Finding Terrestrial Planets in the Habitable Zones of Nearby Stars

Total Page:16

File Type:pdf, Size:1020Kb

Finding Terrestrial Planets in the Habitable Zones of Nearby Stars Finding terrestrial planets in the habitable zones of nearby stars Part II Astrophysics Essay Simon Hodgkin & Mark Wyatt (on sabbatical) Terrestrial? 4 Winn et al. 2011 Winn et al. 2011 5 Exoplanets Solar system 3 K−11e 15 − −3 Uranus 4 0.5 g cm 1.0 g cm −3 K−11d 2.0 g cm ] ] 3 Earth 10 Earth 4.0 g cm−3 K−11f GJ 1214b 50% water 8.0 K−11b 55 Cnc e g cm−3 like Radius [R Radius [R 2 Earth− maximum iron fraction 16.0 −3 water g cm 5 C−7b K−10b rock hydrogen 1 Earth iron Venus 55 Cnc e 0 0 1 10 100 1000 2 4 6 8 10 12 14 Mass [MEarth] Mass [MEarth] FIG.3.—Masses and radii of transiting exoplanets. Open circles are previously known transiting planets. The filled circle is 55 Cnc e. The stars are Solar System planets, for comparison. Left.—Broad view, with curves showing mass-radius relations for pure hydrogen, water ice, rock (MgSiO3 perovskite) and iron, from Figure 4 of Seager et al. (2007). Right.—Focus on super-Earths, showing contours of constant mean density and a few illustrative theoretical models: a “water-world” composition with 50% water, 44% silicate mantle and 6% iron core; a nominal “Earth-like” composition withterrestrialiron/siliconratioand no volatiles (Valencia et al. 2006, Li & Sasselov, submitted); and the maximum mantle stripping limit (maximum iron fraction, minimum radius) computed by Marcus et al. (2010). Data were taken from Lissauer et al. (2011) for Kepler-11, Batalha et al. (2011) for Kepler-10b, Charbonneau et al. (2009) for GJ 1214b, and Hatzes et al. (2011) for Corot-7b. We note the mass of Corot-7b is disputed (Pont et al. 2011). The planetary temperature at the substellar point would be rotation speed to be 2.4 ± 0.5kms−1,muchslowerthanthe −1 T!!R!/a ≈ 2800 K if the planet has a low albedo, its rotation synchronous value of 65 km s . is synchronized with its orbit and the incoming heat is rera- Hence, the interpretation of the phase modulation is un- diated locally. If instead the heat is redistributed evenly over clear. The power spectral density of the photometric data also the planet’s surface, the zero-albedo equilibrium temperature displays the low-frequency envelope characteristic of stellar activity and granulation, which complicates the interpretation is T!!R!/2a ≈ 1980 K. Atmospheres of transiting planets can be studied through of gradual variations at the orbital period of 55 Cnc e. Con- occultations and orbital phase variations (see, e.g., Knut- firming or refuting this candidate orbital phase modulation is son et al. 2007). Our analysis did not reveal occultations apriorityforfuturework. (" =48±52 ppm), but did reveal a phase modulation (" = occ pha 4.3. Orbital coplanarity 168 ± 70 ppm). However, we cannot attribute the modulation to the changing illuminated fraction of 55 Cnc e, for two rea- 55 Cnc e is the innermost planet in a system of at least five sons. Firstly, the occultation depth is smaller than the full planets. If the orbits are coplanar and sufficiently close to ◦ range of the sinusoidal modulation. Secondly, the amplitude 90 inclination, then multiple planets would transit. Transits of the modulation is too large. Reflected starlight would cause of b and c were ruled out by Fischer et al. (2008).11 How- 2 asignalnolargerthan(Rp/a) ≈ 29 ppm. The planet’s ther- ever, the nondetections do not lead to constraints on mutual ≈ 2 4 ≈ inclinations. Given the measured inclination for planet e of mal emission would produce a signal (Rp/R!) (Tp/T!) ± 28 ppm for bolometric observations, and only 5 ppm for ob- 90.0 3.8deg,theotherplanetscouldhaveorbitsperfectly servations in the MOST bandpass, even for a 2800 K planet. aligned with that of planet e and still fail to transit. One possible explanation is that the star’s planet-facing McArthur et al. (2004) reported an orbital inclination of 53◦ ± 6.8◦ for the outermost planet d, based on a preliminary hemisphere is fainter by a fraction "pha than the other hemi- sphere, due to star-planet interactions. The planet may in- investigation of Hubble Space Telescope astrometry. This duce a patch of enhanced magnetic activity, as is the case would imply a strong misalignment between the orbits of d for τ Boo b (Walker et al. 2008). In this case, though, the and e. However, the authors noted that the astrometric dataset planet-induced disturbance would need to be a traveling wave, spannedonlya limited arcof the planet’sorbit, and no final re- because the stellar rotation is not synchronized with the or- 11 Our MOST observations might have led to firmer results for planet b, bit. Fischer et al. (2008) estimated the rotation period to be since it spanned a full orbit of that planet, but unfortunately no useful data 42.7±2.5d,andValenti&Fischer(2005)foundtheprojected were obtained during the transit window (see Fig. 1). The MOST observation did not coincide with any transit windows for planets c-f. Habitable? 