Neurotransmitters: Central and Peripheral Mechanisms

Total Page:16

File Type:pdf, Size:1020Kb

Neurotransmitters: Central and Peripheral Mechanisms International Journal of Impotence Research (2000) 12, Suppl 4, S26±S33 ß 2000 Macmillan Publishers Ltd All rights reserved 0955-9930/00 $15.00 www.nature.com/ijir Neurotransmitters: central and peripheral mechanisms K-E Andersson1* 1Department of Clinical Pharmacology, University of Lund, Lund, Sweden Re¯exive erection initiated by recruitment of penile afferents, involves both autonomic and somatic efferents. The re¯ex is mediated at the spinal cord level, modulated by supraspinal in¯uences, and may use several transmitters. Dopamine, acetylcholine, nitric oxide, and peptides, such as oxytocin and ACTH=a-MSH, seem to have a facilitatory role, whereas serotonin may be either facilitatory or inhibitory, and enkephalins are inhibitory. Peripherally, the balance between contractant and relaxant factors controls the degree of contraction of the smooth muscle of the corpora cavernosa, and determines the functional state of the penis. Noradrenaline contracts both corpus cavernosum and penile vessels via stimulation of a1-adrenoceptors. The role of endothelins in the control of penile smooth muscle tone is presently unclear. Neurogenic nitric oxide (NO) is considered the most important factor for relaxation of penile vessels and corpus cavernosum. The role of other mediators, released from nerves or endothelium has not been de®nitely established. International Journal of Impotence Research (2000) 12, Suppl 4, S26±S33. Keywords: CNS pharmacology; erectile dysfunction; autonomic and somatic mechanisms Introduction Central neuromediation The central regulation of erection with processing The central mechanisms in¯uencing the erectile and integration of tactile, olfactory, auditory and response include spinal and supraspinal pathways. mental stimuli, involves many transmitters and Several regions within the central nervous system transmitter systems. This is also the case periph- may be involved.2 Much of the knowledge gained in erally, and the different steps involved in neuro- this area relates to morphological and pharmacolo- transmission, impulse propagation and intracellular gical studies in experimental animal models (eg transduction of neural signals in penile smooth rodents, primates) in which neurochemical pertur- muscles are only partly known. Re¯exive erection bations can be achieved and responses monitored in initiated by recruitment of penile afferents involves a reasonably meaningful way. For example, studies both autonomic and somatic efferents. The re¯ex is in rats have revealed that electrical stimulation of mediated at the spinal cord level and modulated the medial preoptic area,8 the paraventricular by supraspinal in¯uences, and involves several nucleus,9 or the hippocampal formation10 elicits transmitters.1±6 an erectile response. Peripherally, the balance between contractant and relaxant factors controls the degree of contrac- tion of the smooth muscle of the corpora cavernosa, and determines the functional state of the penis: Hydroxytryptamine detumescence and ¯accidity, and tumescence and erection, respectively.6,7 Below a short review is given of some of the 5-hydroxytryptamine (5-HT; serotonin) is present in transmitters=modulators believed to be involved in supraspinal as well as spinal and peripheral sites the control of erectile mechanisms centrally and believed to be involved in sexual behavior. Neurons peripherally. containing 5-HT can be found in the medullary raphe nuclei and ventral medulla reticular forma- tion, including the rostral nucleus paragigantocellu- laris. Bulbospinal neurons containing 5-HT project to the lumbar spinal cord in the rat and cat.2 Fibres immunoreactive for serotonin were largely and *Correspondence: K-E Andersson, Department of Clinical Pharmacology, Lund University Hospital, S-221 85 Lund, densely distributed in the dorsal horn, the dorsal Sweden. gray commissure, the sacral parasympathetic nu- E-mail: [email protected] cleus and the ventral horn. Some serotonergic ®bres Neurotransmitters in ED K-E Andersson S27 occurred in close apposition with retrogradely- lar nucleus, similar experiments have established labelled sacral preganglionic neurons and motor that D2 rather than D1 receptors primarily facilitate neurons and synapses were demonstrated at the erections.17 The mechanism of erection following ultrastructural level.11 paraventricular