Efficient Sonogashira Reactions of Aryl Bromides with Alkynylsilanes Catalyzed by a Palladium/Imidazolium Salt System
Total Page:16
File Type:pdf, Size:1020Kb
http://www.paper.edu.cn 1020 Organometallics 2002, 21, 1020-1022 Efficient Sonogashira Reactions of Aryl Bromides with Alkynylsilanes Catalyzed by a Palladium/Imidazolium Salt System Chuluo Yang and Steven P. Nolan* Department of Chemistry, University of New Orleans, New Orleans, Louisiana 70148 Received November 28, 2001 Summary: A palladium/imidazolium chloride system Corriu reaction,7 the Heck reaction,8 aryl amination has been used to mediate the cross-coupling reaction of involving aryl chlorides,9 olefin metathesis,10 and olefin aryl halides with alkynylsilanes. The combination of 3 hydrogenation.11 The use of nucleophilic carbenes in mol % Pd(OAc)2 and 6 mol % IMes‚HCl in the presence Sonogashira coupling has so far resulted in limited of Cs2CO3 as base proves to be a highly efficient system success.12 To the best of our knowledge, only four in assisting coupling of aryl bromides with alkynyl- examples of the Sonogashira reaction mediated by silanes. palladium N-heterocyclic carbene complexes have been Increasing attention has focused on the synthesis of reported. Furthermore, the protocol used only dealt with activated arylbromides (4-bromoacetophenone and 4- arylalkynes and conjugated enynes as these play an 13 important role in the assembly of bioactive natural bromofluorobenzene) as substrates. In this contribu- molecules and new materials.1 The Sonogashira reaction tion, we wish to report a very efficient Sonogashira of terminal alkynes with aryl or alkenyl halides provides reaction involving various arylbromides and alkynylsi- a most straightforward and powerful method for such lanes catalyzed by the palladium/imidazolium salt synthetic strategies.1,2 Usually, the Sonogashira reac- system. tion is mediated by a palladium-phosphine complex We have established that Pd-carbene species can be and copper(I) iodide as a cocatalyst. Recently, a pal- formed in situ from a palladium precursor with imida- ladium system modified by a bulky, electron-rich phos- zolium salts in various C-C coupling reactions under t basic conditions.6b,c,7 In initial experiments, a catalytic phine ligand, P Bu3, has been reported to display unusually high activity in Sonogashira coupling of aryl system consisting of 2 mol % Pd(OAc)2 and 4 mol % ‚ bromides.3 IMes HCl with 2 equiv of Cs2CO3 as base in N,N- Nucleophilic N-heterocyclic carbenes have attracted dimethylacetamide (DMAc) at 80 °C was used in an considerable attention.4 These ligands are strong σ-do- attempt to mediate the coupling of 4-bromotoluene (1 nors with negligible π-accepting ability and in this mmol) with phenylacetylene (1.4 mmol). Using this regard resemble tertiary phosphines.5 High catalytic protocol, the desired product was obtained in 80% yield activities have been achieved using nucleophilic car- (GC yield based on 4-bromotoluene). However, a side- ′ benes in a variety of catalytic reactions which include product, 1,1 -(1-buten-3-yne-1,4-diyl)bis(4-methylben- the