Smartgrid-Lecture5

Total Page:16

File Type:pdf, Size:1020Kb

Smartgrid-Lecture5 SMART GRID 1 Shahram Javadi Assistant Professor Electrical Eng. Department 2 3 The communication infrastructure of a power system typically consists of SCADA systems with dedicated communication channels to and from the System Control Centre and a Wide Area Network (WAN) The SCADA systems connect all the major power system operational facilities, that is, the central generating stations, the transmission grid substations and the primary distribution substations to the System Control Centre. The WAN is used for corporate business and market operations. These form the core communication networks of the traditional power system. In the Smart Grid, it is expected that these two elements of communication infrastructure will merge into a Utility WAN. 4 An essential development of the Smart Grid is to extend communication throughout the distribution system Smart Meter NAN HAN Neighborhood Area Networks Home Area Networks (HANs) 5 POSSIBLE COMMUNICATION INFRASTRUCTURE FOR THE SMART GRID 6 TECHNOLOGIES USED IN DIFFERENT SUB-NETWORKS The various communication sub-networks that will make up the Smart Grid employ different technologies and a key challenge is how they can be integrated effectively. In this chapter, communication technologies that are associated with the lower three layers of the ISO/OSI reference model are discussed. In the ISO/OSI reference model, the upper layers deal with Applications of the data irrespective of its actual delivery mechanism while the lower layers look after delivery of information irrespective of its Application 7 COMMUNICATION TECHNOLOGIES 1. IEEE 802 series I. Ethernet II. Wireless LANs III. Bluetooth IV. ZigBee and 6LoWPAN V. WiMax 2. Mobile communications 3. Multi protocol label switching 4. Power line communication 8 IEEE 802 SERIES • IEEE 802 is a family of standards that were developed to support Local Area Networks (LANs) • For the Smart Grid, IEEE 802 standards are applicable to LANs in SCADA systems, NANs around the distribution networks and HANs in consumers’ premises. 9 DIFFERENT TECHNOLOGIES SPECIFIED UNDER IEEE 802 10 IEEE 802 wireless network technology options Network definition IEEE standard Known as Wireless personal area IEEE 802.15.1 Bluetooth network (WPAN) Low-rate WPAN (LR-WPAN) IEEE 802.15.4 ZigBee Wireless local area network (WLAN) IEEE 802.11 WiFi Wireless metroplitan area network (WMAN) IEEE 802.16 WiMAX 11 IEEE 802 standardisation framework 802.1 802.2 Logical Link Control (LLC) Manage- ment 802.3 802.5 802.11 Medium Access Control (MAC) MAC MAC CSMA/CA 802.3 802.5 802.11 802.11a 802.11b 802.11g PHY PHY PHY PHY PHY PHY CSMA/CD Toke n CSMA/CA (Wireless LAN) (Ethernet) Ring 12 IEEE 802 ARCHITECTURE 13 Ethernet The most widely used network technology for wired LANs Simple Ease of maintenance Ability to incorporate new technologies Reliability Low cost of installation Easy to upgrade frame-based communication technology that is based on IEEE 802.3 14 Ethernet Its baseband is defined in a number of standards such as 10BASE5,10BASE2, 10BASE-T, 1BASE5, 100BASE-T 10BASE2 data rate in Mbps maximum length of the cable and type of the cable 15 ETHERNET STANDARDS AND THEIR COVERAGE 16 DATA TRANSMISSION DEVICES FOR ETHERNETS An Ethernet LAN consists of all or some of the devices shown in below: 17 TRANSMISSION PATH OF A REPEATER 18 TRANSMISSION PATH OF A HUB 19 TRANSMISSION PATH OF A SWITCH 20 A TYPICAL ETHERNET LAN Ethernet uses a shared medium where more than one device tries to use the common medium. 21 Wireless LANs IEEE 802.11 describes the Wireless LAN (WLAN) standard Wireless LANs consist of the following components: 1. Station 2. Access points (AP) 3. Distribution system (DS) 22 BSS ARCHITECTURES OF WIRELESS LANS DISTRIBUTION SYSTEM 23 IEEE 802.11 WLAN APPLICATION IN THE SMART GRID 24 Bluetooth Bluetooth, defined by IEEE standard 802.15.1, is a wireless LAN technology designed to connect mobile or fixed devices using low-power, short-distance radio transmission. Classic version: Bluetooth 3.0+HS Low-energy version: Bluetooth 4.0 25 ZigBee and 6LoWPAN This is a low data rate wireless networking standard Currently this standard is the most popular protocol for a Wireless Public Area Networks (WPAN) due to its . low power consumption . high flexibility in networking . and low cost It creates an ad-hoc self-organising network by interconnecting fixed, portable and moving devices 26 PROTOCOL ARCHITECTURE OF ZIGBEE The lower two layers are defined by IEEE 802.15.4 standards A ZigBee device can be a Full Function Device (FFD) or a Reduced Function Device (RFD) A network will have at least one FFD, operating as the WPAN coordinator 27 ZIGBEE The FFD can operate in three modes: . a coordinator, . a router or . an end device. An RFD can operate only as an end device. 