keil & Weinkauf S 102(e) Date: Nov. 17, 1995 57 ABSTRACT 87 PCT Pub. No.: WO95/03375 A process for recycling plastic waste in a steam cracker, PCT Pub. Date: Feb. 2, 1995 wherein a melt obtained from plastic waste is converted into 30 Foreign Application Priority Data products at from 400° 550° C., and a distillate fraction is separated off from the products at from 180° to 280° C. and Jul. 20, 1993 DEl Germany .......................... 43 24, 112.3 is fed as feed material to a steam cracker, Jan. 10, 1994 DEl Germany .......................... 4400 366.8 (51 int. Cl. .................. C07C 1/00; CO7C 4/22 9 Claims, 2 Drawing Sheets - N 5 AAA' U.S.
    [Show full text]
  • Catalytic Pyrolysis of Plastic Wastes for the Production of Liquid Fuels for Engines
    Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2019 Supporting information for: Catalytic pyrolysis of plastic wastes for the production of liquid fuels for engines Supattra Budsaereechaia, Andrew J. Huntb and Yuvarat Ngernyen*a aDepartment of Chemical Engineering, Faculty of Engineering, Khon Kaen University, Khon Kaen, 40002, Thailand. E-mail:[email protected] bMaterials Chemistry Research Center, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand Fig. S1 The process for pelletization of catalyst PS PS+bentonite PP ) t e PP+bentonite s f f o % ( LDPE e c n a t t LDPE+bentonite s i m s n HDPE a r T HDPE+bentonite Gasohol 91 Diesel 4000 3500 3000 2500 2000 1500 1000 500 Wavenumber (cm-1) Fig. S2 FTIR spectra of oil from pyrolysis of plastic waste type. Table S1 Compounds in oils (%Area) from the pyrolysis of plastic wastes as detected by GCMS analysis PS PP LDPE HDPE Gasohol 91 Diesel Compound NC C Compound NC C Compound NC C Compound NC C 1- 0 0.15 Pentane 1.13 1.29 n-Hexane 0.71 0.73 n-Hexane 0.65 0.64 Butane, 2- Octane : 0.32 Tetradecene methyl- : 2.60 Toluene 7.93 7.56 Cyclohexane 2.28 2.51 1-Hexene 1.05 1.10 1-Hexene 1.15 1.16 Pentane : 1.95 Nonane : 0.83 Ethylbenzen 15.07 11.29 Heptane, 4- 1.81 1.68 Heptane 1.26 1.35 Heptane 1.22 1.23 Butane, 2,2- Decane : 1.34 e methyl- dimethyl- : 0.47 1-Tridecene 0 0.14 2,2-Dimethyl- 0.63 0 1-Heptene 1.37 1.46 1-Heptene 1.32 1.35 Pentane,
    [Show full text]
  • Catalytic Enantioselective Carbon-Carbon Bond Formation Using Cycloisomerization Reactions
    View Online / Journal Homepage / Table of Contents for this issue Chemical Science Dynamic Article LinksC< Cite this: Chem. Sci., 2012, 3, 2899 www.rsc.org/chemicalscience MINIREVIEW Catalytic enantioselective carbon-carbon bond formation using cycloisomerization reactions Iain D. G. Watsona and F. Dean Toste*b Received 30th April 2012, Accepted 7th June 2012 DOI: 10.1039/c2sc20542d This review describes important recent advancements in asymmetric cycloisomerization reactions. A wide variety of catalytic and asymmetric strategies have been applied to these reactions over the past twenty years. Cycloisomerization reactions have the ability to produce diverse polycyclic compounds in excellent yields and selectivity. They constitute a powerful and efficient strategy for asymmetric carbon- carbon bond formation in cyclic compounds. Enyne and related olefin cyclizations comprise the majority of reactions of this type and important advances have recently occurred in this area. However, significant changes have also occurred in the area of classical cyclization as well as intramolecular hydroacylation and C–H activation initiated cyclization and these will also be described. 1 Introduction The purpose of this review is to describe important new advances in asymmetric cycloisomerization reactions. In partic- The synthesis of rings is central to the art of organic synthesis. ular, this review will focus on enantioselective carbon-carbon Cyclic compounds abound in chemistry, from strained three bond forming cycloisomerizations. Many aspects of cyclo- membered rings to macrocyclic monsters. A common synthetic isomerization reactions have already been reviewed,3 including challenge is the creation of a ring within a certain target mechanistic4 and asymmetric aspects of the reaction.5 This compound.
