Boolean Algebra and Its Application to Problem Solving and Logic Circuits

Total Page:16

File Type:pdf, Size:1020Kb

Boolean Algebra and Its Application to Problem Solving and Logic Circuits Curriculum Units by Fellows of the Yale-New Haven Teachers Institute 1989 Volume VII: Electricity Boolean Algebra and its Application to Problem Solving and Logic Circuits Curriculum Unit 89.07.07 by Hermine Smikle. Purpose The curriculum unit is designed to introduce a unit of simple logic and have students exposed to the area of Boolean algebra and how it can be used as a tool for problem solving. These mathematical ideas have been left out of the curriculum of many high school students. There is a need for mathematics to become more relevant to today’s society. Boolean Algebra with its application to the development of logic circuits will provide some hands on application and to bring to students the importance of technology and the effects it has had on our society. Rationale of the unit The guiding principles of this unit is that any area of mathematics can be presented to students at the high school level and that mathematics should be a) relevant to the existing and growing needs of the society b) related to the ability of the student c) should serve as a motivator to careers that will interest the student d) provide the motivation for further inquiry. The basic principle of the unit shows how an area of mathematics and some fundamental concepts are applicable to real life and modern Technology. Students should be encouraged to seek out areas in which this technology apply and make some comparisons of the technology now and those that existed in years past. Objectives of the unit Curriculum Unit 89.07.07 1 of 26 a) To help students acquire a range of mathematical skills b) To make mathematics relevant to the experiences of the students, there-fore recognizing mathematical principles in his environment. c) To apply mathematical knowledge to the solution of problems. d) To present a unit in the area of Boolean Algebra that is important to the understanding of circuits and how they work. Audience : This unit is designed for classes at the high school level. It can be a part of a unit in geometry, or could be used by a group of students for independent study. The Specific Objectives of the Unit 1 Introduction to logic: ____ The students will be able to: ____ a) Distinguish valid statements from those that are not valid. ____ b) To define a statement; To use reasoning; make deductions and implications. ____ c) To use simple connectives. ____ d) To make truth tables. 2. Introduction to Binary Arithmetic: ____ a) Define the numerals in the Binary system. ____ b) To find the values of a numeral written in the binary system in base ten. ____ c) To perform the basic operations in the binary system. 3. Introduction to Boolean Algebra. ____ a) Simple operation with boolean algebra ____ b) Make truth tables ____ c) Application of Boolean Algebra to ____ ____ (1) electrical switches ; (using ON and OFF) ____ ____ (2) write truth for adders and half adders ____ ____ (3) designing simple circuits. Curriculum Unit 89.07.07 2 of 26 Introduction There has been much talk in the media about the expansion of the Japanese technology in the market place. Evidence can be seen in almost all aspect of our daily life. In the last ten years there have been the emergence of new appliances and gadgets that most people find too complicated to understand examples are the video recorder; CD players; cars that are more efficient and telephones that are more intelligent these are only a few. It will be the teachers responsibility to awaken the minds of these students to the great demand that will be placed on them to understand and be aware of these changing technologies and develop in the students a pest for knowledge, and the ability to seek new and different ways to solve problems. The work world of the next ten years will be demanding workers that are equipped with different basic skills; workers with the ability to think and can understand the operations of these machines developed by the new technology. The unit attempt to show students how the application of Boolean algebra, and the binary system has spearheaded work in these new technologies. After the unit it is hoped that students will reconsider the options available to them and make more careful and informed decisions as to their career choices. The unit will begin by discussing the implications of Reasoning and deduction in the formal setting, with extensive work in the binary system and then a simple introduction to boolean algebra. It is hoped that this unit will find a place with those teachers that are theorists, and those that enjoy working with the hands on experiences that are meaningful for students. Limitations of the unit The concepts of Boolean algebra are found in algebra texts designed for higher education students; therefore the language and symbolism used are very technical. In an attempt to make it appropriate most of the proofs will be omitted and only those concepts necessary for understanding will be used. Students should be encouraged to draw diagrams and make tables where necessary. Because of the limitation of space for the unit there will be the need for the users to research additional problems from the reference given. Reasoning and Deduction : Introduction to Logic The main ingredient in