HARMONICS and ORGAN PIPES of Hard Wood Or Metal of Various Shapes Is Fastened Across the Mouth

Total Page:16

File Type:pdf, Size:1020Kb

HARMONICS and ORGAN PIPES of Hard Wood Or Metal of Various Shapes Is Fastened Across the Mouth HARMONICS AND ORGAN PIPES of hard wood or metal of various shapes is fastened across the mouth. It is called a beard and performs the same function for a wood stop that a harmonic bridge does for metal pipes. The Fren Harmonique ( first used in organs of French design) also performs the same function as the harmonic by Dan Barton, Organ Builder bridge except it is adjustable and can be 1 2 (CONCLUSION) 'Fren Harmonique' Bridge used on both wood and metal pipes Viola d' Amore pipe at tenor C showing an un­ There are two ways of producing har­ which have no ears. It consists of a thin usually elaborate bridge: 1 is front view, 2 is monics in flue pipes, raising the pres­ brass plate with the bridge mounted at an inside view of the same pipe. A and B rep­ resent structure of bridge, C bottom attach­ sure and the use of a harmonic bridge. one end. The plate is screwed to the ment, and D adiustable attachment. By the use of pressure the voicer first front of the pipes. The screws pass The clarinet is rated as having the voices the pipe to produce only the fun­ through slots allowing an up-and-down nearest to a true orchestral tone of any damental tone on a pressure lower than organ stop. The tone consists of the will be used in the organ. An example prime tone and the second, fourth and is a pipe voiced on 5" pressure, giving sixth harmonics. only the fundamental tone, will have a A column of air which is narrow in harmonic development when sounded proportion to its length will produce a on 7" or higher pressure. larger and stronger range of harmonics The harmonic bridge is cylindrical in than a wider column. An example is the shape. The length and diameter vary small scale strings in theatre-type organs. with the pitch of the pipe; other factors There are exceptions to all rules. The concerning the size are the dimension flute tone has no audible harmonics, but of the mouth, the wind pressure and the Wooden form of Violin at tenor C. 1 is detail they can be induced as in the harmonic character of the tone required. The po­ of harmonic bridge (frein harmonic _ue), 2 is front view, and 3 is interior, all of same pine. flute. The barrel is double length from sition of the bridge in relation to the middle C up, with a small hole bored mouth and wind stream is a very exact­ adjustment, and by adjusting the upper halfway down the barrel. The hole kills ing procedure. The voicer must have a screw it has an in -and -out adjustment the node, preventing the pipe from fine sense of tonal quality and a delicate to adjust the proper distance from the speaking the pitch of its total length. A ear. When the proper position is at­ mouth. The fact that the organ tuner harmonic development is made in the tained the bridge is made permanent or finisher, as most prefer to be called, upper half of the barrel. The harmonic by soldering or driving brads or screws needs only a screwdriver to change or flute speaks its prime tone and the first through the ears to hold it in position. sometimes destroy the exacting work of harmonic or octave very distinctly. Large It can be placed so the pipe will sound the voicer makes the Fren Harmonique scale diapasons with narrow and high­ its sub-octave as well as its prime tone a very unpopular part of an organ pipe, cut mouths have no audible harmonics; or it can be placed so the pipe will at least to the voicer. they are used as a foundation stop in sound one or more or a complete struc­ There are two types of reeds, the both classic and theatre-type unit organs. ture of upper partials. The movement closed reed, also called beating or strik­ A small scale diapason with a wider and of the wind stream against the bridge ing reed, is used in pipe organs to cause lower-cut mouth and fitted with a beard intensifies and increases the harmonic harmonics in the resonator. With closed has a harmonic development. This com­ development. The pipe is first voiced to reeds the tongue beats against a metal bines the diapason and string tones; such speak only the prime tone, then the plate alternately opening and covering a stop, used in classic organs, is the Vio­ bridge is added. a hole cut in the plate or shallot. Free lone, or Cello. On wood pipes of string tone a strip reeds are a metal tongue which vibrates It is hoped that this discussion of the inside a rectangular opening without