Landscape Review and Evidence Map of Gene Therapy, Part 2

Total Page:16

File Type:pdf, Size:1020Kb

Landscape Review and Evidence Map of Gene Therapy, Part 2 EMERGING TECHNOLOGIES AND THERAPEUTICS REPORT 1 Landscape Review and Evidence Map of Gene Therapy, Part II: Chimeric Antigen Receptor- T cell (CAR-T), Autologous Cell, Antisense, RNA Interference (RNAi), Zinc Finger Nuclease (ZFN), Genetically Modified Oncolytic Herpes Virus Andrea Richardson, Eric Apaydin, Sangita Baxi, Jerry Vockley, Olamigoke Akinniranye, Rachel Ross, Jody Larkin, Aneesa Motala, Gulrez Azhar, and Susanne Hempel RAND Corporation June 2019 Revision [February 2020] Since the completion of this report a gene therapy herein described as AVXS-101 has been approved by the FDA as Zolgensma therefore the report was revised in November 2019 to reflect that change. All statements, findings, and conclusions in this publication are solely those of the authors and do not necessarily represent the views of the Patient-Centered Outcomes Research Institute (PCORI) or its Board of Governors. This publication was developed through a contract to support PCORI's work. Questions or comments may be sent to PCORI at [email protected] or by mail to Suite 900, 1828 L Street, NW, Washington, DC 20036. ©2019 Patient-Centered Outcomes Research Institute. For more information see https://www.pcori.org EMERGING TECHNOLOGIES AND THERAPEUTICS REPORT 2 Table of Contents Executive Summary ......................................................................................................... 6 Introduction of Report Series .......................................................................................... 8 History of Gene Therapies ............................................................................................ 8 Aim of the Report ......................................................................................................... 8 Methodology Overview ................................................................................................ 8 Data Sources ................................................................................................................ 9 Figure 1. Content and Data Sources ................................................................................. 10 Organization of the Report Series and Organization of This Report ........................... 10 Description of Interventions/ Technologies ................................................................... 11 Table 1. Intervention Classes With FDA-approved Therapies .............................................. 12 Table 2. FDA-approved Therapies .................................................................................... 13 Table 3. Potential Pipeline Gene Therapies ....................................................................... 14 CAR-T, Autologous Cell, ZFN, Antisense, RNAi, Genetically Modified Oncolytic Herpes Virus Gene Therapy .................................................................................................... 18 CAR-T Therapy Indications .............................................................................................. 18 Autologous Cell Therapy Indications ................................................................................. 19 Antisense Therapy Indications ......................................................................................... 20 RNAi Therapy Indications ................................................................................................ 20 ZFN Therapy Indications ................................................................................................. 21 Genetically Modified Oncolytic Viral Replication-competent, Attenuated Derivative of Herpes Simplex Virus Type 1 Therapy Indications ......................................................................... 22 Key Question 1a. What are the different types or modalities of the intervention that have been used in clinical practices and clinical research studies? ....................................................... 22 Key Question 1b. What are potential/presumed advantages and disadvantages in contrast to current practices? .......................................................................................................... 23 Key Question 1c. What are the safety issues or expected adverse events? ........................... 25 Context in Which Gene Therapy Is Used ........................................................................ 27 Key Question 2a. What is the approval process and current approval/certification status for gene therapies? ............................................................................................................ 27 Key Question 2b. Are any additional accompanying resources or technologies required? ....... 28 Key Question 2c. What is the current state of adoption in practice and settings? .................. 29 Key Question 2d. What are the operator factors, such as training and staffing? .................... 29 Ongoing Premarket and Postmarket Gene Therapy Studies .......................................... 30 Ongoing Trial Characteristics ..................................................................................... 30 Table 4. Ongoing Antisense Trials .................................................................................... 30 Table 5. Ongoing Autologous Cell Trials ............................................................................ 33 Table 6. Ongoing CAR-T Trials ......................................................................................... 37 Table 8. Ongoing ZFN and Genetically Modified Oncolytic Viral Therapy/Herpes Simplex Virus Type 1 Trials ................................................................................................................. 