the study of logic is the principles and method used to distinguish between arguments that are valid and those that are not. Logic deals with reasoning and the ability to deduce or come to some reasonable conclusions. In everyday life we guess what is going to happen on the basis of past experiences; “It looks like its going to rain” we say meaning that it may rain today. If we wait around long enough then it may rain. This is an example of inductive reasoning. In mathematics we can discover whether or not a guess is correct by checking if our conclusions can be deduced from results already known. This is called deductive reasoning. The starting point of logic is a statement. A statement in the technical sense is declarative and is either true or false, but cannot be both simultaneously. In logic it is irrelevant whether a statement is true or false, the important thing is that it should be definitely Curriculum Unit 89.07.07 3 of 26 one or the other. Logic statements must be either true or false. A Statement: is a declarative sentence which is either true or false. Examples of declarative statements: (a) New Haven is a city in Connecticut. (b) The month of June has thirty days. (c) The moon is made of red cheese. (d) Tomorrow is Saturday. The following are not statements: (a) Come to our party! (b) Is your homework done? (c) Close the door when you leave. (d) Good by dear. Those are not good statements because they cannot be considered true or false. The basic type of sentence in logic is called a simple statement. A simple statement is one that has only one thought with no connecting word. Examples of simple statements (a) Three is a counting number. (b) Ann is early for class If we take a simple statement and join them with a connecting word such as and, or, if . then, not, if and only if, we form a new sentence called a complex or compound statement. Compound Statements: are formed from the combination of two or more simple statements. Curriculum Unit 89.07.07 4 of 26 (a) Ann is early for class and she has her Example note books. (b) Three is a counting number and is also a odd number. Types of Compound statements and their connectives 1. A negation: formed when we negate a simple statement by “not”. ____ example : Simple statement: Today is Thursday ____ Compound statement: negation: today is not Thursday ____ The sentence “today is not Thursday” is a compound statement called a negation. 2. When we connect two simple statements using and, the result is a compound statement called a conjunction. 3. If the simple statements are joined by or the resulting compound statement is called a disjunction. 4. The If . then connector is used in compound statements called conditionals. 5. The if and only if connector is used to form compound statements called biconditionals. We are familiar with using letters as replacements in algebra; in logic we can also use letters to replace statements. The common letters used to replace statements are P,Q, R: but any letters can be used. Examples. P = Today is Saturday Q = I passed my test but P and Q would read Today is Saturday and I passed my test. It is also common practice to use symbols for the connective words (or the connectors) Connectors Symbols (a) not ~ (b) and ^ (c) or (figure available in print form) (d) if . then Ð> Curriculum Unit 89.07.07 5 of 26 (e) if and only if Ð> TRUTH TABLES: Since a statement in logic is either true or false, we should be able to determine the truth or falsity of a given statement. [Logic is very precise. There should be no worry about ambiguity] Let P be a statement; then ~ P means ‘not P’ or the negation of P. The negation of P is true whenever the statement P is false and false if P is true. These situations are confusing to write, therefore we can record these statements in a truth table. Example 1: Let P = this is a hard course. ____ ____ ~P= this is not a hard course.
Recommended publications
  • A Combinatorial Analysis of Finite Boolean Algebras
    A Combinatorial Analysis of Finite Boolean Algebras Kevin Halasz [email protected] May 1, 2013 Copyright c Kevin Halasz. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.3 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license can be found at http://www.gnu.org/copyleft/fdl.html. 1 Contents 1 Introduction 3 2 Basic Concepts 3 2.1 Chains . .3 2.2 Antichains . .6 3 Dilworth's Chain Decomposition Theorem 6 4 Boolean Algebras 8 5 Sperner's Theorem 9 5.1 The Sperner Property . .9 5.2 Sperner's Theorem . 10 6 Extensions 12 6.1 Maximally Sized Antichains . 12 6.2 The Erdos-Ko-Rado Theorem . 13 7 Conclusion 14 2 1 Introduction Boolean algebras serve an important purpose in the study of algebraic systems, providing algebraic structure to the notions of order, inequality, and inclusion. The algebraist is always trying to understand some structured set using symbol manipulation. Boolean algebras are then used to study the relationships that hold between such algebraic structures while still using basic techniques of symbol manipulation. In this paper we will take a step back from the standard algebraic practices, and analyze these fascinating algebraic structures from a different point of view. Using combinatorial tools, we will provide an in-depth analysis of the structure of finite Boolean algebras. We will start by introducing several ways of analyzing poset substructure from a com- binatorial point of view.