D2 receptor stimulation apparently 5-HT has been most strongly implicated in the involves oxytocinergic neurotransmission. In addi- spinal pharmacology of erectile function with tion, NO seems to be involved, since apomorphine participation in both sympathetic and parasympa- (given s.c.) increased NOS activity and NO produc- thetic out¯ow mechanisms. Experimental para- tion in the paraventricular nucleus.20 Both the digms in animals have indicated that 5-HT increase in NO and the erectile response to pathways exert a general inhibitory effect on male apomorphine were reduced by NOS inhibition. sexual behavior,12 although these pathways may be inhibitory or facilitatory depending upon the action of the amine at different 5-HT receptors located in the central nervous system.1,13 Noradrenaline Despite this general understanding, con¯icting reports of 5-HT agonists either enhancing or depres- Evidence for noradrenergic effects in the central sing sexual function were recognized and then neuromediation of penile erection is sparse. attributed to the action of multiple 5-HT receptors. However, the current data suggest that increased In accordance with the selective use of 5-HT nor-adrenergic activity stimulates, whereas de- receptor agonists and antagonists, components of creased noradrenergic activity inhibits, sexual male copulatory behavior were found to be dis- function.12,21,22 played variably. The sum of multiple studies suggests that 5-HT2 and 5-HT1A receptors mediate inhibitory effects on penile erection, whereas 5- HT1C receptors mediate facilitatory effects on this Gamma-amino butyric acid 14 function. Stimulation of 5-HT1C receptors in- creased circulating oxytocin,15 and nitric oxide synthase (NOS) inhibitors given by intracerebrovas- Cumulative data resulting from investigations on the role of gamma-aminobutyric acid (GABA) in penile cular administration prevented 5-HT1C-receptor mediated erectile responses,16 suggesting that both erection indicate that this neurotransmitter may function as an inhibitory modulator in the auto- oxytocin and NO were involved in the 5-HT1C- receptor mediated responses. nomic and somatic re¯ex pathways involved in Thus, 5-HT appears to serve various functions in penile erection.1 Recent investigations showed that male sexual function and likely acts as a major activation of GABA(A) receptors in the paraven- modulator of the central neuroregulatory control of tricular nucleus of the hypothalamus reduced penile erection. apomorphine-, N-methyl-D-aspartic acid (NMDA-), and oxytocin-induced penile erection and yawning in male rats.23 Dopamine Oxytocin Dopaminergic neurons have been identi®ed as traveling from the caudal hypothalamus to innervate the lumbosacral spinal cord and dopamine may Hypothalamic supraoptic and paraventricular participate in the CNS regulation of the autonomic nuclei project to spinal centers in¯uencing erectile and somatic components that produce penile function.2 The oxytocinergic spinal projections are re¯exes. Supraspinal dopaminergic neurons also more likely to in¯uence sacral autonomic rather comprise the incertohypothalamic system with than somatic out¯ow.24 Plasma oxytocin concentra- projections to the medial preoptic area and para- tions are known to be elevated in humans following ventricular nucleus. Injection of apomorphine into sexual stimulation. these central nuclei has facilitatory effects on sexual When injected into the lateral cerebral ventricle, behavior,2,17 and produces the `penile erection- the paraventricular nucleus, or hippocampus of stretching-yawning' response. laboratory animals, oxytocin is a potent inducer of Two main types of dopamine receptors, D1 and penile erection. Oxytocin receptors are believed to D2, are associated with erectile function centrally, mediate the erections, since the erectile response is with the latter perceived to predominate in this blocked by the administration of oxytocin antago- effect. In the medial preoptic area, use of selective nists and by electrolytic lesion of the paraventricu- receptor agonists has established that low levels of lar nucleus. Immunoreactive oxytocin-containing dopaminergic stimulation, via D1 receptor in parti- spinal neurons associating with sacral preganglionic cular, facilitates erections.18,19 In the paraventricu- neurons con®rmed by retrograde labelling supports International Journal of Impotence Research Neurotransmitters in ED K-E Andersson S28 the role of oxytocin in the autonomic