mysteries of harmonics will increase touching its sides, as on a reed organ readers' understanding in areas where or harmonica. It is used in some classic available knowledge is often stated in organ reed pipes. terms so technical that the average organ In flue pipes, voicing the mouths cre­ enthusiast finds the going rough. I have ates the tonal quality. In reed pipes, the tried to "humanize" the subject through shape and size of the resonator deter­ my approach because, after all, organ mines the tone quality. pipes have some very human qualities; they have bodies, faces, teeth, mouths, Orchestral String "Double Brass" in wood form at CCC. 1 is front view, 2 is an interior view, 3 tongues, lips, ears, throats, caps, feet, is detail of harmonic bridge, and 4 is detail boots, toes - and harmonics. of mouth area where sound waves are origi­ (Illustrations are from "Dictionary of Pipe Or­ nated . A is lower lip, B is the bridge, C is gan Stops" by Stevens Irwin (ATOE), published block, D is upper lip. E is used to show ends of by G. Schirmer, Inc.) • bridge for attachment to pipe, and F is har­ monic-creating ridge on bridge . -Dan Barton, Oshkosh 5 december 1967 32 .
Recommended publications
  • Modern Organ Stops
    Modern Organ Stops MODERN ORGAN STOPS A practical Guide to their Nomenclature, Construction, Voicing and Artistic use W ITH A GL OSSARY OF TE CHNICAL TE RMS relating to the Science of Tone-Production from Organ Pipes B Y T H E R E V E R E N D N O E L A . B O N A V IA -H U N T , M.A. PEMBROK E COLLEGE, OX FORD (Author of ≈Studies in Organ Tone,∆ ≈The Church Organ,∆ & c.) ≈Omne tulit punctum qui miscuit utile dulci.∆ƒ HORACE: ≈Ars Poetica.∆ BARDON ENTERPRISES PORTSMOU TH First published by Musical Opinion, 1923. Copyright, © 1923 by Musical Opinion Copyright, this edition © 1998 by Bardon Enterprises This edition published in 1998 by Bardon Enterprises, reproduced by permission All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior permission of the copyright owners. ISBN: 1-902222-04-0 Typeset and printed in England by Bardon Enterprises. Bound in England by Ronarteuro. Portsmouth, Hampshire, England. Preface HE issue of this book is due wholly to the desire to place before the student a guide, sufficiently concise, and withal adequately Tcomprehensive, to the clearer understanding of the science of or- gan tone-production. To the casual observer the alphabetical ar- rangement of stop-names would seem doubtless to convey the impres- sion that yet a third dictionary of organ stops has been offered to the public. A closer scrutiny, however, should convince the reader that these pages do not seek to cover the same ground occupied by the ex- cellent treatises of W edgwood and of Audsley, but will, it is hoped, reveal the true aim and scope of the author.
    [Show full text]
  • Elegies for Cello and Piano by Bridge, Britten and Delius: a Study of Traditions and Influences
    University of Kentucky UKnowledge Theses and Dissertations--Music Music 2012 Elegies for Cello and Piano by Bridge, Britten and Delius: A Study of Traditions and Influences Sara Gardner Birnbaum University of Kentucky, [email protected] Right click to open a feedback form in a new tab to let us know how this document benefits ou.y Recommended Citation Birnbaum, Sara Gardner, "Elegies for Cello and Piano by Bridge, Britten and Delius: A Study of Traditions and Influences" (2012). Theses and Dissertations--Music. 7. https://uknowledge.uky.edu/music_etds/7 This Doctoral Dissertation is brought to you for free and open access by the Music at UKnowledge. It has been accepted for inclusion in Theses and Dissertations--Music by an authorized administrator of UKnowledge. For more information, please contact [email protected]. STUDENT AGREEMENT: I represent that my thesis or dissertation and abstract are my original work. Proper attribution has been given to all outside sources. I understand that I am solely responsible for obtaining any needed copyright permissions. I have obtained and attached hereto needed written permission statements(s) from the owner(s) of each third-party copyrighted matter to be included in my work, allowing electronic distribution (if such use is not permitted by the fair use doctrine). I hereby grant to The University of Kentucky and its agents the non-exclusive license to archive and make accessible my work in whole or in part in all forms of media, now or hereafter known. I agree that the document mentioned above may be made available immediately for worldwide access unless a preapproved embargo applies.