861 As of June 2012 http://xkcd.com/1071/ 1222 MACPerryman Detecting Exoplanets • Pulsar Timing • Radial Velocity • Transits • TTV • Reflected Light • Direct Imaging • Microlensing • Astrometry Figure 4. Examples of radial velocity measurements: HD 210277 (top) and HD 168443 (bottom), from Marcy et al (1999), obtained with the HIRES spectrometer on the Keck telescope. The solid curves show the best-fit Keplerian models. The non-sinusoidal variations result from the eccentric orbits, and the derived M sin i values are 1.28 and 4.01MJ respectively. The fit for HD 168443 is improved further by a linear velocity trend, suggestive of an additional, nearby, long-period stellar or brown dwarf companion (courtesy of Geoffrey Marcy). In summary, imaging of Earth-mass extra-solar planets from large ground-based telescopes equipped with adaptive optics and operating in interferometric combination, and observations in the infrared using space interferometers, are receiving considerable attention. While the commitment is impressive, dedicated space missions are probably 10–15 years or more away. At the start of this section it was noted that extra-solar planetary imaging generally refers to the detection of a reflection point-source image of the planet, rather than to resolution of the extra-solar planet surface. Ground- or space-based (or lunar) interferometric arrays of 10–100 km baseline could start to tackle resolved planetary imaging (Labeyrie 1996). Bender and Stebbins (1996) undertook a partial design of a separated spacecraft interferometer which Detecting Exoplanets Annu. Rev. Astro. Astrophys. 2007.45:397-439. Downloaded from www.annualreviews.org ANRV320-AA45-10 ARI 27 July 2007 19:32 by Cambridge University on 11/27/12. For personal use only. a HD 69830 HARPS b HD 69830 HARPS • Pulsar Timing ) –1 i 5 i 5 • Radial Velocity 0 0 –5 402 Udry Radial velocity (m s • Transits 4 P = 8.67 days 2 m sin i = 10.2 M⊕ 0 –5 O–C –2 · –4 • TTV Santos 53,300 53,350 53,400 5 ii ) –1 ) –1 ii • Reflected Light 5 0 0 • Direct Imaging P = 31.6 days –5 Radial velocity (m s m sin i = 11.8 M⊕ Radial velocity (m s –5 4 2 • Microlensing 0 O–C –2 5 iii –4 53,650 53,700 53,750 4 • Astrometry ) –1 iii 0 2 0 P = 197 days m sin i = 18.1 M ⊕ –2 –5 Radial velocity (m s –4 0 0.5 1 53,000 53,200 53,400 53,600 53,800 Orbital phase JD-2400000 (days) Figure 2 HARPS radial velocities of the star HD 69830 hosting a system of three Neptune-mass planets. The best three-Keplerian model of the system is superimposed to the data, in a phase-folded manner (a) or for given intervals of time (b). Run-averaged velocities after removal of the effect of the two shorter-period planets 1 are shown in (biii ). The measured dispersion around the solution then becomes of the order of 20–30 cm− . (From Lovis et al. 2006.) Detecting Exoplanets Extra-solar planets 1235 • Pulsar Timing • Radial Velocity • Transits • TTV • Reflected Light • Direct Imaging • Microlensing • Astrometry Figure 7. The first detected transit of an extra-solar planet, HD 209458 (from Charbonneau et al 2000). The figure shows the measured relative intensity versus time. Measurement noise increases The firstto thedetected right due to increasing transit atmospheric of an air mass.extra-solar From the detailed planet, shape of the transit,HD some of 209458bthe physical(from characteristics Charbonneau of the planet can et be inferred al 2000). (courtesy of David Charbonneau). detection of the HD 209458 transits by Charbonneau et al (2000), is monitoring some 24 000 stars in a 5.7◦ square field in the constellation of Auriga; ASP (Arizona Search for Planets) uses a 20 cm aperture in a similar manner; and ASAS (All-Sky Automated Survey) has as its goal the photometric monitoring of 107 stars brighter than 14 mag over the entire sky, making more than 