28 ZIGBEE NETWORK ARCHITECTURES ZigBee networks can have star, mesh or cluster tree architecture 29 6LOWPAN NETWORK ARCHITECTURE 6LoWPAN is a protocol which enables IPv6 packets to be carried over low power WPAN 30 COMMUNICATION OVER A 6LOWPAN NETWORK . When an RFD in a 6LoWPAN wants to send a data packet to an IP-enabled device outside the 6LoWPAN domain, it first sends the packet to an FFD in the same WPAN 31 ZIGBEE COMMUNICATION NETWORK FOR SMART METERING 32 WIMAX NETWORK Worldwide Interoperability for Microwave Access (WiMax) is a wireless technology which conforms with the IEEE 802.16 standard It provides both fixed and mobile connectivity using a technique called Orthogonal Frequency Division Multiple Access (OFDMA). 33 MOBILE COMMUNICATIONS Mobile communication systems were designed initially to carry voice only. Standard: GSM (Global System for Mobile Communications). Add on data service to GSM technology: (GPRS) (General Packet Radio Service) GPRS uses the existing GSM network and adds two new packet-switching network elements: . GGSN (Gateway GPRS Support Node) . SGSN (Serving GPRS Support Node) 34 MOBILE COMMUNICATIONS 3rd Generation Partnership Project (3GPP): A common project in 1998: . The European Telecommunications Standards Institute . The Association of Radio Industries and Businesses/Telecommunication Technology Committee of Japan . The China Communications Standards Association . The Alliance for Telecommunications Industry Solutions (North America) . The Telecommunications Technology Association (South Korea) The project was built on data communication rather than voice 35 MOBILE COMMUNICATIONS EVOLUTION OF THE 3GPP FAMILY LTE is a competing technology to WiMax and supports user mobility up to 350 km/h, coverage up to 100 km, channel bandwidth up to 100 MHz with spectral efficiency of the Downlink 30 bps/Hz and the Uplink 15 bps/Hz 36 MOBILE COMMUNICATIONS PEAK DATA RATES OF THE 3GPP FAMILY 37 MOBILE COMMUNICATIONS LTE CONNECTING TO LEGACY NETWORKS 38 MULTI PROTOCOL LABEL SWITCHING Multi Protocol Label Switching (MPLS) is a packet forwarding technique capable of providing a Virtual Private Network (VPN) service to users over public networks or the internet VPN provides the high quality of service and security required by Applications such as that associated with critical assets Some anticipated Applications of point-to-point VPNs based on MPLS include Remote Terminal Unit (RTU) networks and backbone network to the System Control Centre 39 MPLS PACKET 40 POWER LINE COMMUNICATION IEEE P1901: . a standard for high speed (> 100 Mbps at the physical layer) communication devices via electric power lines . The in-home and access protocol under IEEE P1901 will support MAC layer and Physical layers that use orthogonal frequency multiplexing (OFDM). HomePlug: . HomePlug is a non-standardized broadband technology specified by the HomePlug Powerline Alliance, whose members are major companies in communication equipment manufacturing and in the power industry. 41 STANDARDS FOR INFORMATION EXCHANGE Standards for smart metering Modbus DNP3 IEC 61850 42 STANDARDS FOR INFORMATION EXCHANGE Standards for smart metering: . Automated meter reading (AMR): requires only occasional transmission of recorded energy data (perhaps once a month) . Advanced metering infrastructure (AMI): requires frequent bi- directional communication (perhaps every 30 minutes) . IEC 62056 and ANSI C12.22 are two sets of standards that describe open communication systems for smart meters Basic ANSI C12.22 smart metering architecture 43 STANDARDS FOR INFORMATION EXCHANGE Modbus . Modbus is a messaging protocol in the Application layer and provides communication between devices connected over several buses and networks Modbus protocol 44 DNP3: . DNP3 (Distributed Network Protocol) is a set of communication protocols developed for communications between various types of data acquisition and control equipment . It plays a crucial role in SCADA systems, where it is used by Control Centres, RTUs and IEDs DNP protocol 45 IEC 61850: . IEC 61850 is an open standard for Ethernet communication within substations . It is a function-based standard which ensures interoperability of substation equipment 46 STRUCTURE OF THE STANDARD IEC 61850[9] 47 IEC 61850 DATA STRUCTURE 48 Thank you! 49 .