    [Show full text]
  • Electric & Acoustic Guitar Strings: a Recording of Harmonic Content
    Electric & Acoustic Guitar Strings: A Recording of Harmonic Content Ryan Lee, Graduate Researcher Electrical & Computer Engineering Department University of Illinois at Urbana-Champaign In conjunction with Professor Steve Errede and the Department of Physics Friday, January 10, 2003 2 Introduction The purpose of this study was to analyze the harmonic content and decay of different guitar strings. Testing was done in two parts: 80 electric guitar strings and 145 acoustic guitar strings. The goal was to obtain data for as many different brands, types, and gauges of strings as possible. Testing Each string was tested only once, in brand new condition (unless otherwise noted). Once tuned properly, each string was plucked with a bare thumb in two different positions. For the electric guitar, the two positions were at the top of the bridge pickup and at the top of the neck pickup. For the acoustic guitar, the two positions were at the bottom of the sound hole and at the top of the sound hole. The signal path for the recording of an electric guitar string was as follows: 1994 Gibson SG Standard to ¼” input on a Mark of the Unicorn (MOTU) 896 to a computer (via firewire). Steinberg’s Cubase VST 5.0 was the software used to capture the .wav files. The 1999 Taylor 410CE acoustic guitar was recorded in an anechoic chamber. A Bruel & Kjær 4145 condenser microphone was connected directly to a Sony TCD-D8 portable DAT recorder (via its B&K preamp, power supply, and cables). Recording format was mono, 48 kHz, and 16- bit.
    [Show full text]
  • To the New Owner by Emmett Chapman
    To the New Owner by Emmett Chapman contents PLAYING ACTION ADJUSTABLE COMPONENTS FEATURES DESIGN TUNINGS & CONCEPT STRING MAINTENANCE BATTERIES GUARANTEE This new eight-stringed “bass guitar” was co-designed by Ned Steinberger and myself to provide a dual role instrument for those musicians who desire to play all methods on one fretboard - picking, plucking, strumming, and the two-handed tapping Stick method. PLAYING ACTION — As with all Stick models, this instrument is fully adjustable without removal of any components or detuning of strings. String-to-fret action can be set higher at the bridge and nut to provide a heavier touch, allowing bass and guitar players to “dig in” more. Or the action can be set very low for tapping, as on The Stick. The precision fretwork is there (a straight board with an even plane of crowned and leveled fret tips) and will accommodate the same Stick low action and light touch. Best kept secret: With the action set low for two-handed tapping as it comes from my setup table, you get a combined advantage. Not only does the low setup optimize tapping to its SIDE-SADDLE BRIDGE SCREWS maximum ease, it also allows all conventional bass guitar and guitar techniques, as long as your right hand lightens up a bit in its picking/plucking role. In the process, all volumes become equal, regardless of techniques used, and you gain total control of dynamics and expression. This allows seamless transition from tapping to traditional playing methods on this dual role instrument. Some players will want to compromise on low action of the lower bass strings and set the individual bridge heights a bit higher, thereby duplicating the feel of their bass or guitar.