spinal that occurs in the paraventricular nucleus during circuitry that mediates penile erection.11,25 sexual activity.31 Morphine also prevents apomor- Central oxytocin seems to be involved in the phine-, oxytocin- and NMDA-induced penile expression of penile erection induced not only by erection and yawning by inhibiting NO synthase drugs but also by sexual physiological stimuli, since activity in the paraventricular nucleus through the non-contact erections in rats were reduced dose- stimulation of opioid receptors of the m subtype.32,33 dependently by a selective oxytocin receptor antagonist, given into the lateral ventricles.26 The oxytocinergic system may be in¯uenced by Nitric oxide the
Recommended publications
  • Molecular Biology of Neuronal Voltage-Gated Calcium Channels
    EXPERIMENTAL and MOLECULAR MEDICINE, Vol. 30, No 3, 123-130, September 1998 Molecular biology of neuronal voltage-gated calcium channels Hemin Chin and is capable of directing expression of calcium channel activity in heterologous expression systems. In the central Genetics Research Branch, Division of Basic and Clinical Neuroscience Research, nervous system (CNS), VGCCs are expressed by five National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, distinct a1 subunit genes (α1A, α1B, α1C, α1D and α1E), U.S.A. which exhibit further variations due to alternative splicing of the primary RNA transcripts. The α1C and, α1D su b u n i t Accepted 3 August 1998 genes encode dihydropyridine (DHP)-sensitive L-type channels, while the three other α1 subunit genes (α1A, α1B and α1E) give rise to DHP-insensitive P/Q-, N- and R-type channels, respectively. The α2 and δ s u b u n i t proteins are produced by proteolytic cleavage of a larger precursor produced by the single α2-δ gene (Table 1). Introduction Three alternatively spliced variants of the α2 subunit are expressed in a tissue-specific manner. Two variants Calcium ions are important intracellular messengers have been isolated from the brain and skeletal muscle mediating a number of neuronal functions including neuro- (Kim et al., 1992; Williams et al., 1992), and a distinct transmitter release, neurosecretion, neuronal excitation, third splice variant which is expressed in glial cells has survival of eurons, and regulation of gene expression. been recently identified (Puro et al., 1996). In addition to The entry of calcium across the plasmamembrane in the gene encoding the skeletal muscle β subunit, three response to membrane depolarization or activation of 1 other β subunit genes (β2, β3 and β4) have been isolated neurotransmitter receptors represents a major pathway thus far.
    [Show full text]
  • Chemical Neurotransmission
    Cambridge University Press 978-1-107-02598-1 — Stahl's Essential Psychopharmacology 4th Edition Excerpt More Information Chapter1 Chemical neurotransmission Anatomical versus chemical basis of Beyond the second messenger to a neurotransmission 1 phosphoprotein cascade triggering gene 16 Principles of chemical neurotransmission 5 expression Neurotransmitters 5 How neurotransmission triggers gene 18 Neurotransmission: classic, retrograde, expression 18 and volume 6 Molecular mechanism of gene expression Excitation–secretion coupling 8 Epigenetics 24 Signal transduction cascades 9 What are the molecular mechanisms 24 Overview 9 of epigenetics? Forming a second messenger 11 How epigenetics maintains or changes the status quo 26 Beyond the second messenger to phosphoprotein messengers 13 Summary 26 Modern psychopharmacology is largely the story of neurons, not unlike millions of telephone wires chemical neurotransmission. To understand the actions within thousands upon thousands of cables. The ana- of drugs on the brain, to grasp the impact of diseases tomically addressed brain is thus a complex wiring upon the central nervous system, and to interpret the diagram, ferrying electrical impulses to wherever behavioral consequences of psychiatric medicines, the “wire” is plugged in (i.e., at a synapse). Synapses one must be fluent in the language and principles of canformonmanypartsofaneuron,notjustthe chemical neurotransmission. The importance of this dendrites as axodendritic synapses, but also on the fact cannot be overstated for the student of psychophar- soma as axosomatic synapses, and even at the begin- macology. This chapter forms the foundation for the ning and at the end of axons (axoaxonic synapses) entire book, and the roadmap for one’s journey through (Figure 1-2).