42 Key Question 3a. What are indication/patient inclusion criteria in ongoing trials? .................. 43 Key Question 3b. What are the types of interventions in ongoing trials? .............................. 44 Key Question 3c. What are the study designs/size in ongoing trials? ................................... 44 EMERGING TECHNOLOGIES AND THERAPEUTICS REPORT 3 Key Question 3d. What are the comparators in ongoing trials? ........................................... 44 Key Question 3e. What are the prior/concurrent treatments in ongoing trials? ...................... 44 Key Question 3f. What is the length of follow-up in ongoing trials? ..................................... 44 Key Question 3g. What are the outcomes measured in ongoing trials? ................................ 45 Current Evidence Supporting Gene Therapy .................................................................. 46 Published Trials Characteristics ................................................................................. 46 Table 9. Summary of Published Antisense, Autologous Cell, CAR-T, Genetically Modified Oncolytic Viral Therapy/Herpes Simplex Virus Type 1, RNAi, and ZFN .................................. 46 Key Question 4a. What are the indication/patient inclusion criteria in published studies? ....... 47 Key Question 4b. What are the types of interventions in published studies? ......................... 47 Key Question 4c. What are the study designs/size in published studies? .............................. 47 Key Question 4d. What are the comparators in published studies? ...................................... 47 Key Question 4e. What are the prior/concurrent treatments in published studies? ................ 48 Key Question 4f. What is the length of follow-up in published studies? ................................ 48 Key Question 4g. What are the outcomes measured in published studies? ........................... 48 Key Question 4h. What are the adverse events in published studies? .................................. 49 Evidence Map of Ongoing and Completed Trials ......................................................... 50 Figure 2. Gene Therapy Evidence Map—Antisense, Autologous Cell, CAR-T, Genetically Modified Oncolytic Viral Therapy/Herpes Simplex Virus Type 1, RNAi, and ZFN .................................. 51 Important Issues Raised by Gene Therapy .................................................................... 52 Key Question 5a. What are the implications of the current level of adoption and future diffusion, given current level of evidence—efficacy/safety, ethical, disparity, resource allocation, and decision making? ..................................................................................................... 52 Key Question 5b. What are the key issues pertaining to decisional uncertainty? ................... 53 Key Question 5c. What are potential areas of research focus for PCORI and others? ............. 54 Acknowledgements ....................................................................................................... 55 References ..................................................................................................................... 56 Appendix ....................................................................................................................... 98 Appendix A: Report Methodology ............................................................................... 98 Literature Searches ........................................................................................................ 98 Literature Review Procedure ........................................................................................... 99 Inclusion Criteria ............................................................................................................ 99 Data Extraction ............................................................................................................
Recommended publications
  • Amyloid Seeding of Transthyretin by Ex Vivo Cardiac Fibrils and Its
    Amyloid seeding of transthyretin by ex vivo cardiac PNAS PLUS fibrils and its inhibition Lorena Saelicesa,b,c,d, Kevin Chunga,b,c,d, Ji H. Leea,b,c,d, Whitaker Cohne, Julian P. Whiteleggee, Merrill D. Bensonf, and David S. Eisenberga,b,c,d,1 aHoward Hughes Medical Institute, University of California, Los Angeles, CA 90095; bUCLA-DOE, University of California, Los Angeles, CA 90095; cDepartment of Biological Chemistry, University of California, Los Angeles, CA 90095; dMolecular Biology Institute, University of California, Los Angeles, CA 90095; eNeuropsychiatric Institute (NPI)-Semel Institute, University of California, Los Angeles, CA 90024; and fDepartment of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN 46202 Contributed by David S. Eisenberg, April 18, 2018 (sent for review November 8, 2017; reviewed by Joel N. Buxbaum, Jeffery W. Kelly, and Gunilla T. Westermark) Each of the 30 human amyloid diseases is associated with the both full-length TTR fibrils and C-terminal TTR fragments. In aggregation of a particular precursor protein into amyloid fibrils. In type B cardiac ATTR, more distinct amyloid deposits made of transthyretin amyloidosis (ATTR), mutant or wild-type forms of the full-length TTR fibrils surround individual muscle cells. Although serum carrier protein transthyretin (TTR), synthesized and secreted the understanding of their clinical and pathological significance is by the liver, convert to amyloid fibrils deposited in the heart and incomplete, there is a clear distinction between subtypes: type A other organs. The current standard of care for hereditary ATTR is deposits display a higher capacity to recruit wild-type TTR (16).