Suzuki-Miyaura reaction,6 the Kumada-Tamao- zene), obtained from the dimerization of phenylacet- ylene, was also obtained. The ratio of side-product to * E-mail: [email protected]. (1) (a) Nicolaou, K. C.; Sorensen, E. J. Classics in Total Synthesis; (6) (a) Bo¨hm, V. P. W.; Gsto¨ttmayr, C. W. K.; Weskamp, T.; Wiley-VCH: Weinheim, 1996; pp 582-586. (b) Brandsma, L.; Vasi- Herrmann, W. A. J. Organomet. Chem. 2000, 595, 186. (b) Lee, H. M.; levsky, S. F.; Verkruijsse, H. D. Application of Transition Metal Nolan, S. P. Org. Lett. 2000, 2, 2053. (c) Zhang, C.; Huang, J.; Trudell, Catalysts in Organic Synthesis; Springer-Verlag: Berlin, 1998; pp 179- M. L.; Nolan, S. P. J. Org. Chem. 1999, 64, 3804. 225. (c) Rusanov, A. L.; Khotina, I. A.; Begretov, M. M. Russ. Chem. (7) Huang, J.; Nolan, S. P. J. Am. Chem. Soc. 1999, 121, 9889. Rev. 1997, 66, 1053. (8) (a) Yang, C.; Lee, H. M.; Nolan, S. P. Org. Lett. 2001, 3, 1511. (2) (a) Sonogashira, K. In Metal-Catalyzed Reactions; Diederich, F., (b) Yang, C.; Nolan, S. P. Synlett., in press (c) McGuinness, D. S.; Stang, P. J., Eds.; Wiley-VCH: New York, 1998; pp 203-229. (b) Rossi, Cavell, K. J. Organometallics 1999, 18, 1596. (d) Herrmann, W. A.; R.; Carpita, A.; Bellina, F. Org. Prep. Proced. Int. 1995, 27, 127. (c) Fischer, J.; Elison, M.; Ko¨cher, C.; Artus, G. R. J. Chem. Eur. J. 1996, Tsuji, J. Palladium Reagents and Catalysts; Wiley: Chichester, 1995; 2, 772. (e) Herrmann, W. A.; Elison, M.; Fischer, J.; Ko¨cher, C.; Artus, pp 168-171. (d) Campbel, I. B. In Organocopper Reagents; Taylor, R. G. R. J. Angew. Chem., Int. Ed. Engl. 1995, 34, 2371. J. K., Eds.; IRL Press: Oxford, 1994; pp 217-235. (e) Sonogashira, K. (9) (a)Huang, J.; Grasa, G.; Nolan, S. P. Org. Lett. 1999, 1, 1307. In Comprehensive Organic Synthesis; Trost, B. M., Eds.; Pergamon: (b) Stauffer, S. R.; Lee, S.; Stambuli, J. P.; Hauck, S. I.; Hartwig, J. F. New York, 1991; pp 521-549. (f) Sonogashira, K.; Tohda, Y.; Hagihara, Org. Lett. 2000, 2, 1423. N. Tetrahedron Lett. 1975, 4467. (10) (a) Huang, J.; Stevens, E. D.; Nolan, S. P.; Peterson, J. L. J. (3) (a) Bo¨hm, V. P. W.; Herrmann, W. A. Eur. J. Org. Chem. 2000, Am. Chem. Soc. 1999, 121, 2674. (b) Huang, J.; Schanz, H. J.; Stevens, 22, 3679. (b) Hundertmark, T.; Littke, A. F.; Buchwald, S. L.; Fu, C. E. D.; Nolan, S. P. Organometallics 1999, 18, 5375. (c) Scholl, M.; G. Org. Lett. 2000, 2, 1729. Trnka, T. M.; Morgan, J. P.; Grubbs, R. H. Tetrahedron Lett. 1999, (4) (a) Bourissou, D.; Guerret, O.; Gabbaı¨, F. P.; Bertrand, G. Chem. 40, 2247. (d) Weskamp, T.; Schattenmann, W. C.; Spiegler, M.; Rev. 2000, 100, 39, and references therein. (b) Chatterjee, A. K.; Herrmann, W. A. Angew. Chem., Int. Ed. 1998, 37, 2490. Grubbs, R. H. Org. Lett. 2000, 2, 1751. (c) Jafarpour, L.; Schanz, H. (11) (a) Lee, H. M.; Smith, D. C., Jr.; He, Z.; Stevens, E. D.; Yi, C. J.; Stevens, E. D.; Nolan, S. P. Organometallics 1999, 18, 5416. (d) S.; Nolan, S. P. Organometallics 2001, 20, 794. (b) Lee, H. M.; Jiang, Dullius, J. E. L.; Suarez, P. A. Z.; Einloft, S.; de Souza, R. F.; Dupont, T.; Stevens, E. D.; Nolan, S. P. Organometallics 2001, 20, 1255. J.; Fischer, J.; De Cian. A. Organometallics 1998, 17, 815. (e) Adruengo, (12) Herrmann, W. A.; Bo¨hm, V. P. W.; Gsto¨ttmayr, C. W. K.; A. J., III; Krafczyk, R. Chem. Z. 1998, 32, 6. (f) Herrmann, W. A.; Grosche, M.; Reisinger, C.