    [Show full text]
  • Protégé™ Chamber Series™ CF-2A, C3a & C-6
    Protégé™ Chamber Series™ CF-2a, C3a & C-6 CF-2a, C-3a and C-6 Copyright © 2003 Allen Organ Company All Rights Reserved AOC P/N 033-00105 Revised 6/2/05 ALLEN ORGAN COMPANY For more than sixty years--practically the entire history of electronic organs-- Allen Organ Company has built the finest organs that technology would allow. In 1939, Allen built and marketed the world’s first electronic oscillator organ. The tone generators for this instrument used two hundred forty-four vacuum tubes, contained about five thousand components, and weighed nearly three hundred pounds. Even with all this equipment, the specification included relatively few stops. By 1959, Allen had replaced vacuum tubes in oscillator organs with transistors. Thousands of transistorized instruments were built, including some of the largest, most sophisticated oscillator organs ever designed. Only a radical technological breakthrough could improve upon the performance of Allen’s oscillator organs. Such a breakthrough came in conjunction with the United States Space Program in the form of highly advanced digital microcircuits. In 1971, Allen produced and sold the world’s first musical instrument utilizing digitally sampled voices! Your organ is significantly advanced since the first generation Allen digital instrument. Organs with Renaissance™ technology are the product of years of advancements in digital sound and control techniques by Allen Organ Company. This system represents the apex of digital technology applied to exacting musical tasks. The result is a musical instrument of remarkably advanced tone quality and performance. Congratulations on the purchase of your new Allen Organ! You have acquired the most advanced electronic organ ever built, one that harnesses a sophisticated custom computer system to create and control beautiful organ sound.
    [Show full text]
  • Wudtone CP Holy Grail, CP Vintage 50S Upgrade Fitting Instructions
    Wudtone CP Holy Grail, CP Vintage 50s upgrade fitting instructions: Thank you for choosing a Wudtone tremolo 1 Remove the existing trem. Remove the plate which covers the trem cavity on the back of the guitar and then take off the strings. Then remove each spring by first un-hooking off the trem claw and then pulling out of the block. This may need a pair of pliers to hold the spring, twist from side to side and pull up to help release the spring from the block as they are sometimes quite a tight fit. Once the strings and springs are removed, remove each of the six mounting screws, so the trem unit can be lifted off. 2 With the old trem unit removed take the .5mm shim supplied with the Wudtone trem and place it over the six holes. Then place the Wudtone Tremolo unit in position on top of the shim. With or without saddles fitted it doesn't matter. 3 Setting the Wudtone bearing screw height correctly The Wudtone trem is designed to operate with a constant pivot point ( point A on the diagram below) and give you as guitarist some 20 degrees of tilt. This is plenty of tilt for quite extreme dive bomb trem action as well as up pitch and down pitch whilst delivering total tuning stability. Whilst the plate is tilting it is maintaining contact with the body through the shim via arc B and this will de-compress and transform the dynamics of your guitar. Before any springs or strings are fitted , it is important to set correctly the height of each bearing screw.
    [Show full text]
  • Theatre Owner's Manual
    TH-202/TH-302 Theatre Models IMPORTANT! Organs which contain GeniSys™ technology no longer include the GeniSys™ Controller Guide within the model specific Owner’s Manual. The correct GeniSys™ Controller Guide must be downloaded and/or printed separately. Please check the CODE version of the software installed within the organ to determine which version of the GeniSys™ Controller Guide is required. The CODE version is briefly displayed within the GeniSys™ Controller’s LCD display when the organ starts up. Copyright © 2016 Allen Organ Company All Rights Reserved AOC P/N 033-00221-1 Revised 10/2016 ALLEN ORGAN COMPANY For more than sixty years--practically the entire history of electronic organs-- Allen Organ Company has built the finest organs that technology would allow. In 1939, Allen built and marketed the world’s first electronic oscillator organ. The tone generators for this instrument used two hundred forty-four vacuum tubes, contained about five thousand components, and weighed nearly three hundred pounds. Even with all this equipment, the specification included relatively few stops. By 1959, Allen had replaced vacuum tubes in oscillator organs with transistors. Thousands of transistorized instruments were built, including some of the largest, most sophisticated oscillator organs ever designed. Only a radical technological breakthrough could improve upon the performance of Allen’s oscillator organs. Such a breakthrough came in conjunction with the United States Space Program in the form of highly advanced digital microcircuits. In 1971, Allen produced and sold the world’s first musical instrument utilizing digitally sampled voices! Your organ is significantly advanced since the first generation Allen digital instrument.