    [Show full text]
  • Opportunities and Challenges for Antisense Oligonucleotide Therapies
    Received: 10 January 2020 Revised: 23 April 2020 Accepted: 8 May 2020 DOI: 10.1002/jimd.12251 REVIEW ARTICLE Opportunities and challenges for antisense oligonucleotide therapies Elsa C. Kuijper1 | Atze J. Bergsma2,3 | W.W.M. Pim Pijnappel2,3 | Annemieke Aartsma-Rus1 1Department of Human Genetics, Leiden University Medical Center, Leiden, The Abstract Netherlands Antisense oligonucleotide (AON) therapies involve short strands of modi- 2Department of Pediatrics, Center for fied nucleotides that target RNA in a sequence-specific manner, inducing Lysosomal and Metabolic Diseases, targeted protein knockdown or restoration. Currently, 10 AON therapies Erasmus Medical Center, Rotterdam, The Netherlands have been approved in the United States and Europe. Nucleotides are chem- 3Department of Clinical Genetics, Center ically modified to protect AONs from degradation, enhance bioavailability for Lysosomal and Metabolic Diseases, and increase RNA affinity. Whereas single stranded AONs can efficiently Erasmus Medical Center, Rotterdam, The Netherlands be delivered systemically, delivery of double stranded AONs requires capsulation in lipid nanoparticles or binding to a conjugate as the uptake Correspondence enhancing backbone is hidden in this conformation. With improved chem- Annemieke Aartsma-Rus, LUMC Postzone S4-P, Albinusdreef 2, 2333 ZA istry, delivery vehicles and conjugates, doses can be lowered, thereby reduc- Leiden, The Netherlands. ing the risk and occurrence of side effects. AONs can be used to knockdown Email: [email protected] or restore levels of protein. Knockdown can be achieved by single stranded Communicating Editor: Carla E. Hollak or double stranded AONs binding the RNA transcript and activating RNaseH-mediated and RISC-mediated degradation respectively. Transcript binding by AONs can also prevent translation, hence reducing protein levels.
    [Show full text]
  • CADTH ISSUES in EMERGING HEALTH TECHNOLOGIES Informing Decisions About New Health Technologies
    CADTH ISSUES IN EMERGING HEALTH TECHNOLOGIES Informing Decisions About New Health Technologies Issue Mar 171 2018 Gene Therapy: An Overview of Approved and Pipeline Technologies CADTH ISSUES IN EMERGING HEALTH TECHNOLOGIES 1 Authors: Alison Sinclair, Saadul Islam, Sarah Jones Cite as: Gene therapy: an overview of approved and pipeline technologies. Ottawa: CADTH; 2018 Mar. (CADTH issues in emerging health technologies; issue 171). Acknowledgments: Louis de Léséleuc, Jeff Mason, Teo Quay, Joanne Kim, Lesley Dunfield, Eftyhia Helis, Iryna Magega, Jane Hurge ISSN: 1488-6324 (online) Disclaimer: The information in this document is intended to help Canadian health care decision-makers, health care professionals, health systems leaders, and policy- makers make well-informed decisions and thereby improve the quality of health care services. While patients and others may access this document, the document is made available for informational purposes only and no representations or warranties are made with respect to its fitness for any particular purpose. The information in this document should not be used as a substitute for professional medical advice or as a substitute for the application of clinical judgment in respect of the care of a particular patient or other professional judgment in any decision-making process. The Canadian Agency for Drugs and Technologies in Health (CADTH) does not endorse any information, drugs, therapies, treatments, products, processes, or services. While CADTH has taken care to ensure that the information prepared by it in this document is accurate, complete, and up-to-date as at the applicable date the material was first published by CADTH, CADTH does not make any guarantees to that effect.