    [Show full text]
  • Part III: Modeling Neurotransmission – a Cholinergic Synapse
    Part III: Modeling Neurotransmission – A Cholinergic Synapse Operation of the nervous system is dependent on the flow of information through chains of neurons functionally connected by synapses. The neuron conducting impulses toward the synapse is the presynaptic neuron, and the neuron transmitting the signal away from the synapse is the postsynaptic neuron. Chemical synapses are specialized for release and reception of chemical neurotransmitters. For the most part, neurotransmitter receptors in the membrane of the postsynaptic cell are either 1.) channel-linked receptors, which mediate fast synaptic transmission, or 2.) G protein-linked receptors, which oversee slow synaptic responses. Channel-linked receptors are ligand-gated ion channels that interact directly with a neurotransmitter and are called ionotropic receptors. Alternatively, metabotropic receptors do not have a channel that opens or closes but rather, are linked to a G-protein. Once the neurotransmitter binds to the metabotropic receptor, the receptor activates the G-protein which, in turn, goes on to activate another molecule. 3a. Model the ionotropic cholinergic synapse shown below. Be sure to label all of the following: voltage-gated sodium channel, voltage-gated potassium channel, neurotransmitter, synaptic vesicle, presynaptic cell, postsynaptic cell, potassium leak channel, sodium-potassium pump, synaptic cleft, acetylcholine receptor, acetylcholinesterase, calcium channel. When a nerve impulse (action potential) reaches the axon terminal, it sets into motion a chain of events that triggers the release of neurotransmitter. You will next model the events of neurotransmission at a cholinergic synapse. Cholinergic synapses utilize acetylcholine as the chemical of neurotransmission. MSOE Center for BioMolecular Modeling Synapse Kit: Section 3-6 | 1 Step 1 - Action potential arrives at the Step 2 - Calcium channels open in the terminal end of the presynaptic cell.
    [Show full text]
  • Regulation of Neuronal Communication by G Protein-Coupled Receptors ⇑ Yunhong Huang, Amantha Thathiah
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector FEBS Letters 589 (2015) 1607–1619 journal homepage: www.FEBSLetters.org Review Regulation of neuronal communication by G protein-coupled receptors ⇑ Yunhong Huang, Amantha Thathiah VIB Center for the Biology of Disease, Leuven, Belgium Center for Human Genetics (CME) and Leuven Institute for Neurodegenerative Diseases (LIND), University of Leuven (KUL), Leuven, Belgium article info abstract Article history: Neuronal communication plays an essential role in the propagation of information in the brain and Received 31 March 2015 requires a precisely orchestrated connectivity between neurons. Synaptic transmission is the mech- Revised 5 May 2015 anism through which neurons communicate with each other. It is a strictly regulated process which Accepted 5 May 2015 involves membrane depolarization, the cellular exocytosis machinery, neurotransmitter release Available online 14 May 2015 from synaptic vesicles into the synaptic cleft, and the interaction between ion channels, G Edited by Wilhelm Just protein-coupled receptors (GPCRs), and downstream effector molecules. The focus of this review is to explore the role of GPCRs and G protein-signaling in neurotransmission, to highlight the func- tion of GPCRs, which are localized in both presynaptic and postsynaptic membrane terminals, in reg- Keywords: G protein-coupled receptors ulation of intrasynaptic and intersynaptic communication, and to discuss the involvement of G-proteins astrocytic GPCRs in the regulation of neuronal communication. Neuronal communication Ó 2015 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved. Synaptic transmission Signaling Astrocytes Neurons Autoreceptors Neurotransmitters 1.