    [Show full text]
  • Properties and Synthesis. Elimination Reactions of Alkyl Halides
    P1: PBU/OVY P2: PBU/OVY QC: PBU/OVY T1: PBU Printer: Bind Rite JWCL234-07 JWCL234-Solomons-v1 December 8, 2009 21:37 7 ALKENES AND ALKYNES I: PROPERTIES AND SYNTHESIS. ELIMINATION REACTIONS OF ALKYL HALIDES SOLUTIONS TO PROBLEMS 7.1 (a) ( E )-1-Bromo-1-chloro-1-pentene or ( E )-1-Bromo-1-chloropent-1-ene (b) ( E )-2-Bromo-1-chloro-1-iodo-1-butene or ( E )-2-Bromo-1-chloro-1-iodobut-1-ene (c) ( Z )-3,5-Dimethyl-2-hexene or ( Z )-3,5-Dimethylhex-2-ene (d) ( Z )-1-Chloro-1-iodo-2-methyl-1-butene or ( Z )-1-Chloro-1-iodo-2-methylbut-1-ene (e) ( Z,4 S )-3,4-Dimethyl-2-hexene or ( Z,4 S )-3,4-Dimethylhex-2-ene (f) ( Z,3 S )-1-Bromo-2-chloro-3-methyl-1-hexene or (Z,3 S )-1-Bromo-2-chloro-3-methylhex-1-ene 7.2 < < Order of increasing stability 7.3 (a), (b) H − 2 ∆ H° = − 119 kJ mol 1 Pt 2-Methyl-1-butene pressure (disubstituted) H2 − ∆ H° = − 127 kJ mol 1 Pt 3-Methyl-1-butene pressure (monosubstituted) H2 − ∆ H° = − 113 kJ mol 1 Pt 2-Methyl-2-butene pressure (trisubstituted) (c) Yes, because hydrogenation converts each alkene into the same product. 106 CONFIRMING PAGES P1: PBU/OVY P2: PBU/OVY QC: PBU/OVY T1: PBU Printer: Bind Rite JWCL234-07 JWCL234-Solomons-v1 December 8, 2009 21:37 ALKENES AND ALKYNES I: PROPERTIES AND SYNTHESIS 107 H H (d) > > H H H (trisubstituted) (disubstituted) (monosubstituted) Notice that this predicted order of stability is confirmed by the heats of hydro- genation.
    [Show full text]
  • Nuclear Spin-Induced Optical Rotation of Functional Groups in Hydrocarbons Petr Štěpánek1 Supplementary Information
    Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2020 Nuclear spin-induced optical rotation of functional groups in hydrocarbons Petr Štěpánek1 Supplementary Information Contents 1 List of molecules 2 2 Basis set benchmark 5 1 3 Effect of cis/trans isomerism on H NSOR of T1 atom type in alkenes 5 4 Effect of conformation on NSOR 6 5 Extended Figure for NSOR of dienes 7 6 Effect of cis/trans isomerism in dienes 8 7 Supporting data for solvent and geometry effects 8 1NMR Research Unit, Faculty of Science, University of Oulu, P.O. Box 3000, FI-90014 Oulu, Finland; petr.stepanek@oulu.fi 1 1 List of molecules Tables below list the molecules included in the study. The test cases of the contribution model are not included. Table S 1: Alkane molecules methane 2-methyl-propane 2,3-dimethyl-butane ethane 2-methyl-butane 2,2-dimethyl-propane propane 2-methyl-pentane 2,2-dimethyl-pentane butane 3-methyl-pentane 2,3-dimethyl-pentane pentane 2,2-dimethyl-butane 3,3-dimethyl-pentane hexane Table S 2: Alkene molecules ethene 2,3,3-trimethyl-butene 5-methyl-heptene propene 2,4-dimethyl-pentene 6-methyl-heptene trans-but-2-ene 2-methyl-hexene cis-5,5-dimethyl-hex-2-ene cis-pent-2-ene 3,3-dimethyl-pentene cis-6-methyl-hept-2-ene trans-hex-2-ene 3,4-dimethyl-pentene trans-5,5-dimethyl-hex-2-ene trans-pent-2-ene 3-methyl-hexene trans-6-methyl-hept-2-ene trans-hex-3-ene 4-methyl-hexene 5,6-dimethyl-heptene 2-methyl-propene cis-4,4-dimethyl-pent-2-ene cis-6,6-dimethyl-hepte-2-ene 2-methyl-butene
    [Show full text]
  • Chevron Phillips Chemical Company LP
    Chevron Phillips Chemical Company LP Cedar Bayou Plant New Ethylene Unit 1594 Greenhouse Gas PSD Permit Application December 2011 SEE Solutions, LLC 11601 Shadow Creek Pkwy, Suite 111 Pearland, Texas 77584 Chevron Phillips Chemical Company LP Gulf Coast Steam Cracker – Greenhouse Gas Air Permit Application TABLE OF CONTENTS 1.0 INTRODUCTION ................................................................................................................. 1 2.0 ADMINISTRATIVE INFORMATION AND ASSOCIATED FORMS ............................................... 2 3.0 AREA MAP AND PLOT PLAN ............................................................................................... 5 4.0 PROCESS DESCRIPTION ...................................................................................................... 9 4.1 Ethylene Unit ......................................................................................................................... 9 4.2 VHP Boiler ............................................................................................................................ 11 4.3 Low Pressure Vent System and Vapor Destruction Unit ..................................................... 11 4.4 Low Profile Flare System ..................................................................................................... 11 4.5 Emergency Generator.......................................................................................................... 12 4.6 Storage Tanks ......................................................................................................................