    [Show full text]
  • A Boolean Algebra and K-Map Approach
    Proceedings of the International Conference on Industrial Engineering and Operations Management Washington DC, USA, September 27-29, 2018 Reliability Assessment of Bufferless Production System: A Boolean Algebra and K-Map Approach Firas Sallumi ([email protected]) and Walid Abdul-Kader ([email protected]) Industrial and Manufacturing Systems Engineering University of Windsor, Windsor (ON) Canada Abstract In this paper, system reliability is determined based on a K-map (Karnaugh map) and the Boolean algebra theory. The proposed methodology incorporates the K-map technique for system level reliability, and Boolean analysis for interactions. It considers not only the configuration of the production line, but also effectively incorporates the interactions between the machines composing the line. Through the K-map, a binary argument is used for considering the interactions between the machines and a probability expression is found to assess the reliability of a bufferless production system. The paper covers three main system design configurations: series, parallel and hybrid (mix of series and parallel). In the parallel production system section, three strategies or methods are presented to find the system reliability. These are the Split, the Overlap, and the Zeros methods. A real-world case study from the automotive industry is presented to demonstrate the applicability of the approach used in this research work. Keywords: Series, Series-Parallel, Hybrid, Bufferless, Production Line, Reliability, K-Map, Boolean algebra 1. Introduction Presently, the global economy is forcing companies to have their production systems maintain low inventory and provide short delivery times. Therefore, production systems are required to be reliable and productive to make products at rates which are changing with the demand.
    [Show full text]
  • Sets and Boolean Algebra
    MATHEMATICAL THEORY FOR SOCIAL SCIENTISTS SETS AND SUBSETS Denitions (1) A set A in any collection of objects which have a common characteristic. If an object x has the characteristic, then we say that it is an element or a member of the set and we write x ∈ A.Ifxis not a member of the set A, then we write x/∈A. It may be possible to specify a set by writing down all of its elements. If x, y, z are the only elements of the set A, then the set can be written as (2) A = {x, y, z}. Similarly, if A is a nite set comprising n elements, then it can be denoted by (3) A = {x1,x2,...,xn}. The three dots, which stand for the phase “and so on”, are called an ellipsis. The subscripts which are applied to the x’s place them in a one-to-one cor- respondence with set of integers {1, 2,...,n} which constitutes the so-called index set. However, this indexing imposes no necessary order on the elements of the set; and its only pupose is to make it easier to reference the elements. Sometimes we write an expression in the form of (4) A = {x1,x2,...}. Here the implication is that the set A may have an innite number of elements; in which case a correspondence is indicated between the elements of the set and the set of natural numbers or positive integers which we shall denote by (5) Z = {1, 2,...}. (Here the letter Z, which denotes the set of natural numbers, derives from the German verb zahlen: to count) An alternative way of denoting a set is to specify the characteristic which is common to its elements.