    [Show full text]
  • RIM-BP2 Primes Synaptic Vesicles Via Recruitment of Munc13-1 At
    RESEARCH ARTICLE RIM-BP2 primes synaptic vesicles via recruitment of Munc13-1 at hippocampal mossy fiber synapses Marisa M Brockmann1†, Marta Maglione2,3,4†, Claudia G Willmes5†, Alexander Stumpf6, Boris A Bouazza1, Laura M Velasquez6, M Katharina Grauel1, Prateep Beed6, Martin Lehmann3, Niclas Gimber6, Jan Schmoranzer4, Stephan J Sigrist2,4,5*, Christian Rosenmund1,4*, Dietmar Schmitz4,5,6* 1Institut fu¨ r Neurophysiologie, Charite´ – Universita¨ tsmedizin Berlin, corporate member of Freie Universita¨ t Berlin, Humboldt-Universita¨ t zu Berlin, and Berlin Institute of Health, Berlin, Germany; 2Freie Universita¨ t Berlin, Institut fu¨ r Biologie, Berlin, Germany; 3Leibniz-Forschungsinstitut fu¨ r Molekulare Pharmakologie (FMP), Berlin, Germany; 4NeuroCure Cluster of Excellence, Berlin, Germany; 5DZNE, German Center for Neurodegenerative Diseases, Berlin, Germany; 6Neuroscience Research Center, Charite´ – Universita¨ tsmedizin Berlin, corporate member of Freie Universita¨ t Berlin, Humboldt-Universita¨ t zu Berlin, and Berlin Institute of Health, Berlin, Germany Abstract All synapses require fusion-competent vesicles and coordinated Ca2+-secretion coupling for neurotransmission, yet functional and anatomical properties are diverse across *For correspondence: different synapse types. We show that the presynaptic protein RIM-BP2 has diversified functions in [email protected] (SJS); neurotransmitter release at different central murine synapses and thus contributes to synaptic [email protected] diversity. At hippocampal pyramidal CA3-CA1 synapses, RIM-BP2 loss has a mild effect on (CR); neurotransmitter release, by only regulating Ca2+-secretion coupling. However, at hippocampal [email protected] (DS) mossy fiber synapses, RIM-BP2 has a substantial impact on neurotransmitter release by promoting †These authors contributed vesicle docking/priming and vesicular release probability via stabilization of Munc13-1 at the active equally to this work zone.
    [Show full text]
  • G-Protein-Coupled Receptors in CNS: a Potential Therapeutic Target for Intervention in Neurodegenerative Disorders and Associated Cognitive Deficits
    cells Review G-Protein-Coupled Receptors in CNS: A Potential Therapeutic Target for Intervention in Neurodegenerative Disorders and Associated Cognitive Deficits Shofiul Azam 1 , Md. Ezazul Haque 1, Md. Jakaria 1,2 , Song-Hee Jo 1, In-Su Kim 3,* and Dong-Kug Choi 1,3,* 1 Department of Applied Life Science & Integrated Bioscience, Graduate School, Konkuk University, Chungju 27478, Korea; shofi[email protected] (S.A.); [email protected] (M.E.H.); md.jakaria@florey.edu.au (M.J.); [email protected] (S.-H.J.) 2 The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC 3010, Australia 3 Department of Integrated Bioscience & Biotechnology, College of Biomedical and Health Science, and Research Institute of Inflammatory Disease (RID), Konkuk University, Chungju 27478, Korea * Correspondence: [email protected] (I.-S.K.); [email protected] (D.-K.C.); Tel.: +82-010-3876-4773 (I.-S.K.); +82-43-840-3610 (D.-K.C.); Fax: +82-43-840-3872 (D.-K.C.) Received: 16 January 2020; Accepted: 18 February 2020; Published: 23 February 2020 Abstract: Neurodegenerative diseases are a large group of neurological disorders with diverse etiological and pathological phenomena. However, current therapeutics rely mostly on symptomatic relief while failing to target the underlying disease pathobiology. G-protein-coupled receptors (GPCRs) are one of the most frequently targeted receptors for developing novel therapeutics for central nervous system (CNS) disorders. Many currently available antipsychotic therapeutics also act as either antagonists or agonists of different GPCRs. Therefore, GPCR-based drug development is spreading widely to regulate neurodegeneration and associated cognitive deficits through the modulation of canonical and noncanonical signals.