100 3-min exposures per∼ night. Such searches should soon extend the detection of transits to later spectral types (cooler, less massive K and M stars) than the Sun-like (F- and G-type) stars favoured in the radial velocity surveys, in which the transit effect should be more pronounced due to the smaller stellar size. Observations of more than 34 000 stars in the globular cluster 47 Tucanae, uniformally sampled over nine days by the Hubble Space Telescope in July 1999, may result in several tens of transit detections if such planets exist in globular clusters (Gilliland 1999), although preliminary analysis for 27 000 stars has revealed no convincing planet candidates (Brown et al 2000).
Recommended publications
  • Modeling Super-Earth Atmospheres in Preparation for Upcoming Extremely Large Telescopes
    Modeling Super-Earth Atmospheres In Preparation for Upcoming Extremely Large Telescopes Maggie Thompson1 Jonathan Fortney1, Andy Skemer1, Tyler Robinson2, Theodora Karalidi1, Steph Sallum1 1University of California, Santa Cruz, CA; 2Northern Arizona University, Flagstaff, AZ ExoPAG 19 January 6, 2019 Seattle, Washington Image Credit: NASA Ames/JPL-Caltech/T. Pyle Roadmap Research Goals & Current Atmosphere Modeling Selecting Super-Earths for State of Super-Earth Tool (Past & Present) Follow-Up Observations Detection Preliminary Assessment of Future Observatories for Conclusions & Upcoming Instruments’ Super-Earths Future Work Capabilities for Super-Earths M. Thompson — ExoPAG 19 01/06/19 Research Goals • Extend previous modeling tool to simulate super-Earth planet atmospheres around M, K and G stars • Apply modified code to explore the parameter space of actual and synthetic super-Earths to select most suitable set of confirmed exoplanets for follow-up observations with JWST and next-generation ground-based telescopes • Inform the design of advanced instruments such as the Planetary Systems Imager (PSI), a proposed second-generation instrument for TMT/GMT M. Thompson — ExoPAG 19 01/06/19 Current State of Super-Earth Detections (1) Neptune Mass Range of Interest Earth Data from NASA Exoplanet Archive M. Thompson — ExoPAG 19 01/06/19 Current State of Super-Earth Detections (2) A Approximate Habitable Zone Host Star Spectral Type F G K M Data from NASA Exoplanet Archive M. Thompson — ExoPAG 19 01/06/19 Atmosphere Modeling Tool Evolution of Atmosphere Model • Solar System Planets & Moons ~ 1980’s (e.g., McKay et al. 1989) • Brown Dwarfs ~ 2000’s (e.g., Burrows et al. 2001) • Hot Jupiters & Other Giant Exoplanets ~ 2000’s (e.g., Fortney et al.
    [Show full text]
  • Lurking in the Shadows: Wide-Separation Gas Giants As Tracers of Planet Formation
    Lurking in the Shadows: Wide-Separation Gas Giants as Tracers of Planet Formation Thesis by Marta Levesque Bryan In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy CALIFORNIA INSTITUTE OF TECHNOLOGY Pasadena, California 2018 Defended May 1, 2018 ii © 2018 Marta Levesque Bryan ORCID: [0000-0002-6076-5967] All rights reserved iii ACKNOWLEDGEMENTS First and foremost I would like to thank Heather Knutson, who I had the great privilege of working with as my thesis advisor. Her encouragement, guidance, and perspective helped me navigate many a challenging problem, and my conversations with her were a consistent source of positivity and learning throughout my time at Caltech. I leave graduate school a better scientist and person for having her as a role model. Heather fostered a wonderfully positive and supportive environment for her students, giving us the space to explore and grow - I could not have asked for a better advisor or research experience. I would also like to thank Konstantin Batygin for enthusiastic and illuminating discussions that always left me more excited to explore the result at hand. Thank you as well to Dimitri Mawet for providing both expertise and contagious optimism for some of my latest direct imaging endeavors. Thank you to the rest of my thesis committee, namely Geoff Blake, Evan Kirby, and Chuck Steidel for their support, helpful conversations, and insightful questions. I am grateful to have had the opportunity to collaborate with Brendan Bowler. His talk at Caltech my second year of graduate school introduced me to an unexpected population of massive wide-separation planetary-mass companions, and lead to a long-running collaboration from which several of my thesis projects were born.