-P.; Weskamp, T. J. Organomet. Chem. 2001, Ko¨cher, C. Angew. Chem., Int. Ed. Engl. 1997, 36, 2162. (g) Regitz, M. 617-618, 616. Angew. Chem., Int. Ed. Engl. 1996, 35, 725. (13) (a) McGuinness, D. S.; Cavell, K. J. Organometallics 2000, 19, (5) Green, J. C.; Scurr, R. G.; Arnold, P. L.; Cloke, G. N. Chem. 741. (b) Herrmann, W. A.; Reisinger, C.-P.; Spiegler, M. J. Organomet. Commun. 1997, 1963. Chem. 1998, 557, 93. 10.1021/om011021k CCC: $22.00 © 2002 American Chemical Society Publication on Web 02/21/2002 转载 中国科技论文在线 http://www.paper.edu.cn Communications Organometallics, Vol. 21, No. 6, 2002 1021 Table 1. Effect of the Solvent on Pd(OAc)2/ Scheme 1. Structure of Imidazolium Salts IMes‚HCl-Catalyzed Sonogashira Reaction of 4-Bromoanisole with 1-Phenyl-2-(trimethylsilyl)acetylenea entry solvent yield (%)b 1 THF 48 2 dioxane 37 3CH3CN 68 4 DMF 60 5 DMAc 87 Table 3. Sonogashira Reaction of 4-Bromoanisole a Reaction conditions:1.0 mmol of 4-bromoanisole, 1.4 mmol of with 1-Phenyl-2-(trimethylsilyl)acetylene Using b a 1-phenyl-2-(trimethylsilyl)acetylene, 2 mL of DMAc. GC yields Pd(OAc)2 with Different Imidazolium Chlorides based on 4-bromoanisole (average of two runs). Table 2. Effect of the Base on Pd(OAc)2/ IMes‚HCl-Catalyzed Sonogashira Reaction of 4-Bromoanisole with a 1-Phenyl-2-(trimethylsilyl)acetylene entry L yield (%)b 1 none 32c 2 ITol (1) 62 3 IMes (2) 87 4 IPr (3) 80 entry base yield (%)b 5 IAd (4) 56 6 SIMes (5) 66 1 none 0 7 SIPr (6) 60 2EtN0 3 a 3 TBAF 9 Reaction conditions:1.0 mmol of 4-bromoanisole, 1.4 mmol of b 4 CsF 13 1-phenyl-2-(trimethylsilyl)acetylene, 2 mL of DMAc. GC yields based on 4-bromoanisole (average of two runs). c Reaction time 6 5K2CO3 29 h. 6Cs2CO3 87 a Reaction conditions:1.0 mmol of 4-bromoanisole, 1.4 mmol of 1-phenyl-2-(trimethylsilyl)acetylene, 2 mL of DMAc. b GC yields tion of 1-phenyl-2-(trimethylsilyl)acetylene to generate 16 based on 4-bromoanisole (average of two runs). the silicon-free phenylacetylene intermediate. Thus this reactive species should be present in low concentra- desired coupling product was 1:3 (based on GC analysis). tion in the reaction mixture, suppressing the intermo- To suppress the side-reaction, 1-phenyl-2-(trimethyl- lecular dimerization of phenylacetylene.16,17 silyl)acetylene was used as coupling partner with aryl- In an effort to select the most effective imidazolium 14 bromides. The catalytic system proved to be highly salts, a series of 1,3-disubstituted imidazolium chlorides efficient in coupling 4-bromotoluene with 1-phenyl-2- (Scheme 1) was used in the test reaction (Table 3). The (trimethylsilyl)acetylene. The reaction proceeded very imidazolium chlorides investigated were all active in the rapidly and afforded the desired product in 90% yield catalytic system. The use of IMes (2) or IPr (3) led to < in 1 h. Only traces ( 6%) of the dimerization product highly efficient Sonogashira reactions.