    [Show full text]
  • The Mechanisms and Functions of Spontaneous Neurotransmitter Release
    REVIEWS The mechanisms and functions of spontaneous neurotransmitter release Ege T. Kavalali Abstract | Fast synaptic communication in the brain requires synchronous vesicle fusion that is evoked by action potential-induced Ca2+ influx. However, synaptic terminals also release neurotransmitters by spontaneous vesicle fusion, which is independent of presynaptic action potentials. A functional role for spontaneous neurotransmitter release events in the regulation of synaptic plasticity and homeostasis, as well as the regulation of certain behaviours, has been reported. In addition, there is evidence that the presynaptic mechanisms underlying spontaneous release of neurotransmitters and their postsynaptic targets are segregated from those of evoked neurotransmission. These findings challenge current assumptions about neuronal signalling and neurotransmission, as they indicate that spontaneous neurotransmission has an autonomous role in interneuronal communication that is distinct from that of evoked release. 10–13 Docked vesicles Our current insights into the mechanisms under­lying relatively intact . Thus, although these experiments Synaptic vesicles that are synaptic transmission originate from experiments that proved the vesicular hypothesis of neurotransmitter tethered to the presynaptic were conducted in the 1950s by Bernard Katz and col- release, they raised the question of whether spontane- membrane or the active zone leagues1–3 (FIG. 1). A key aspect of these studies was the ous release events originate from the same vesicular traf- structure. According to current discovery of spontaneous neurotransmitter release ficking pathway as evoked neurotransmission14. Recent views, not all docked vesicles are fully primed for fusion and events, which seemed to occur in discrete ‘quantal’ advances in our understanding support the autonomous release of neurotransmitter. packets (FIG.
    [Show full text]
  • Long-Term Dopamine Neurochemical Monitoring in Primates
    Long-term dopamine neurochemical monitoring in primates Helen N. Schwerdta,b,c, Hideki Shimazua,b, Ken-ichi Amemoria,b, Satoko Amemoria,b, Patrick L. Tierneya,b, Daniel J. Gibsona,b, Simon Honga,b, Tomoko Yoshidaa,b, Robert Langerc,d, Michael J. Cimac,e, and Ann M. Graybiela,b,1 aMcGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139; bDepartment of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139; cKoch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139; dDepartment of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139; and eDepartment of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 Contributed by Ann M. Graybiel, November 1, 2017 (sent for review August 4, 2017; reviewed by Richard Courtemanche, Paul W. Glimcher, and Christopher I. Moore) Many debilitating neuropsychiatric and neurodegenerative disor- acute dopamine measurements (5–8), with stable measurements ders are characterized by dopamine neurotransmitter dysregula- only for a few hours. The lack of chronic chemical sensors exists tion. Monitoring subsecond dopamine release accurately and for despite great progress in the chronic electrophysiological re- extended, clinically relevant timescales is a critical unmet need. cording of spike and local field potential activity in behaving Especially valuable has been the development of electrochemical nonhuman primates. Chronic measurements of dopamine will fast-scan cyclic voltammetry implementing microsized carbon fiber aid in the identification of dopamine’s contribution to complex probe implants to record fast millisecond changes in dopamine behaviors degraded in human disorders, and to aid in testing the concentrations. Nevertheless, these well-established methods have clinical feasibility of treatments.