    [Show full text]
  • Boolean Algebras
    CHAPTER 8 Boolean Algebras 8.1. Combinatorial Circuits 8.1.1. Introduction. At their lowest level digital computers han- dle only binary signals, represented with the symbols 0 and 1. The most elementary circuits that combine those signals are called gates. Figure 8.1 shows three gates: OR, AND and NOT. x1 OR GATE x1 x2 x2 x1 AND GATE x1 x2 x2 NOT GATE x x Figure 8.1. Gates. Their outputs can be expressed as a function of their inputs by the following logic tables: x1 x2 x1 x2 1 1 ∨1 1 0 1 0 1 1 0 0 0 OR GATE 118 8.1. COMBINATORIAL CIRCUITS 119 x1 x2 x1 x2 1 1 ∧1 1 0 0 0 1 0 0 0 0 AND GATE x x¯ 1 0 0 1 NOT GATE These are examples of combinatorial circuits. A combinatorial cir- cuit is a circuit whose output is uniquely defined by its inputs. They do not have memory, previous inputs do not affect their outputs. Some combinations of gates can be used to make more complicated combi- natorial circuits. For instance figure 8.2 is combinatorial circuit with the logic table shown below, representing the values of the Boolean expression y = (x x ) x . 1 ∨ 2 ∧ 3 x1 x2 y x3 Figure 8.2. A combinatorial circuit. x1 x2 x3 y = (x1 x2) x3 1 1 1 ∨0 ∧ 1 1 0 1 1 0 1 0 1 0 0 1 0 1 1 0 0 1 0 1 0 0 1 1 0 0 0 1 However the circuit in figure 8.3 is not a combinatorial circuit.
    [Show full text]
  • Boolean Algebra.Pdf
    Section 3 Boolean Algebra The Building Blocks of Digital Logic Design Section Overview Binary Operations (AND, OR, NOT), Basic laws, Proof by Perfect Induction, De Morgan’s Theorem, Canonical and Standard Forms (SOP, POS), Gates as SSI Building Blocks (Buffer, NAND, NOR, XOR) Source: UCI Lecture Series on Computer Design — Gates as Building Blocks, Digital Design Sections 1-9 and 2-1 to 2-7, Digital Logic Design CECS 201 Lecture Notes by Professor Allison Section II — Boolean Algebra and Logic Gates, Digital Computer Fundamentals Chapter 4 — Boolean Algebra and Gate Networks, Principles of Digital Computer Design Chapter 5 — Switching Algebra and Logic Gates, Computer Hardware Theory Section 6.3 — Remarks about Boolean Algebra, An Introduction To Microcomputers pp. 2-7 to 2-10 — Boolean Algebra and Computer Logic. Sessions: Four(4) Topics: 1) Binary Operations and Their Representation 2) Basic Laws and Theorems of Boolean Algebra 3) Derivation of Boolean Expressions (Sum-of-products and Product-of-sums) 4) Reducing Algebraic Expressions 5) Converting an Algebraic Expression into Logic Gates 6) From Logic Gates to SSI Circuits Binary Operations and Their Representation The Problem Modern digital computers are designed using techniques and symbology from a field of mathematics called modern algebra. Algebraists have studied for a period of over a hundred years mathematical systems called Boolean algebras. Nothing could be more simple and normal to human reasoning than the rules of a Boolean algebra, for these originated in studies of how we reason, what lines of reasoning are valid, what constitutes proof, and other allied subjects. The name Boolean algebra honors a fascinating English mathematician, George Boole, who in 1854 published a classic book, "An Investigation of the Laws of Thought, on Which Are Founded the Mathematical Theories of Logic and Probabilities." Boole's stated intention was to perform a mathematical analysis of logic.