Recommended publications
  • An Analysis of IEEE 802.16 and Wimax Multicast Delivery
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Calhoun, Institutional Archive of the Naval Postgraduate School Calhoun: The NPS Institutional Archive Theses and Dissertations Thesis Collection 2007-09 An analysis of IEEE 802.16 and WiMAX multicast delivery Staub, Patrick A. Monterey, California. Naval Postgraduate School http://hdl.handle.net/10945/3203 NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA THESIS AN ANALYSIS OF IEEE 802.16 AND WIMAX MULTICAST DELIVERY by Patrick A. Staub September, 2007 Thesis Advisor: Bert Lundy Second Reader: George Dinolt Approved for public release; distribution is unlimited THIS PAGE INTENTIONALLY LEFT BLANK REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188 Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503. 1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED September 2007 Master’s Thesis 4. TITLE AND SUBTITLE An Analysis of IEEE 802.16 and WiMAX 5. FUNDING NUMBERS Multicast Delivery 6. AUTHOR(S) Patrick A. Staub 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8.
    [Show full text]
  • Comparison of the IEEE 802.11, 802.15.1, 802.15.4 and 802.15.6 Wireless Standards
    Comparison of the IEEE 802.11, 802.15.1, 802.15.4 and 802.15.6 wireless standards Jan Magne Tjensvold∗ September 18, 2007 1 Introduction This paper contains a comparison of some of the wireless standards authored by the Institute of Electrical and Electronics Engineers (IEEE) [1]. It explain some of the differences and similarities between the IEEE 802.11, 802.15.1, 802.15.4 and 802.15.6 wireless standards with an emphasis on the physical layer. 2 Wireless standards The wireless standards that we will investigate in this paper is only a selec- tion from all the standards available. These explanations are not meant to be exhaustive. 2.1 IEEE 802.11 - WLAN/Wi-Fi Wireless LAN (WLAN, also known as Wi-Fi) is a set of low tier, terrestrial, net- work technologies for data communication. The WLAN standards operates on the 2.4 GHz and 5 GHz Industrial, Science and Medical (ISM) frequency bands. It is specified by the IEEE 802.11 standard [2] and it comes in many different variations like IEEE 802.11a/b/g/n. The application of WLAN has been most visible in the consumer market where most portable computers support at least one of the variations. 2.2 IEEE 802.15.1 - Bluetooth The IEEE 802.15.1 standard [3] is the basis for the Bluetooth wireless communi- cation technology. Bluetooth is a low tier, ad hoc, terrestrial, wireless standard for short range communication. It is designed for small and low cost devices with low power consumption. The technology operates with three different classes of devices: Class 1, class 2 and class 3 where the range is about 100 meters, 10 meters and 1 meter respectively.