    [Show full text]
  • The Mitochondrion
    The mitochondrion: the powerhouse behind Professor Elizabeth Jonas neurotransmission ‘We think we have found a key molecule that forms a major cell death-inducing mitochondrial ion channel’ THE MITOCHONDRION: THE POWERHOUSE BEHIND NEUROTRANSMISSION Professor Elizabeth Jonas and her colleagues at Yale University study the function of cell components called Ca2+ Ca2+ Ca2+ mitochondria and their role in neurotransmission. In particular, Professor Jonas is interested in characterising how 3. Calcium is released from mitochondria. 2. Repeated action potentials (tetanus) invade When another action potential invades 1. An1. action An action potential potential invades inv adesthe terminal. the 2. Repeated action potentials 3. Calcium is released from channels in the mitochondrial membrane affect neuronal function during processes like memory formation and terminal. the terminal, the increased calcium levels Someterminal. vesicles fuse, releasing (tetanus) invade terminal. mitochondria. learning, and how they enhance or reduce neuronal viability during disease. Many vesicles fuse. from mitochondrial release plus plasma neurotransmitter.Some vesicles fuse, releasing Many vesicles fuse. When another action potential neurotransmitter. CalciumCalcium is ta isk takenen up up into into mitochondria. invadesmembrane the terminal, Ca2+ influx increase vesicle mitochondria. the fusion,increased potentiating calcium levelsneurotransmission. from mitochondrial release plus plasma membrane Ca2+ influx Neurotransmission – firing on all can have profound effects on neuronal but they participate in carefully regulating increase vesicle fusion, cylinders. function and viability, and implications in calcium levels during neurotransmission. and calcium dynamics of neurotransmission the mitochondrial permeability transition potentiatingand its classical neurotr roleansmission. is to prevent other disease. This process also has important effects on and on studying how these interact, like pore.
    [Show full text]
  • BIO 337 NEUROTRANSMISSION & NEUROMODULATION Class Meets
    BIO 337 NEUROTRANSMISSION & NEUROMODULATION Class meets on Mondays and Fridays from 1:00 to 2:20 p.m. in Melville Library W4550 Instructors: Dr. Arianna Maffei (course director), Dr. Lonnie Wollmuth Guest Instructors: Dr. Lorna Role, Dr. Alfredo Fontanini, Dr. David Talmage Department of Neurobiology and Behavior TA: Kelvin Chan, Graduate Program in Neuroscience, Department of Neurobiology and Behavior uTA: Timur Mukhammadov, Undergraduate Biology, Neuroscience Specialization Readings: Introduction to Neuropsychopharmacology by Leslie L. Iversen, Susan D. Iversen, Floyd E. Bloom, Robert H. Roth, Oxford University Press CLASS SCHEDULE Date Instructor Topic 1. Monday 01/22 Wollmuth Introduction 2. Friday 01/26 Wollmuth Membrane excitability 3. Monday 01/29 Wollmuth Cell-to-cell signaling 4. Friday 02/02 Wollmuth Amino acid transmitters 5. Monday 02/05 Wollmuth Local networks 6. Friday 02/09 Wollmuth Dysfunction of excitability: Epilepsy 7. Monday 02/12 Wollmuth Slow synaptic modulation 8. Friday 02/16 Wollmuth Catecholamines 9. Monday 02/19 Wollmuth Synaptic plasticity Friday 02/23 Exam 1 (Lectures 1-9, Wollmuth and Maffei) 10. Monday 02/26 Wollmuth Parkinson’s Disease 11. Friday 03/02 Wollmuth The neurobiology of addictive behaviors 12. Monday 03/05 Maffei Stimulants and the brain 13. Friday 03/09 Maffei Mood regulators Spring Break 14. Monday 03/19 Maffei Affective disorders 15. Friday 03/23 Maffei Opioids 16. Monday 03/26 Role The most versatile of neurotransmitters: Acetylcholine 17. Friday 03/30 Maffei Other neuronal signals 18. Monday 04/02 Maffei How do we study brain, behavior and reward? Friday 04/06 Exam 2 (Lectures 10-18, Wollmuth and Maffei) 19.