    [Show full text]
  • Curriculum Vitae - 24 March 2020
    Dr. Eric E. Mamajek Curriculum Vitae - 24 March 2020 Jet Propulsion Laboratory Phone: (818) 354-2153 4800 Oak Grove Drive FAX: (818) 393-4950 MS 321-162 [email protected] Pasadena, CA 91109-8099 https://science.jpl.nasa.gov/people/Mamajek/ Positions 2020- Discipline Program Manager - Exoplanets, Astro. & Physics Directorate, JPL/Caltech 2016- Deputy Program Chief Scientist, NASA Exoplanet Exploration Program, JPL/Caltech 2017- Professor of Physics & Astronomy (Research), University of Rochester 2016-2017 Visiting Professor, Physics & Astronomy, University of Rochester 2016 Professor, Physics & Astronomy, University of Rochester 2013-2016 Associate Professor, Physics & Astronomy, University of Rochester 2011-2012 Associate Astronomer, NOAO, Cerro Tololo Inter-American Observatory 2008-2013 Assistant Professor, Physics & Astronomy, University of Rochester (on leave 2011-2012) 2004-2008 Clay Postdoctoral Fellow, Harvard-Smithsonian Center for Astrophysics 2000-2004 Graduate Research Assistant, University of Arizona, Astronomy 1999-2000 Graduate Teaching Assistant, University of Arizona, Astronomy 1998-1999 J. William Fulbright Fellow, Australia, ADFA/UNSW School of Physics Languages English (native), Spanish (advanced) Education 2004 Ph.D. The University of Arizona, Astronomy 2001 M.S. The University of Arizona, Astronomy 2000 M.Sc. The University of New South Wales, ADFA, Physics 1998 B.S. The Pennsylvania State University, Astronomy & Astrophysics, Physics 1993 H.S. Bethel Park High School Research Interests Formation and Evolution
    [Show full text]
  • Naming the Extrasolar Planets
    Naming the extrasolar planets W. Lyra Max Planck Institute for Astronomy, K¨onigstuhl 17, 69177, Heidelberg, Germany [email protected] Abstract and OGLE-TR-182 b, which does not help educators convey the message that these planets are quite similar to Jupiter. Extrasolar planets are not named and are referred to only In stark contrast, the sentence“planet Apollo is a gas giant by their assigned scientific designation. The reason given like Jupiter” is heavily - yet invisibly - coated with Coper- by the IAU to not name the planets is that it is consid- nicanism. ered impractical as planets are expected to be common. I One reason given by the IAU for not considering naming advance some reasons as to why this logic is flawed, and sug- the extrasolar planets is that it is a task deemed impractical. gest names for the 403 extrasolar planet candidates known One source is quoted as having said “if planets are found to as of Oct 2009. The names follow a scheme of association occur very frequently in the Universe, a system of individual with the constellation that the host star pertains to, and names for planets might well rapidly be found equally im- therefore are mostly drawn from Roman-Greek mythology. practicable as it is for stars, as planet discoveries progress.” Other mythologies may also be used given that a suitable 1. This leads to a second argument. It is indeed impractical association is established. to name all stars. But some stars are named nonetheless. In fact, all other classes of astronomical bodies are named.