    [Show full text]
  • Boolean Algebra
    Boolean Algebra ECE 152A – Winter 2012 Reading Assignment Brown and Vranesic 2 Introduction to Logic Circuits 2.5 Boolean Algebra 2.5.1 The Venn Diagram 2.5.2 Notation and Terminology 2.5.3 Precedence of Operations 2.6 Synthesis Using AND, OR and NOT Gates 2.6.1 Sum-of-Products and Product of Sums Forms January 11, 2012 ECE 152A - Digital Design Principles 2 Reading Assignment Brown and Vranesic (cont) 2 Introduction to Logic Circuits (cont) 2.7 NAND and NOR Logic Networks 2.8 Design Examples 2.8.1 Three-Way Light Control 2.8.2 Multiplexer Circuit January 11, 2012 ECE 152A - Digital Design Principles 3 Reading Assignment Roth 2 Boolean Algebra 2.3 Boolean Expressions and Truth Tables 2.4 Basic Theorems 2.5 Commutative, Associative, and Distributive Laws 2.6 Simplification Theorems 2.7 Multiplying Out and Factoring 2.8 DeMorgan’s Laws January 11, 2012 ECE 152A - Digital Design Principles 4 Reading Assignment Roth (cont) 3 Boolean Algebra (Continued) 3.1 Multiplying Out and Factoring Expressions 3.2 Exclusive-OR and Equivalence Operation 3.3 The Consensus Theorem 3.4 Algebraic Simplification of Switching Expressions January 11, 2012 ECE 152A - Digital Design Principles 5 Reading Assignment Roth (cont) 4 Applications of Boolean Algebra Minterm and Maxterm Expressions 4.3 Minterm and Maxterm Expansions 7 Multi-Level Gate Circuits NAND and NOR Gates 7.2 NAND and NOR Gates 7.3 Design of Two-Level Circuits Using NAND and NOR Gates 7.5 Circuit Conversion Using Alternative Gate Symbols January 11, 2012 ECE 152A - Digital Design Principles 6 Boolean Algebra Axioms of Boolean Algebra Axioms generally presented without proof 0 · 0 = 0 1 + 1 = 1 1 · 1 = 1 0 + 0 = 0 0 · 1 = 1 · 0 = 0 1 + 0 = 0 + 1 = 1 if X = 0, then X’ = 1 if X = 1, then X’ = 0 January 11, 2012 ECE 152A - Digital Design Principles 7 Boolean Algebra The Principle of Duality from Zvi Kohavi, Switching and Finite Automata Theory “We observe that all the preceding properties are grouped in pairs.
    [Show full text]
  • Boolean Algebra Computer Fundamentals
    CCoommppuutterer FFununddaammenenttaallss:: PPrradadeeepep KK.. SSiinhanha && PPrriititi SSiinhanha Ref. Page Chapter 6: Boolean Algebra and Logic Circuits Slide 1/78 CCoommppuutterer FFununddaammenenttaallss:: PPrradadeeepep KK.. SSiinhanha && PPrriititi SSiinhanha LLeeararnniinngg ObObjjeeccttiivveses In this chapter you will learn about: § Boolean algebra § Fundamental concepts and basic laws of Boolean algebra § Boolean function and minimization § Logic gates § Logic circuits and Boolean expressions § Combinational circuits and design Ref. Page 60 Chapter 6: Boolean Algebra and Logic Circuits Slide 2/78 CCoommppuutterer FFununddaammenenttaallss:: PPrradadeeepep KK.. SSiinhanha && PPrriititi SSiinhanha BBooooleleaann AAllggeebrabra § An algebra that deals with binary number system § George Boole (1815-1864), an English mathematician, developed it for: § Simplifying representation § Manipulation of propositional logic § In 1938, Claude E. Shannon proposed using Boolean algebra in design of relay switching circuits § Provides economical and straightforward approach § Used extensively in designing electronic circuits used in computers Ref. Page 60 Chapter 6: Boolean Algebra and Logic Circuits Slide 3/78 CCoommppuutterer FFununddaammenenttaallss:: PPrradadeeepep KK.. SSiinhanha && PPrriititi SSiinhanha FundamFundameennttalal CCoonncceeppttss ooffBBoooolleeaann AAlglgeebbrara § Use of Binary Digit § Boolean equations can have either of two possible values, 0 and 1 § Logical Addition § Symbol ‘+’, also known as ‘OR’operator, used for logical
    [Show full text]
  • 'Chapter ~ Irltr&I'uctf Yoll'to'the Use of Boblean Cilgebra"And