    [Show full text]
  • Industrial Hydrocarbon Processes
    Handbook of INDUSTRIAL HYDROCARBON PROCESSES JAMES G. SPEIGHT PhD, DSc AMSTERDAM • BOSTON • HEIDELBERG • LONDON NEW YORK • OXFORD • PARIS • SAN DIEGO SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO Gulf Professional Publishing is an imprint of Elsevier Gulf Professional Publishing is an imprint of Elsevier The Boulevard, Langford Lane, Kidlington, Oxford OX5 1GB, UK 30 Corporate Drive, Suite 400, Burlington, MA 01803, USA First edition 2011 Copyright Ó 2011 Elsevier Inc. All rights reserved No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means electronic, mechanical, photocopying, recording or otherwise without the prior written permission of the publisher Permissions may be sought directly from Elsevier’s Science & Technology Rights Department in Oxford, UK: phone (+44) (0) 1865 843830; fax (+44) (0) 1865 853333; email: [email protected]. Alternatively you can submit your request online by visiting the Elsevier web site at http://elsevier.com/locate/ permissions, and selecting Obtaining permission to use Elsevier material Notice No responsibility is assumed by the publisher for any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or operation of any methods, products, instructions or ideas contained in the material herein. Because of rapid advances in the medical sciences, in particular, independent verification of diagnoses and drug dosages should be made British Library Cataloguing in Publication Data
    [Show full text]
  • Pyrolysis of Jet Propellants and Oxidation Of
    Florida International University FIU Digital Commons FIU Electronic Theses and Dissertations University Graduate School 5-15-2018 Pyrolysis of Jet Propellants and Oxidation of Polycyclic Aromatic Radicals with Molecular Oxygen: Theoretical Study of Potential Energy Surfaces, Mechanisms, and Kinetics Daniel E. Belisario-Lara [email protected] DOI: 10.25148/etd.FIDC006814 Follow this and additional works at: https://digitalcommons.fiu.edu/etd Part of the Physical Chemistry Commons Recommended Citation Belisario-Lara, Daniel E., "Pyrolysis of Jet Propellants and Oxidation of Polycyclic Aromatic Radicals with Molecular Oxygen: Theoretical Study of Potential Energy Surfaces, Mechanisms, and Kinetics" (2018). FIU Electronic Theses and Dissertations. 3819. https://digitalcommons.fiu.edu/etd/3819 This work is brought to you for free and open access by the University Graduate School at FIU Digital Commons. It has been accepted for inclusion in FIU Electronic Theses and Dissertations by an authorized administrator of FIU Digital Commons. For more information, please contact [email protected]. FLORIDA INTERNATIONAL UNIVERSITY Miami, Florida PYROLYSIS OF JET PROPELLANTS AND OXIDATION OF POLYCYCLIC AROMATIC RADICALS WITH MOLECULAR OXYGEN: THEORETICAL STUDY OF POTENTIAL ENERGY SURFACES, MECHANISMS, AND KINETICS A dissertation submitted in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY in CHEMISTRY by Daniel Belisario-Lara 2018 To: Dean Michael R. Heithaus College of Arts, Sciences and Education This dissertation, written by Daniel Belisario-Lara, and entitled Pyrolysis of Jet Propellants and Oxidation of Polycyclic Aromatic Radicals with Molecular Oxygen: Theoretical Study of Potential Energy Surfaces, Mechanisms, and Kinetics, having been approved in respect to style and intellectual content, is referred to you for judgment.