    [Show full text]
  • Arxiv:2105.11583V2 [Astro-Ph.EP] 2 Jul 2021 Keck-HIRES, APF-Levy, and Lick-Hamilton Spectrographs
    Draft version July 6, 2021 Typeset using LATEX twocolumn style in AASTeX63 The California Legacy Survey I. A Catalog of 178 Planets from Precision Radial Velocity Monitoring of 719 Nearby Stars over Three Decades Lee J. Rosenthal,1 Benjamin J. Fulton,1, 2 Lea A. Hirsch,3 Howard T. Isaacson,4 Andrew W. Howard,1 Cayla M. Dedrick,5, 6 Ilya A. Sherstyuk,1 Sarah C. Blunt,1, 7 Erik A. Petigura,8 Heather A. Knutson,9 Aida Behmard,9, 7 Ashley Chontos,10, 7 Justin R. Crepp,11 Ian J. M. Crossfield,12 Paul A. Dalba,13, 14 Debra A. Fischer,15 Gregory W. Henry,16 Stephen R. Kane,13 Molly Kosiarek,17, 7 Geoffrey W. Marcy,1, 7 Ryan A. Rubenzahl,1, 7 Lauren M. Weiss,10 and Jason T. Wright18, 19, 20 1Cahill Center for Astronomy & Astrophysics, California Institute of Technology, Pasadena, CA 91125, USA 2IPAC-NASA Exoplanet Science Institute, Pasadena, CA 91125, USA 3Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, Stanford, CA 94305, USA 4Department of Astronomy, University of California Berkeley, Berkeley, CA 94720, USA 5Cahill Center for Astronomy & Astrophysics, California Institute of Technology, Pasadena, CA 91125, USA 6Department of Astronomy & Astrophysics, The Pennsylvania State University, 525 Davey Lab, University Park, PA 16802, USA 7NSF Graduate Research Fellow 8Department of Physics & Astronomy, University of California Los Angeles, Los Angeles, CA 90095, USA 9Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA 10Institute for Astronomy, University of Hawai`i,
    [Show full text]
  • Arxiv:0809.1275V2
    How eccentric orbital solutions can hide planetary systems in 2:1 resonant orbits Guillem Anglada-Escud´e1, Mercedes L´opez-Morales1,2, John E. Chambers1 [email protected], [email protected], [email protected] ABSTRACT The Doppler technique measures the reflex radial motion of a star induced by the presence of companions and is the most successful method to detect ex- oplanets. If several planets are present, their signals will appear combined in the radial motion of the star, leading to potential misinterpretations of the data. Specifically, two planets in 2:1 resonant orbits can mimic the signal of a sin- gle planet in an eccentric orbit. We quantify the implications of this statistical degeneracy for a representative sample of the reported single exoplanets with available datasets, finding that 1) around 35% percent of the published eccentric one-planet solutions are statistically indistinguishible from planetary systems in 2:1 orbital resonance, 2) another 40% cannot be statistically distinguished from a circular orbital solution and 3) planets with masses comparable to Earth could be hidden in known orbital solutions of eccentric super-Earths and Neptune mass planets. Subject headings: Exoplanets – Orbital dynamics – Planet detection – Doppler method arXiv:0809.1275v2 [astro-ph] 25 Nov 2009 Introduction Most of the +300 exoplanets found to date have been discovered using the Doppler tech- nique, which measures the reflex motion of the host star induced by the planets (Mayor & Queloz 1995; Marcy & Butler 1996). The diverse characteristics of these exoplanets are somewhat surprising. Many of them are similar in mass to Jupiter, but orbit much closer to their 1Carnegie Institution of Washington, Department of Terrestrial Magnetism, 5241 Broad Branch Rd.
    [Show full text]
  • Star Systems in the Solar Neighborhood up to 10 Parsecs Distance
    Vol. 16 No. 3 June 15, 2020 Journal of Double Star Observations Page 229 Star Systems in the Solar Neighborhood up to 10 Parsecs Distance Wilfried R.A. Knapp Vienna, Austria [email protected] Abstract: The stars and star systems in the solar neighborhood are for obvious reasons the most likely best investigated stellar objects besides the Sun. Very fast proper motion catches the attention of astronomers and the small distances to the Sun allow for precise measurements so the wealth of data for most of these objects is impressive. This report lists 94 star systems (doubles or multiples most likely bound by gravitation) in up to 10 parsecs distance from the Sun as well over 60 questionable objects which are for different reasons considered rather not star systems (at least not within 10 parsecs) but might be if with a small likelihood. A few of the listed star systems are newly detected and for several systems first or updated preliminary orbits are suggested. A good part of the listed nearby star systems are included in the GAIA DR2 catalog with par- allax and proper motion data for at least some of the components – this offers the opportunity to counter-check the so far reported data with the most precise star catalog data currently available. A side result of this counter-check is the confirmation of the expectation that the GAIA DR2 single star model is not well suited to deliver fully reliable parallax and proper motion data for binary or multiple star systems. 1. Introduction high proper motion speed might cause visually noticea- The answer to the question at which distance the ble position changes from year to year.