    [Show full text]
  • The Use of Ataluren in the Effective Management of Duchenne Muscular Dystrophy
    Review Neuromuscular Diseases Early Diagnosis and Treatment – The Use of Ataluren in the Effective Management of Duchenne Muscular Dystrophy Eugenio Mercuri,1 Ros Quinlivan2 and Sylvie Tuffery-Giraud3 1. Catholic University, Rome, Italy; 2. Great Ormond Street Hospital and National Hospital for Neurology and Neurosurgery, London, UK; 3. Laboratory of Genetics of Rare Diseases (LGMR), University of Montpellier, Montpellier, France DOI: https://doi.org/10.17925/ENR.2018.13.1.31 he understanding of the natural history of Duchenne muscular dystrophy (DMD) is increasing rapidly and new treatments are emerging that have the potential to substantially improve the prognosis for patients with this disabling and life-shortening disease. For many, Thowever, there is a long delay between the appearance of symptoms and DMD diagnosis, which reduces the possibility of successful treatment. DMD results from mutations in the large dystrophin gene of which one-third are de novo mutations and two-thirds are inherited from a female carrier. Roughly 75% of mutations are large rearrangements and 25% are point mutations. Certain deletions and nonsense mutations can be treated whereas many other mutations cannot currently be treated. This emphasises the need for early genetic testing to identify the mutation, guide treatment and inform genetic counselling. Treatments for DMD include corticosteroids and more recently, ataluren has been approved in Europe, the first disease-modifying therapy for treating DMD caused by nonsense mutations. The use of ataluren in DMD is supported by positive results from phase IIb and phase III studies in which the treatment produced marked improvements in the 6-minute walk test, timed function tests such as the 10 m walk/run test and the 4-stair ascent/descent test compared with placebo.
    [Show full text]
  • Are Speci C Symptoms and Signs That Will Enable the Clinician to Recognise Disease Patterns That Will Narrow Down the Differenti
    CHILDHOOD DEVELOPMENTAL SCREENING 2020 https://doi.org/10.33591/sfp.46.5.u5 UNIT NO. 5 Brumbaugh D, Case LE, Clemens PR, Hadjiyannakis S, Pandya S, Street CHILDHOOD NEUROMUSCULAR DISORDERS examiner’s hands under the armpits and assessed for any arm periodic paralysis) and the rate of progression. An acute or delay/hypotonia, neuroimaging with MRI brain and aordable gene panels targeting neuromuscular disorders promising, with near-normal motor development in some receptor but reduced transcriptional activation and therefore 3. Orthopaedic Care neuromuscular diseases has resulted in faster and more accurate slip sign, and an attempt should be made to see if the infant can subacute onset of symptoms may be suggestive of an endocrine appropriate chromosomal/genetic testing can be considered. which are faster and less costly than whole exome or whole infants. is has resulted in new recommendations for neonatal has less side eects of other steroids. Clinical trials are still Prevention of contractures may be aected with appropriate diagnosis. Furthermore, new treatments are in the pipeline or N. Diagnosis and management of Duchenne muscular dystrophy, part 1: diagnosis, and neuromuscular, rehabilitation, endocrine, and gastrointes- A/Prof Stacey Tay Kiat Hong bear weight on both legs. e infant is then put into ventral or inammatory myositis, the chronic onset of symptoms may 2. If the child has evidence of lower limb involvement and genome sequencing. e choice of whole exome or whole newborn screening of SMA as well as a treatment algorithm for underway for head-to-head comparison of Vamorolone and resting splints of the ankles. Proper seating is also key to are already available for certain neuromuscular disorders, and 11 20 tinal and nutritional management.