    [Show full text]
  • Guitar Anatomy Glossary
    GUITAR ANATOMY GLOSSARY abalone: an iridescent lining found in the inner shell of the abalone mollusk that is often used alongside mother of pearl; commonly used as an inlay material. action: the distance between the strings and the fretboard; the open space between strings and frets. back: the part of the guitar body held against the player’s chest; it is reflective and resonant, and usually made of a hardwood. backstrip: a decorative inlay that runs the length of the center back of a stringed instrument. binding: the inlaid corner trim at the very edges of an instrument’s body or neck, used to provide aesthetic appeal, seal open wood and to protect the edge of the face and back, as well as the glue joint. bout: the upper or lower outside curve of a guitar or other instrument body. body: an acoustic guitar body; the sound-producing chamber to which the neck and bridge are attached. body depth: the measurement of the guitar body at the headblock and tailblock after the top and back have been assembled to the rim. bracing: the bracing on the inside of the instrument that supports the top and back to prevent warping and breaking, and creates and controls the voice of the guitar. The back of the instrument is braced to help distribute the force exerted by the neck on the body, to reflect sound from the top and act sympathetically to the vibrations of the top. bracing, profile: the contour of the brace, which is designed to control strength and tone. bracing, scalloped: used to describe the crests and troughs of the braces where mass has been removed to accentuate certain nodes.
    [Show full text]
  • A Guide to Extended Techniques for the Violoncello - By
    Where will it END? -Or- A guide to extended techniques for the Violoncello - By Dylan Messina 1 Table of Contents Part I. Techniques 1. Harmonics……………………………………………………….....6 “Artificial” or “false” harmonics Harmonic trills 2. Bowing Techniques………………………………………………..16 Ricochet Bowing beyond the bridge Bowing the tailpiece Two-handed bowing Bowing on string wrapping “Ugubu” or “point-tap” effect Bowing underneath the bridge Scratch tone Two-bow technique 3. Col Legno............................................................................................................21 Col legno battuto Col legno tratto 4. Pizzicato...............................................................................................................22 “Bartok” Dead Thumb-Stopped Tremolo Fingernail Quasi chitarra Beyond bridge 5. Percussion………………………………………………………….25 Fingerschlag Body percussion 6. Scordatura…………………………………………………….….28 2 Part II. Documentation Bibliography………………………………………………………..29 3 Introduction My intent in creating this project was to provide composers of today with a new resource; a technical yet pragmatic guide to writing with extended techniques on the cello. The cello has a wondrously broad spectrum of sonic possibility, yet must be approached in a different way than other string instruments, owing to its construction, playing orientation, and physical mass. Throughout the history of the cello, many resources regarding the core technique of the cello have been published; this book makes no attempt to expand on those sources. Divers resources are also available regarding the cello’s role in orchestration; these books, however, revolve mostly around the use of the instrument as part of a sonically traditional sensibility. The techniques discussed in this book, rather, are the so-called “extended” techniques; those that are comparatively rare in music of the common practice, and usually not involved within the elemental skills of cello playing, save as fringe oddities or practice techniques.
    [Show full text]
  • Physical Parameters of the Violin Bridge Changed by Active Control Henri Boutin, Charles Besnainou
    Physical parameters of the violin bridge changed by active control Henri Boutin, Charles Besnainou To cite this version: Henri Boutin, Charles Besnainou. Physical parameters of the violin bridge changed by active control. Acoustics’08, Jun 2008, Paris, France. hal-02470042 HAL Id: hal-02470042 https://hal.archives-ouvertes.fr/hal-02470042 Submitted on 7 Feb 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Physical parameters of the violin bridge changed by active control H. Boutina and C. Besnainoub aInstitut Jean le Rond d’Alembert, Lab. d’Acoustique Musicale, 11, rue de Lourmel, 75015 Paris, France bInstitut Jean le Rond d’Alembert, Laboratoire d’Acoustique Musicale, 11, rue de Lourmel, 75015 Paris, France [email protected] On the input admittance of many violins a typical broad frequency peak, called "bridge hill" appears around 2.5 kHz. The physical parameters of a violin bridge have a significant influence on this feature, and then on the tonal colouration of the produced sound. The effect of the bridge characteristics (mass, stiffness and foot spacing) on the frequency response have been revealed by using bridge models through several studies.