    [Show full text]
  • Extra-Solar Planetary Systems
    From the Academy Extra-solar planetary systems Joan Najita*†, Willy Benz‡, and Artie Hatzes§ *National Optical Astronomy Observatories, 950 North Cherry Avenue, Tucson, AZ 85719; ‡Physikalisches Institut, Universita¨t Bern, Sidlerstrasse 5, Ch-3012, Bern, Switzerland; and §McDonald Observatory, University of Texas, Austin, TX 78712 he discovery of extra-solar planets has captured the imagi- Table 1. Properties of extra-solar planet candidates Tnation and interest of the public and scientific communities K, alike, and for the same reasons: we are all want to know the Parent star M sin i Period, days a,AU e m⅐sϪ1 answers to questions such as ‘‘Where do we come from?’’ and ‘‘Are we alone?’’ Throughout this century, popular culture has HD 187123 0.52 3.097 0.042 0. 72. presumed the existence of other worlds and extra-terrestrial ␶ Bootis 3.64 3.3126 0.042 0. 469. intelligence. As a result, the annals of popular culture are filled HD 75289 0.42 3.5097 0.046 0. 54. with thoughts on what extra-solar planets and their inhabitants 51 Peg 0.44 4.2308 0.051 0.01 56. are like. And now toward the end of the century, astronomers ␷ And b 0.71 4.617 0.059 0.034 73.0 have managed to confirm at least one aspect of this speculative HD 217107 1.28 7.11 0.07 0.14 140. search for understanding in finding convincing evidence of Gliese 86 3.6 15.83 0.11 0.042 379. planets beyond the solar system. ␳1 Cancri 0.85 14.656 0.12 0.03 75.8 The discovery of extra-solar planets has brought with it a HD 195019 3.43 18.3 0.14 0.05 268.
    [Show full text]
  • Correlations Between the Stellar, Planetary, and Debris Components of Exoplanet Systems Observed by Herschel⋆
    A&A 565, A15 (2014) Astronomy DOI: 10.1051/0004-6361/201323058 & c ESO 2014 Astrophysics Correlations between the stellar, planetary, and debris components of exoplanet systems observed by Herschel J. P. Marshall1,2, A. Moro-Martín3,4, C. Eiroa1, G. Kennedy5,A.Mora6, B. Sibthorpe7, J.-F. Lestrade8, J. Maldonado1,9, J. Sanz-Forcada10,M.C.Wyatt5,B.Matthews11,12,J.Horner2,13,14, B. Montesinos10,G.Bryden15, C. del Burgo16,J.S.Greaves17,R.J.Ivison18,19, G. Meeus1, G. Olofsson20, G. L. Pilbratt21, and G. J. White22,23 (Affiliations can be found after the references) Received 15 November 2013 / Accepted 6 March 2014 ABSTRACT Context. Stars form surrounded by gas- and dust-rich protoplanetary discs. Generally, these discs dissipate over a few (3–10) Myr, leaving a faint tenuous debris disc composed of second-generation dust produced by the attrition of larger bodies formed in the protoplanetary disc. Giant planets detected in radial velocity and transit surveys of main-sequence stars also form within the protoplanetary disc, whilst super-Earths now detectable may form once the gas has dissipated. Our own solar system, with its eight planets and two debris belts, is a prime example of an end state of this process. Aims. The Herschel DEBRIS, DUNES, and GT programmes observed 37 exoplanet host stars within 25 pc at 70, 100, and 160 μm with the sensitiv- ity to detect far-infrared excess emission at flux density levels only an order of magnitude greater than that of the solar system’s Edgeworth-Kuiper belt. Here we present an analysis of that sample, using it to more accurately determine the (possible) level of dust emission from these exoplanet host stars and thereafter determine the links between the various components of these exoplanetary systems through statistical analysis.