    / . '. " . .... -: ... '; , " . ! :. " This chapter explores Boolean Algebra and the logic gateS used 3.0 INTRODUCTION to implement Boolean equations. Boolean Algebra is an area of mathematiciinvolVing ' opetations' ontwo-state «true-false) variAbles. "'thls 'type' df 'algebra .' was first formulated by the Eng~h Mathefnafidah 'GeorgeBoolein 1854. ' Boolean" Algebra is based· on the assUII\ptionthat any proposition can be proven with correct answers' to a specific ntlmber Of ·, tnie-false "" qu~t16ns . " Further~ Boolean algebra " provides a means ;whereby true-faIselogic can be 'handled in the form' ofAlgJbralC"eQuationS With the' qUeStioriSas independent variables and the conciu51on Yexpressed as a ' dependent variable (recall that in'" the' equationl" y ' :; A+Bthat A and B are independent vimables and 'Y ' is ' a dependent' variable). This 'chapter ~ irltr&i'uctf YOll 'to'the use of Boblean Cilgebra "and the use of electroruc logic gateS (citcuits) to implement Boolean . ~ ~ equations. ' 21 ., Upon completion of this chapter you should be able to: :' ~~i ' ,- .:. ~. ; ~' : ,;i . >. ~~; . ~~).~( . .'} '.. • Explain the basic operations of Boolean Algebra. , " . : ;:/~ ' .' . ' ,l . •1 . · !• .·i I' f ' ,;,:~ ~ ; •...wr\~~ ~lean~ua.tiol\$~ , " 4' , '. ~ ,' . .~- ',~ : , • .. , .. ~ ' ~ ' . f<-:-; '. ' ~ , ,' ~ 'use logic cirCuits t() implement Boolean equations. _ .;( " '.i;~ ..... ( , -. ~ 'f~>. 3.2DISCtJSSIO.N ',.Boolean algebra is the :. lmn~of mathematics which studies operations ontW~tate variables. For the purposes of this book, an algebra is a system of mathematics where the operations of addition and multiplication can be performed with the results of the operation remaining within the system. In Boolean algebra, addition and multiplication' are the only binary (two-variable) operations which are defined. These two operations also may be performed on more than two independent variables.
    [Show full text]
  • Context-Aware Middleware: an Overview Daniel Romero
    Context-Aware Middleware: An overview Daniel Romero To cite this version: Daniel Romero. Context-Aware Middleware: An overview. Paradigma, Le Lettere, 2008, 2 (3), pp.1- 11. inria-00481818 HAL Id: inria-00481818 https://hal.inria.fr/inria-00481818 Submitted on 7 May 2010 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Context-Aware Middleware: An overview Daniel Romero University of Lille 1, INRIA Lille, Nord Europe, Laboratoire LIFL UMR CNRS 8022 Parc Scientifique de la Haute-Borne 40, Avenue Halley 59650 Villeneuve D’Ascq- France [email protected] Abstract. In this paper we give an overview of context-aware middleware plat- forms. They are characterized in terms of properties such as communication, con- text management and adaptation. We present a description of different platforms and their properties. key words: context-awareness, middleware platform, pervasive computing. 1 Introduction Today is normal to find different computational entities that are part of environments where people develop their daily activities such as home, office and malls. These entities provide services that can help users in their activities. The entities are also characterized by their heterogeneity. This means that they use different communication mechanisms, connection technologies and data representations, and that they provide information with different processing levels.
    [Show full text]
  • Foundations of Computation, Version 2.3.2 (Summer 2011)
    Foundations of Computation Second Edition (Version 2.3.2, Summer 2011) Carol Critchlow and David Eck Department of Mathematics and Computer Science Hobart and William Smith Colleges Geneva, New York 14456 ii c 2011, Carol Critchlow and David Eck. Foundations of Computation is a textbook for a one semester introductory course in theoretical computer science. It includes topics from discrete mathematics, automata the- ory, formal language theory, and the theory of computation, along with practical applications to computer science. It has no prerequisites other than a general familiarity with com- puter programming. Version 2.3, Summer 2010, was a minor update from Version 2.2, which was published in Fall 2006. Version 2.3.1 is an even smaller update of Version 2.3. Ver- sion 2.3.2 is identical to Version 2.3.1 except for a change in the license under which the book is released. This book can be redistributed in unmodified form, or in mod- ified form with proper attribution and under the same license as the original, for non-commercial uses only, as specified by the Creative Commons Attribution-Noncommercial-ShareAlike 4.0 Li- cense. (See http://creativecommons.org/licenses/by-nc-sa/4.0/) This textbook is available for on-line use and for free download in PDF form at http://math.hws.edu/FoundationsOfComputation/ and it can be purchased in print form for the cost of reproduction plus shipping at http://www.lulu.com Contents Table of Contents iii 1 Logic and Proof 1 1.1 Propositional Logic ....................... 2 1.2 Boolean Algebra .......................