    [Show full text]
  • Tom Cundall, Confessed Guitar Geek, Tests the Wudtone CP Tremolos
    Tom Cundall, confessed guitar geek, tests the Wudtone CP Tremolos I have been playing guitar 28 years, my main passion is blues rock, but enjoy playing anything from funk to seriously heavy rock with a bit of prog or phsycadelia on the way! I am a self confessed guitar and amp modding geek! If it can be changed or improved I will give it a go. I started to become much more serious about chasing tone after I got my first set of aftermarket guitar pickups about 10 years ago. Strats have always been my guitar of choice and I have tried out many of the boutique pickup companies out there over the years, all sorts of electronics and hardware, I have even tried different woods, but my continued failure to find a tremolo bridge that gave me great tone and the versatility and playability of the modern two pivot bridges led me to Wudtone's door. On finding out they had two versions of their Constant Pivot design I was keen to try both to see what they could deliver. The Wudtone CP Holy Grail Tremolo Bridge The Wudtone CP ( Constant pivot) Holy Grail tremolo bridge offers a ground breaking package of improvements for Strat type guitars with either vintage or modern two pivot bridges. It blends a fatter and full vintage tone with zero tuning problems whilst retaining the performance and flexibility of the modern two pivot type trems. Tonally the Wudtone CP Holy Grail adds more bass and mid due to the type of hardened steel used and increased mass, making for a tighter and more muscular Strat tone, it provides the most sustain I have ever experienced on my guitars.
    [Show full text]
  • Violin Pizzicato Exercises 1
    VIOLIN PIZZICATO EXERCISES 1 OPEN A Exercise Locate the OPEN A STRING. Set the Metronome to 72 BPM. Keep a steady tempo. Here we go! [1-2-3-4 Begin] OPEN D Exercise Remember to emphasize Down-Beats. Keep a steady tempo. Follow the conductor! OPEN G Exercise © Copyright 2013 Reg. #18-36Q-18Q “The Quest for String Playing Mastery” VIOLIN PIZZICATO EXERCISES 2 OPEN E Exercise STRING CROSSING EXERCISES I am floating against the edge of the fingerboard in order to encourage everyone to remain loose. Feel as though you are floating into playing-position to perform pizzicato motions. While in playing-position, strive to achieve a controlled-looseness in your playing motions. The distance from one string to the next is quite small. The range of motion needed to perform string-crossings efficiently is equal to the curve of the top arch of the bridge. OPEN D and OPEN A OPEN G and OPEN D © Copyright 2013 Reg. #18-36Q-18Q “The Quest for String Playing Mastery” VIOLIN PIZZICATO EXERCISES 3 ALL OPEN STRINGS DYNAMIC CHANGE EXERCISES Hi! I am going to appear above your music in order to bring your attention to dynamic changes. When the music is louder, I will appear bigger and when the music is softer, I will appear smaller. Soft Dynamics = Play Over the Fingerboard Loud Dynamics = Play Closer to the Bridge Always be kind to your instrument and pizzicato away from the bridge. PIZZICATO DYNAMIC CHANGE EXERCISE © Copyright 2013 Reg. #18-36Q-18Q “The Quest for String Playing Mastery” VIOLIN PIZZICATO EXERCISES 4 CRESCENDO EXERCISE DECRESCENDO EXERCISE Come and Play Your Part! www.stringquest.com © Copyright 2013 Reg.
    [Show full text]