    [Show full text]
  • Bluetooth 4.0: Low Energy
    Bluetooth 4.0: Low Energy Joe Decuir Standards Architect,,gy CSR Technology Councilor, Bluetooth Architecture Review Board IEEE Region 6 Northwest Area chair Agenda Wireless Applications Perspective How do wireless devices spend energy? What is ‘classic’ Bluetooth? Wha t is Bluet ooth Low Energy? How do the components work? How low is the energy? Perspective: how does ZigBee & 802.15.4 work? What is Bluetooth Low Energy good for? Where can we learn more? Shilliihort range wireless application areas Voice Data Audio Video State Bluetooth ACL / HS x YYxx Blue too th SCO/eSCO Y x x x x Bluetooth low energy xx x xY Wi-Fi (()VoIP) YYYx Wi-Fi Direct Y Y Y xx ZigBee xx x xY ANT xx x xY State = low bandwidth, low latency data Low Power How do wireless devices spend power? Dutyyy Cycle: how often they are on The wireless world has put a lot of effort into reducing this Protocol efficiency: what do they do when on? Different MACs are tuned for different types of applicati ons TX power: how much power they transmit And how efficient the transmit amplifier is How long they have to transmit when they are on Data rate helps here – look at energy per bit How muchhlh energy the signal processing consumes This is driven by chip silicon process if the DSP dominates This is driven TX power if the RF dominates Example transmit power & efficiency comparisons High rate: 802.11n (single antenna) vs UWB, short range In 90nm, an 802.11n chip might spend ~200mW in DSP, but 500mW in the TX amplifier (mostly because they are about 10% efficient on OFDM carriers)
    [Show full text]
  • IEEE 802 and Consortiums Jim Carlo ([email protected]) TI Fellow, Texas Instruments Incorporated Chair - IEEE 802 LMSC Chair - ISO/IEC JTC1/SC6
    IEEE 802 and Consortiums Jim Carlo ([email protected]) TI Fellow, Texas Instruments Incorporated Chair - IEEE 802 LMSC Chair - ISO/IEC JTC1/SC6 • IEEE 802 Organization Summary • IEEE 802 Standards Process • Consortium Experience • IEEE-SA New Initiatives • IEEE 802 Wireless Vision EEE Jim Carlo - Texas Instruments I802 IEEE 802 Local and Metropolitan Area Network Standards Committee • Accredited by ANSI, Sponsored by IEEE Computer Society – Ethernet, Token Ring, Wireless, Cable Modem Standards – Bridging, VLAN, Security Upper Layer Standards • Meets three times per year (400 individuals, 15% non-US) • Develops equivalent IEC/ISO JTC 1 standards – JTC 1 series of equivalent standards are known as ISO 8802-nnn • IEEE 802 web site at http://stdsbbs.ieee.org/groups/802. • Chair: Jim Carlo ([email protected]) PHONE:214-340-8837 EEE Jim Carlo - Texas Instruments I802 IEEE 802 Standards Principals • Due Process – Rules and Procedures • Consensus – Near unanimity • Openness – Everyone has Access to Process – Individuals, World-wide • Balance – Balloting group must include developers and users • Right to Appeal – Both procedural and technical anytime during the process EEE Jim Carlo - Texas Instruments I802 IEEE 802 ORGANIZATION LMSC SPONSOR CHAIR Jim Carlo WORKING GROUP CHAIRS EXEC OFFICERS 802.1 802.3 RECORDING SEC BRIDGING/ARCH CSMA/CD VICE CHAIR Active Howard Frazier Bill Lidinsky Geoff Thompson Paul Nikolich 802.5 802.8 802.10 EXECUTIVE SEC TOKEN RING FIBER TAG SECURITY Active TREASURER Buzz Rigsbee Bob Love Chip Benson Ken Alonge Bob Grow 802.11
    [Show full text]
  • Interference Evaluation of Bluetooth and IEEE 802.11B Systems
    Wireless Networks 9, 201–211, 2003 2003 Kluwer Academic Publishers. Manufactured in The Netherlands. Interference Evaluation of Bluetooth and IEEE 802.11b Systems N. GOLMIE ∗, R.E. VAN DYCK, A. SOLTANIAN, A. TONNERRE and O. RÉBALA National Institute of Standards and Technology, Gaithersburg, MD 20899, USA Abstract. The emergence of several radio technologies, such as Bluetooth and IEEE 802.11, operating in the 2.4 GHz unlicensed ISM frequency band, may lead to signal interference and result in significant performance degradation when devices are colocated in the same environment. The main goal of this paper is to evaluate the effect of mutual interference on the performance of Bluetooth and IEEE 802.11b systems. We develop a simulation framework for modeling interference based on detailed MAC and PHY models. First, we use a simple simulation scenario to highlight the effects of parameters, such as transmission power, offered load, and traffic type. We then turn to more complex scenarios involving multiple Bluetooth piconets and WLAN devices. Keywords: WPANs, Bluetooth, IEEE 802.11b, interference 1. Introduction In addition, there has been several attempts at quantifying the impact of interference on both the WLAN and Bluetooth The proliferation of mobile computing devices including lap- performance. Published results can be classified into at least tops, personal digital assistants (PDAs), and wearable com- three categories depending on whether they rely on analysis, puters has created a demand for wireless personal area net- simulation, or experimental measurements. works (WPANs). WPANs allow closely located devices to Analytical results based on probability of packet colli- share information and resources.