    [Show full text]
  • Neurotransmission Fact Sheet
    Neurotransmission Fact Sheet The brain and nervous system are made of billions of nerve cells, called neurons. Neurons have three main parts: cell body, dendrites, and axon. The axon is covered by the myelin sheath. Cell Body is in charge of the neuron’s Dendrites receive messages activities. from other neurons. Myelin Sheath covers the axon to protect it and help messages travel faster and easier. Axon sends messages from the cell body to the dendrites of other neurons. The transfer of information between neurons is called neurotransmission. This is how neurotransmission works: 1. A message travels from the dendrites through the cell body and to the end of the axon. 2. The message causes the chemicals, called neurotransmitters, to be released from the end of the axon into the synapse. The neurotransmitters carry the message with them into the synapse. The synapse is the space between the axon of one neuron and the dendrites of another neuron. 3. The neurotransmitters then travel across the synapse to special places on the dendrites of the next neuron, called receptors. The neurotransmitters fit into the receptors like keys in locks. 4. Once the neurotransmitter has attached to the receptors of the second neuron, the message is passed on. 5. The neurotransmitters are released from the receptors and are either broken down or go back into the axon of the first neuron. Teacher copy: Module 1 Neurotransmission Fact Sheet The brain and nervous system are made of billions of nerve cells, called neurons. Neurons have three main parts: cell body, dendrites, and axon.
    [Show full text]
  • The Relationship Between Psychoactive Drugs, the Brain and Psychosis Sutapa Basu1*And Deeptanshu Basu2
    Basu and Basu. Int Arch Addict Res Med 2015, 1:1 ISSN: 2474-3631 International Archives of Addiction Research and Medicine Review Article: Open Access The Relationship between Psychoactive Drugs, the Brain and Psychosis Sutapa Basu1*and Deeptanshu Basu2 1Institute of Mental Health, Singapore 2University at Buffalo, State University of New York, USA *Corresponding author: Sutapa Basu, Consultant, Institute of Mental Health, Singapore, Tel: +6597112015, E-mail: [email protected] grey of the midbrain [7] whereas some alter neurotransmission Abstract by interacting with molecular components of the sending and This paper explores the interaction between four psychoactive drugs, receiving process, an example being cocaine. Some drugs alter namely MDMA (Ecstasy), Cocaine, Methamphetamine and LSD, neurotransmission in different fashion. Benzodiazepines enhance the with neurotransmitters in the brain with the aim of understanding response of receiving cells mediated by serotonin, possibly with the what links exist between these drugs and Psychosis. The paper is restricted to three neurotransmitters – dopamine, serotonin, and involvement of GABA [8]. One of the unwanted effects of many of the norepinephrine (noradrenaline) and explores in some detail how psychoactive drugs is psychotic symptoms. However, most research they are affected by the aforementioned drugs. The paper aims has been centered on cannabis (Marijuana) use and Psychosis. This to go beyond existing research on drugs and psychosis which has paper therefore explores to what extent other psychoactive drugs been primarily limited to cannabis (Marijuana) and psychosis. The affect psychotic symptoms and illnesses. findings and conclusions drawn show that all the drugs explored have the potential to induce psychosis in abusers to some degree; In order to delve into the above topic, secondary research from the effects vary from drug to drug.
    [Show full text]