    [Show full text]
  • Luxturna Voretigene Neparvovec Rzyl Molina Clinical Policy
    Subject: Luxturna (Voretigene neparvovec-rzyl) Original Effective Date: 7/10/2018 Policy Number: MCP-318 Revision Date(s): Review Date(s): 7/10/2018 DISCLAIMER This Molina Clinical Policy (MCP) is intended to facilitate the Utilization Management process. It expresses Molina's determination as to whether certain services or supplies are medically necessary, experimental, investigational, or cosmetic for purposes of determining appropriateness of payment. The conclusion that a particular service or supply is medically necessary does not constitute a representation or warranty that this service or supply is covered (i.e., will be paid for by Molina) for a particular member. The member's benefit plan determines coverage. Each benefit plan defines which services are covered, which are excluded, and which are subject to dollar caps or other limits. Members and their providers will need to consult the member's benefit plan to determine if there are any exclusion(s) or other benefit limitations applicable to this service or supply. If there is a discrepancy between this policy and a member's plan of benefits, the benefits plan will govern. In addition, coverage may be mandated by applicable legal requirements of a State, the Federal government or CMS for Medicare and Medicaid members. CMS's Coverage Database can be found on the CMS website. The coverage directive(s) and criteria from an existing National Coverage Determination (NCD) or Local Coverage Determination (LCD) will supersede the contents of this MCP document and provide the directive for all Medicare members. SUMMARY OF EVIDENCE/POSITION This policy addresses the coverage of Luxturna (Voretigene neparvovec-rzyl), a one-time gene therapy product indicated for the treatment of individuals with confirmed bi-allelic RPE65 mutation-associated retinal dystrophy, when appropriate criteria are met.
    [Show full text]
  • Luxturna, INN-Voretigene Neparvovec
    20 September 2018 EMA/CHMP/700911/2018 Committee for Medicinal Products for Human Use (CHMP) Assessment report Luxturna International non-proprietary name: voretigene neparvovec Procedure No. EMEA/H/C/004451/0000 Note Assessment report as adopted by the CHMP with all information of a commercially confidential nature deleted. 30 Churchill Place ● Canary Wharf ● London E14 5EU ● United Kingdom Telephone +44 (0)20 3660 6000 Facsimile +44 (0)20 3660 5555 Send a question via our website www.ema.europa.eu/contact An agency of the European Union © European Medicines Agency, 2019. Reproduction is authorised provided the source is acknowledged. Table of contents 1. Background information on the procedure .............................................. 6 1.1. Submission of the dossier ...................................................................................... 6 1.2. Steps taken for the assessment of the product ......................................................... 7 2. Scientific discussion ................................................................................ 9 2.1. Problem statement ............................................................................................... 9 2.1.1. Disease or condition ........................................................................................... 9 2.1.2. Epidemiology .................................................................................................... 9 2.1.3. Biologic features ...............................................................................................