    [Show full text]
  • Analysis of Wifi and Wimax and Wireless Network Coexistence
    International Journal of Computer Networks & Communications (IJCNC) Vol.6, No.6, November 2014 ANALYSIS OF WIFI AND WIMAX AND WIRELESS NETWORK COEXISTENCE Shuang Song and Biju Issac School of Computing, Teesside University, Middlesbrough, UK ABSTRACT Wireless networks are very popular nowadays. Wireless Local Area Network (WLAN) that uses the IEEE 802.11 standard and WiMAX (Worldwide Interoperability for Microwave Access) that uses the IEEE 802.16 standard are networks that we want to explore. WiMAX has been developed over 10 years, but it is still unknown to most people. However compared to WLAN, it has many advantages in transmission speed and coverage area. This paper will introduce these two technologies and make comparisons between WiMAX and WiFi. In addition, wireless network coexistence of WLAN and WiMAX will be explored through simulation. Lastly we want to discuss the future of WiMAX in relation to WiFi. KEY WORDS WiMAX, WiFi, wireless network, wireless coexistence, network simulation 1. INTRODUCTION With the development of multimedia communication, people need wireless broadband access with higher speed, larger coverage and mobility. The emergence of WiMAX (Worldwide Interoperability for Microwave Access) technology met the people's demand for wireless Internet to some extent. If wireless LAN technology (WLAN) solves the access problem of the "last one hundred meters", then WiMAX technology is the best access solution of the "last mile". Though WiMAX is an emerging and extremely competitive wireless broadband access technology, the development prospects of its market is still unknown. Hybrid networks as a supplement to cell based or IP packet based services, can fully reflect the characteristics of wide network coverage.
    [Show full text]
  • IEEE 802 and IEEE 802.11
    CS5984 Outline Mobile Computing •IEEE 802 Architecture •IEEE 802.11 Wireless LANs Based on Chapter 14 in Wireless Communications and Networks, William Stallings, Prentice Dr. Ayman Abdel-Hamid Hall, 2002 Computer Science Department Virginia Tech IEEE 802 and IEEE 802.11 IEEE 802 and IEEE 802.11 © Dr. Ayman Abdel-Hamid, CS5984 1 IEEE 802 and IEEE 802.11 © Dr. Ayman Abdel-Hamid, CS5984 2 Spring 2006 Spring 2006 IEEE 802 Architecture 1/7 IEEE 802 Architecture 2/7 •Physical layer ¾Encoding/decoding of signals ¾Preamble generation/removal (for synchronization) ¾Bit transmission/reception ¾Specification of transmission medium and topology (considered below lowest layer of OSI model) •Medium Access Control layer (MAC) ¾On transmission, assemble data into a frame with address and error detection fields ¾On reception, disassemble frame, and perform address recognition and error detection ¾Govern access to the LAN transmission medium Chapter 14 in Wireless Communications and Networks, William Stallings, Prentice Hall, 2002 IEEE 802 and IEEE 802.11 © Dr. Ayman Abdel-Hamid, CS5984 3 IEEE 802 and IEEE 802.11 © Dr. Ayman Abdel-Hamid, CS5984 4 Spring 2006 Spring 2006 IEEE 802 Architecture 4/7 IEEE 802 Architecture 3/7 •Logical Link Control (LLC) layer ¾Provide an interface to higher layers and perform flow and error control •Why the separation? ¾Logic required to manage access to a shared-access medium is not found in traditional layer 2 data link control ¾For the same LLC, several MAC options may be provided IEEE 802 and IEEE 802.11 © Dr. Ayman Abdel-Hamid, CS5984 5 IEEE 802 and IEEE 802.11 © Dr.