    [Show full text]
  • A New Insight Into the Comonomer Effect Through NMR Analysis In
    polymers Article A New Insight into the Comonomer Effect through NMR Analysis in Metallocene Catalysed Propene–co–1-Nonene Copolymers Qiong Wu 1 , Alberto García-Peñas 2,3 , Rosa Barranco-García 4, María Luisa Cerrada 4, Rosario Benavente 4, Ernesto Pérez 4 and José Manuel Gómez-Elvira 4,* 1 School of Engineering, Hong Kong University of Science and Technology, Clear Water Bay, 999077 Kowloon, Hong Kong 2 College of Materials Science and Engineering, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Centre for Interfacial Engineering of Functional Materials, Nanshan District Key Laboratory for Biopolymers and Safety Evaluation, Shenzhen University, Shenzhen 518060, China 3 Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China 4 Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain * Correspondence: [email protected]; Tel.: +34-912-587-524 Received: 4 June 2019; Accepted: 22 July 2019; Published: 31 July 2019 Abstract: The “comonomer effect” is an intriguing kinetic phenomenon in olefin copolymerization that still remains without a detailed explanation. It typically relates to the rate of enhancement undergone in ethylene and propene catalytic polymerization just by adding small fractions of an alpha-olefin. The difficulty lies in the fact that changes caused by the presence of the comonomer in reaction parameters are so conspicuous that it is really difficult to pin down which of them is the primary cause and which ones are side factors with marginal contribution to the phenomenon. Recent investigations point to the modification of the catalyst active sites as the main driving factor.
    [Show full text]
  • University of California
    UC Riverside UC Riverside Electronic Theses and Dissertations Title Towards a Catalytic Asymmetric Cope Rearrangement and the Synthesis and Self-Assembly of Metal-Coordinated Hosts Permalink https://escholarship.org/uc/item/4gc654st Author Moehlig, Melissa Padilla Publication Date 2013 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California UNIVERSITY OF CALIFORNIA RIVERSIDE Towards a Catalytic Asymmetric Cope Rearrangement and the Synthesis and Self- Assembly of Metal-Coordinated Hosts A Dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Chemistry by Melissa Padilla Moehlig December 2013 Dissertation Committee: Dr. Richard J. Hooley, Chairperson Dr. Catharine H. Larsen Dr. Michael C. Pirrung Copyright by Melissa Padilla Moehlig 2013 The Dissertation of Melissa Padilla Moehlig is approved: Committee Chairperson University of California, Riverside ACKNOWLEDGEMENTS Graduate school has been one of the most rewarding and yet the most exhausting and stressful times of my life. It would not have survived without the help of several people. I would like to thank Dr. Courtney Meyet, Dr. Katherine Djernes, and Yoo-Jin Ghang for their friendship and all the laughs that were necessary to keep me sane. I would like to thank Michael Young, Hou Ung, and Jay-Ar Bendo for our morning coffee breaks, they were crucial to get my day started. I would like to thank Prof. Larsen for teaching me to be independent. I would like to thank Prof. Hooley for all his guidance over the past five years. You are truly a great mentor and I don’t think I would have survived graduate school without your help and advice.
    [Show full text]
  • Chemical Compatibility Chart
    Chemical Compatibility Chart 1 Inorganic Acids 1 2 Organic acids X 2 3 Caustics X X 3 4 Amines & Alkanolamines X X 4 5 Halogenated Compounds X X X 5 6 Alcohols, Glycols & Glycol Ethers X 6 7 Aldehydes X X X X X 7 8 Ketone X X X X 8 9 Saturated Hydrocarbons 9 10 Aromatic Hydrocarbons X 10 11 Olefins X X 11 12 Petrolum Oils 12 13 Esters X X X 13 14 Monomers & Polymerizable Esters X X X X X X 14 15 Phenols X X X X 15 16 Alkylene Oxides X X X X X X X X 16 17 Cyanohydrins X X X X X X X 17 18 Nitriles X X X X X 18 19 Ammonia X X X X X X X X X 19 20 Halogens X X X X X X X X X X X X 20 21 Ethers X X X 21 22 Phosphorus, Elemental X X X X 22 23 Sulfur, Molten X X X X X X 23 24 Acid Anhydrides X X X X X X X X X X 24 X Represents Unsafe Combinations Represents Safe Combinations Group 1: Inorganic Acids Dichloropropane Chlorosulfonic acid Dichloropropene Hydrochloric acid (aqueous) Ethyl chloride Hydrofluoric acid (aqueous) Ethylene dibromide Hydrogen chloride (anhydrous) Ethylene dichloride Hydrogen fluoride (anhydrous) Methyl bromide Nitric acid Methyl chloride Oleum Methylene chloride Phosphoric acid Monochlorodifluoromethane Sulfuric acid Perchloroethylene Propylene dichloride Group 2: Organic Acids 1,2,4-Trichlorobenzene Acetic acid 1,1,1-Trichloroethane Butyric acid (n-) Trichloroethylene Formic acid Trichlorofluoromethane Propionic acid Rosin Oil Group 6: Alcohols, Glycols and Glycol Ethers Tall oil Allyl alcohol Amyl alcohol Group 3: Caustics 1,4-Butanediol Caustic potash solution Butyl alcohol (iso, n, sec, tert) Caustic soda solution Butylene
    [Show full text]