    [Show full text]
  • Spark Therapeutics and Pfizer Announce That SPK-9001, An
    Spark Therapeutics and Pfizer Announce that SPK-9001, an Investigational Hemophilia B Medicine, has been Granted Access to the PRIority MEdicines (PRIME) Program by the European Medicines Agency PHILADELPHIA and NEW YORK, March 1, 2017 (GLOBE NEWSWIRE)— Spark Therapeutics (NASDAQ:ONCE) and Pfizer Inc. (NYSE:PFE) announced today that SPK-9001, the lead investigational candidate in the companies' SPK-FIX program has been granted support through the European Medicines Agency (EMA) PRIority MEdicines (PRIME) program. According to the EMA, PRIME is intended to enhance support for new treatments in development “that may offer a major therapeutic advantage over existing treatments, or benefit patients without treatment options.” “We are pleased that investigational SPK-9001 has been granted access to the PRIME program, which potentially will help accelerate the delivery of this potential gene therapy to European patients living with hemophilia B,” said Jeffrey D. Marrazzo, chief executive officer of Spark Therapeutics. “We appreciate the EMA’s dedication to moving treatments forward for patients who are underserved with current options, and we look forward to our continued collaboration on SPK-9001.” SPK-9001 is an experimental treatment for hemophilia B that is currently being investigated in an ongoing Phase 1/2 trial as a potential single-dose therapy. The PRIME program provides enhanced interaction and early dialogue with developers of promising medicines, which is intended to optimize development plans and speed up evaluation so these medicines can reach patients earlier. SPK-9001 received orphan product designation from the U.S. Food and Drug Administration (FDA) in September 2015, and later received breakthrough therapy designation from the FDA in July 2016.
    [Show full text]
  • Clinical Guideline Luxturna (Voretigene Neparvovec-Rzyl)
    Clinical Guideline Guideline Number: CG060, Ver. 1 Luxturna (voretigene neparvovec-rzyl) Disclaimer Clinical guidelines are developed and adopted to establish evidence-based clinical criteria for utilization management decisions. Oscar may delegate utilization management decisions of certain services to third-party delegates, who may develop and adopt their own clinical criteria. Clinical guidelines are applicable to certain plans. Clinical guidelines are applicable to members enrolled in Medicare Advantage plans only if there are no criteria established for the specified service in a Centers for Medicare & Medicaid Services (CMS) national coverage determination (NCD) or local coverage determination (LCD) on the date of a prior authorization request. Services are subject to the terms, conditions, limitations of a member’s policy and applicable state and federal law. Please reference the member’s policy documents (e.g., Certificate/Evidence of Coverage, Schedule of Benefits) or contact Oscar at 855-672-2755 to confirm coverage and benefit conditions. Summary Luxturna was the first in vivo (within living cells) gene therapy approved by the FDA in December 2017 for children and adults with rare inherited vision disorders caused by mutated RPE65 gene. For individuals who have mutations in both copies of the RPE65 gene, they cannot make proteins in the eye that convert light, which leads to partial or total vision loss. Luxturna is delivered as a single-dose, subretinal injection in each eye that works by targeting these mutations to create proteins again for light detection. Subretinal injection occurs after complete vitrectomy; therefore members first must receive a pars plana vitrectomy. Definitions “Gene therapy” is a technique that replaces a mutated gene with a healthy gene, inactivates a mutated gene, or introduces a new gene that helps fight against diseases and disorders.
    [Show full text]
  • PRAC Draft Agenda of Meeting 14-17 March 2016
    14 March 2016 EMA/PRAC/199507/2016 Corr.∗ Procedure Management and Committees Support Division Pharmacovigilance Risk Assessment Committee (PRAC) Draft agenda for the meeting on 14-17 March 2016 Chair: June Raine – Vice-Chair: Almath Spooner 14 March 2016, 13:00 – 19:00, room 3/A 15 March 2016, 08:30 – 19:00, room 3/A 16 March 2016, 08:30 – 19:00, room 3/A 17 March 2016, 08:30 – 16:00, room 3/E Organisational, regulatory and methodological matters (ORGAM) 31 March 2016, 10:00 - 12:00, room 7/B, via Adobe Connect Health and safety information In accordance with the Agency’s health and safety policy, delegates are to be briefed on health, safety and emergency information and procedures prior to the start of the meeting. Disclaimers Some of the information contained in this agenda is considered commercially confidential or sensitive and therefore not disclosed. With regard to intended therapeutic indications or procedure scopes listed against products, it must be noted that these may not reflect the full wording proposed by applicants and may also change during the course of the review. Additional details on some of these procedures will be published in the PRAC meeting highlights once the procedures are finalised. Of note, this agenda is a working document primarily designed for PRAC members and the work the Committee undertakes. Note on access to documents Some documents mentioned in the agenda cannot be released at present following a request for access to documents within the framework of Regulation (EC) No 1049/2001 as they are subject to on- going procedures for which a final decision has not yet been adopted.