    [Show full text]
  • 13. Spanning Tree Protocols
    Supplement to Virtual Bridged Local Area Networks: Shortest Path Bridging P802.1aq/D1.5++suggested changes May 12, 2009 1 13. Spanning Tree Protocols 2 3 The spanning tree algorithms and protocols specified by this standard provide simple and full connectivity 4 throughout a Bridged Local Area Network comprising arbitrarily interconnected bridges. Each bridge can 5 use the Rapid Spanning Tree Protocol (RSTP), Multiple Spanning Tree Protocol (MSTP), or SPB (Shortest 6 Path Bridging) protocols. 7 8 NOTE 1—The spanning tree protocols specified by this standard supersede the Spanning Tree Protocol (STP) specified 9 in IEEE Std 802.1D revisions prior to 2004, but facilitate migration by interoperating with the latter without 10 configuration restrictions beyond those previously imposed by STP. However networks that include bridges using STP 11 can reconfigure slowly and constrain active topologies. 12 NOTE 2—Although the active topologies determined by the spanning tree protocols connect all the components of a 13 Bridged Local Area Network, filtering (MVRP, etc.) can restrict frames to a subset of each active topology. 14 15 RSTP assigns all frames to a Common Spanning Tree (CST), without being aware of the active topology 16 assignments made by MSTP or SPB that allow frames to follow separate paths within Multiple Spanning 17 Tree (MST) or Shortest Path Tree (SPT) Regions. Each of these regions comprises MST or SPT Bridges that 18 consistently assign any given frame to the same active topology (see 8.4) and the LANs that interconnect 19 those bridges. These regions and other bridges and LANs are connected into the CST, to provide loop free 20 network wide connectivity even if active topology assignments or spanning tree protocols differ locally.
    [Show full text]
  • Bluetooth and Wi-Fi Wireless Protocols: a Survey and a Comparison Erina Ferro and Francesco Potorti`, Institute of the National Research Council (Isti—Cnr)
    ACCEPTED FROM OPEN CALL BLUETOOTH AND WI-FI WIRELESS PROTOCOLS: A SURVEY AND A COMPARISON ERINA FERRO AND FRANCESCO POTORTI`, INSTITUTE OF THE NATIONAL RESEARCH COUNCIL (ISTI—CNR) ABSTRACT ging. Another advantage lies in the way new wireless users can dynamically join or leave the Bluetooth and IEEE 802.11 (Wi-Fi) are two network, move among different environments, communication protocol standards that define a create ad hoc networks for a limited time, and physical layer and a MAC layer for wireless then leave. Wireless networks are simple to communications within a short range (from a deploy, and in some cases cost less than wired few meters up to 100 m) with low power con- LANs. Nevertheless, the technological chal- sumption (from less than 1 mW up to 100 mW). lenges involved in wireless networks are not triv- Bluetooth is oriented to connecting close devices, ial, leading to disadvantages with respect to serving as a substitute for cables, while Wi-Fi is cabled networks, such as lower reliability due to oriented toward computer-to-computer connec- interference, higher power consumption, data tions, as an extension of or substitution for security threats due to the inherent broadcast cabled LANs. In this article we offer an overview properties of the radio medium, worries about of these popular wireless communication stan- user safety due to continued exposition to radio Bluetooth and IEEE dards, comparing their main features and behav- frequency, and lower data rates. iors in terms of various metrics, including Currently the wireless scene is held by two 802.11 (Wi-Fi) are capacity, network topology, security, quality of standards: the Bluetooth and IEEE 802.11 pro- service support, and power consumption.