    [Show full text]
  • Laws of Boolean Algebra and Boolean Algebra Rules
    4/10/2020 Laws of Boolean Algebra and Boolean Algebra Rules Home / Boolean Algebra / Laws of Boolean Algebra Laws of Boolean Algebra Boolean Algebra uses a set of Laws and Rules to define the operation of a digital logic circuit As well as the logic symbols “0” and “1” being used to represent a digital input or output, we can also use them as constants for a permanently “Open” or “Closed” circuit or contact respectively. A set of rules or Laws of Boolean Algebra expressions have been invented to help reduce the number of logic gates needed to perform a particular logic operation resulting in a list of functions or theorems known commonly as the Laws of Boolean Algebra. Boolean Algebra is the mathematics we use to analyse digital gates and circuits. We can use these “Laws of Boolean” to both reduce and simplify a complex Boolean expression in an attempt to reduce the number of logic gates required. Boolean Algebra is therefore a system of mathematics based on logic that has its own set of rules or laws which are used to define and reduce Boolean expressions. The variables used in Boolean Algebra only have one of two possible values, a logic “0” and a logic “1” but an expression can have an infinite number of variables all labelled individually to represent inputs to the expression, For example, variables A, B, C etc, giving us a logical expression of A + B = C, but each variable can ONLY be a 0 or a 1. Examples of these individual laws of Boolean, rules and theorems for Boolean Algebra are given in the following table.
    [Show full text]
  • 2018-2019 TTC Catalog - Avionics Technology (AVT)
    2018-2019 TTC Catalog - Avionics Technology (AVT) AVT 101 - Basic Electricity for Avionics Lec: 3.0 Lab: 3.0 Credit: 4.0 This course introduces the basic theories and applications of electricity. Students will construct and analyze both DC and AC circuits using electrical measuring instruments and the interpretation of electrical circuit diagrams, including Ohm’s and Kirchhoff’s laws. Prerequisite MAT 101 or MAT 155 or appropriate test score Grade Type: Letter Grade Division: Aeronautical Studies AVT 105 - Aircraft Electricity for Avionics Lec: 3.0 Lab: 3.0 Credit: 4.0 This course is a study of the operation and maintenance of various electrically operated aircraft systems. Topics include batteries, generators, alternators, inverters, DC and AC motors, position indicating and warning systems, fire detection, and extinguishing systems and anti-skid brakes. Prerequisite AVT 115 Grade Type: Letter Grade Division: Aeronautical Studies AVT 110 - Aircraft Electronic Circuits Lec: 3.0 Lab: 3.0 Credit: 4.0 1 This course is a study of aircraft electronic circuits. Students will examine and construct basic analog electronic circuits and solve solid state device problems. Course work also includes the analysis, construction, testing and troubleshooting of analog circuits. Prerequisite AVT 101 Grade Type: Letter Grade Division: Aeronautical Studies AVT 115 - Aircraft Digital Circuits Lec: 2.0 Lab: 3.0 Credit: 3.0 This course emphasizes analysis, construction and troubleshooting of digital logic gate circuits and integrated circuits. Topics include number systems, basic logic gates, Boolean algebra, logic optimization, flip-flops, counters and registers. Circuits are modeled, constructed and tested. Prerequisite AVT 110 Grade Type: Letter Grade Division: Aeronautical Studies AVT 120 - Aviation Electronic Communications Lec: 3.0 Lab: 3.0 Credit: 4.0 This course includes application of electrical theory and analysis techniques to the study of aircraft transmitters and receivers, with an emphasis on mixers, IF amplifiers and detectors.
    [Show full text]