    [Show full text]
  • Gene Therapy for Inherited Retinal Diseases
    1278 Review Article on Novel Tools and Therapies for Ocular Regeneration Page 1 of 13 Gene therapy for inherited retinal diseases Yan Nuzbrokh1,2,3, Sara D. Ragi1,2, Stephen H. Tsang1,2,4 1Department of Ophthalmology, Edward S. Harkness Eye Institute, Columbia University Irving Medical Center, New York, NY, USA; 2Jonas Children’s Vision Care, New York, NY, USA; 3Renaissance School of Medicine at Stony Brook University, Stony Brook, New York, NY, USA; 4Department of Pathology & Cell Biology, Columbia University Irving Medical Center, New York, NY, USA Contributions: (I) Conception and design: All authors; (II) Administrative support: SH Tsang; (III) Provision of study materials or patients: SH Tsang; (IV) Collection and assembly of data: All authors; (V) Manuscript writing: All authors; (VI) Final approval of manuscript: All authors. Correspondence to: Stephen H. Tsang, MD, PhD. Harkness Eye Institute, Columbia University Medical Center, 635 West 165th Street, Box 212, New York, NY 10032, USA. Email: [email protected]. Abstract: Inherited retinal diseases (IRDs) are a genetically variable collection of devastating disorders that lead to significant visual impairment. Advances in genetic characterization over the past two decades have allowed identification of over 260 causative mutations associated with inherited retinal disorders. Thought to be incurable, gene supplementation therapy offers great promise in treating various forms of these blinding conditions. In gene replacement therapy, a disease-causing gene is replaced with a functional copy of the gene. These therapies are designed to slow disease progression and hopefully restore visual function. Gene therapies are typically delivered to target retinal cells by subretinal (SR) or intravitreal (IVT) injection.
    [Show full text]
  • First Gene Therapy Fda-Approved for An
    s FEATURE FIRST GENE THERAPY FDA-APPROVED FOR AN INHERITED RETINAL DISEASE The approval has stimulated research into gene therapies for other IRDs. BY MEGHAN J. DEBENEDICTIS, MS, LGC, MED, AND ALEKSANDRA V. RACHITSKAYA, MD he idea of gene therapy has been for clustered regularly interspaced short Scientists and companies have discussed in the medical litera- palindromic repeats) could allow edit- spent decades perfecting the use ture since as early as the 1970s. In ing of one or several sites within the of vectors for genetic material and 1972, Friedman and Roblin pro- mammalian genome.5 identifying ways to deliver them to posed that it was theoretically The most common type of gene increase therapeutic efficacy and possibleT to introduce “good” DNA to therapy is replacement gene therapy, treatment duration. Early investiga- replace defective DNA.1 Over the years, which involves replacing a mutated tions used viruses that delivered a number of gene therapy clinical trials gene that causes disease with a genes to every cell in the body, which emerged in efforts to treat genetic dis- healthy copy of that gene. It is first triggered a massive immune response eases of inborn errors of metabolism, necessary to identify the causative that could lead to organ failure. More all with varying degrees of success. mutated gene. This technology recently designed vectors deliver The basic principle of gene therapy works best in autosomal recessive specific genes to specific cells. is to put corrective genetic material biallelic disease with loss-of-function into cells to treat genetic disease. mutations. A vector is then created TARGET: IRDS Several gene therapy approaches, to carry a wild-type copy of the With the eye’s unique immunologic including replacement gene therapy, gene into the cell of interest.
    [Show full text]