    [Show full text]
  • Wireless-G Notebook Adapter Comes In
    All-In-One High-Speed Wireless Internet Sharing Solution! Or, use the Router's built-in Wireless Access Point to connect your PC to the network without stringing any wires. That's where the Wireless-G Notebook Adapter comes in. Just plug it into your notebook through a PC Card slot. Wireless networking doesn't get any easier. Of course, you can connect more computers to the Router and your high-speed Internet link -- just provide a wired or wireless network adapter for each one. And once your computers are connected to the Router, they can communicate with each other too, sharing resources like printers and all kinds of files -- music, digital pictures, and documents. Jump-start your wireless network! This Wireless-G Network Kit for Notebooks provides you with a Wireless-G To protect your data and privacy, all wireless Broadband Router (the heart of your network), and a communications can be protected by industrial- Wireless-G Notebook Adapter to get your PC strength 256-bit WPA encryption, while the Router connected, quick and easy. helps keep Internet intruders out of your computers. It's all easier than you think -- the The Wireless Router lets you securely share your DSL or included Setup Wizards walk you through Cable Modem Internet connection with all the configuring the Router and Adapter, step by step. computers in the house, both wireless and wired. You can connect four computers directly to the Router by With the Wireless-G Network Kit for Notebooks, Ethernet cables, and daisy-chain out to more hubs and you're ready to start sharing printers, files, and your switches to create as big a network as you need.
    [Show full text]
  • Cryptography and Network Security Chapter 17 IEEE 802.11
    Cryptography and Network Chapter 17 – Wireless Network Security Security Investigators have published numerous reports of birds taking turns vocalizing; the bird spoken to gave its full Chapter 17 attention to the speaker and never vocalized at the same time, as if the two were holding a conversation Researchers and scholars who have studied the data on Fifth Edition avian communication carefully write the (a) the communication code of birds such has crows has not by William Stallings been broken by any means; (b) probably all birds have wider vocabularies than anyone realizes; and (c) greater complexity and depth are recognized in avian Lecture slides by Lawrie Brown communication as research progresses. —The Human Nature of Birds, Theodore Barber IEEE 802.11 IEEE 802 Terminology Access point (AP) Any entity that has station functionality and provides • IEEE 802 committee for LAN standards access to the distribution system via the wireless medium for associated stations Basic service set A set of stations controlled by a single coordination • IEEE 802.11 formed in 1990’s (BSS) function Coordination function The logical function that determines when a station – charter to develop a protocol & transmission operating within a BSS is permitted to transmit and specifications for wireless LANs (WLANs) may be able to receive PDUs Distribution system A system used to interconnect a set of BSSs and (DS) integrated LANs to create an ESS • since then demand for WLANs, at different Extended service set A set of one or more interconnected BSSs and
    [Show full text]
  • History and Implementation of IEEE 802 Security Architecture
    History and implementation of IEEE 802 security architecture Submission ID number 15032016-002 Abstract Security is a dynamic trend that demands continuous innovation as advancement in computing serves both those who want security and those others who want to breach. Through the years, security on the IEEE 802 has passed through various generations of evolution. Each security implementation has been a stepping stone to the next better architecture. Dozens of security techniques were invented and while many of them were filtered out to be replaced by better ones, others still persist with little or no modification. This paper discusses the characteristics and pitfalls of previous security mechanisms that led to the continuous evolution of the IEEE 802 security architecture and implementations in brief, but in a phased manner. Emphasis has been given to a select of security architectures that suitably qualify the measurement parameters used in this paper such as access control and confidentiality. Keywords: IEEE 802, IEEE 802 security, IEEE security, network security, security architecture 1. Introduction thorough analysis and revision from experts. We Nowadays security is a must have feature, not can visualize security easily in terms of a luxury, for any networking standard that wants authentication or access control in one facet and to be taken seriously. Security implementation confidentiality along data integrity on the other. on IEEE 802 has started with back in the 1990s The reason these parameters serve as gauges of barely as proof of concept of number theory’s security architecture is because they provide the application in computer security. Soon enough, possible means to control entities, such as it became clear that security was a tough issue clients and resources, in a given network.
    [Show full text]