    [Show full text]
  • Exoplanet.Eu Catalog Page 1 # Name Mass Star Name
    exoplanet.eu_catalog # name mass star_name star_distance star_mass OGLE-2016-BLG-1469L b 13.6 OGLE-2016-BLG-1469L 4500.0 0.048 11 Com b 19.4 11 Com 110.6 2.7 11 Oph b 21 11 Oph 145.0 0.0162 11 UMi b 10.5 11 UMi 119.5 1.8 14 And b 5.33 14 And 76.4 2.2 14 Her b 4.64 14 Her 18.1 0.9 16 Cyg B b 1.68 16 Cyg B 21.4 1.01 18 Del b 10.3 18 Del 73.1 2.3 1RXS 1609 b 14 1RXS1609 145.0 0.73 1SWASP J1407 b 20 1SWASP J1407 133.0 0.9 24 Sex b 1.99 24 Sex 74.8 1.54 24 Sex c 0.86 24 Sex 74.8 1.54 2M 0103-55 (AB) b 13 2M 0103-55 (AB) 47.2 0.4 2M 0122-24 b 20 2M 0122-24 36.0 0.4 2M 0219-39 b 13.9 2M 0219-39 39.4 0.11 2M 0441+23 b 7.5 2M 0441+23 140.0 0.02 2M 0746+20 b 30 2M 0746+20 12.2 0.12 2M 1207-39 24 2M 1207-39 52.4 0.025 2M 1207-39 b 4 2M 1207-39 52.4 0.025 2M 1938+46 b 1.9 2M 1938+46 0.6 2M 2140+16 b 20 2M 2140+16 25.0 0.08 2M 2206-20 b 30 2M 2206-20 26.7 0.13 2M 2236+4751 b 12.5 2M 2236+4751 63.0 0.6 2M J2126-81 b 13.3 TYC 9486-927-1 24.8 0.4 2MASS J11193254 AB 3.7 2MASS J11193254 AB 2MASS J1450-7841 A 40 2MASS J1450-7841 A 75.0 0.04 2MASS J1450-7841 B 40 2MASS J1450-7841 B 75.0 0.04 2MASS J2250+2325 b 30 2MASS J2250+2325 41.5 30 Ari B b 9.88 30 Ari B 39.4 1.22 38 Vir b 4.51 38 Vir 1.18 4 Uma b 7.1 4 Uma 78.5 1.234 42 Dra b 3.88 42 Dra 97.3 0.98 47 Uma b 2.53 47 Uma 14.0 1.03 47 Uma c 0.54 47 Uma 14.0 1.03 47 Uma d 1.64 47 Uma 14.0 1.03 51 Eri b 9.1 51 Eri 29.4 1.75 51 Peg b 0.47 51 Peg 14.7 1.11 55 Cnc b 0.84 55 Cnc 12.3 0.905 55 Cnc c 0.1784 55 Cnc 12.3 0.905 55 Cnc d 3.86 55 Cnc 12.3 0.905 55 Cnc e 0.02547 55 Cnc 12.3 0.905 55 Cnc f 0.1479 55
    [Show full text]
  • Virgo the Virgin
    Virgo the Virgin Virgo is one of the constellations of the zodiac, the group tion Virgo itself. There is also the connection here with of 12 constellations that lies on the ecliptic plane defined “The Scales of Justice” and the sign Libra which lies next by the planets orbital orientation around the Sun. Virgo is to Virgo in the Zodiac. The study of astronomy had a one of the original 48 constellations charted by Ptolemy. practical “time keeping” aspect in the cultures of ancient It is the largest constellation of the Zodiac and the sec- history and as the stars of Virgo appeared before sunrise ond - largest constellation after Hydra. Virgo is bordered by late in the northern summer, many cultures linked this the constellations of Bootes, Coma Berenices, Leo, Crater, asterism with crops, harvest and fecundity. Corvus, Hydra, Libra and Serpens Caput. The constella- tion of Virgo is highly populated with galaxies and there Virgo is usually depicted with angel - like wings, with an are several galaxy clusters located within its boundaries, ear of wheat in her left hand, marked by the bright star each of which is home to hundreds or even thousands of Spica, which is Latin for “ear of grain”, and a tall blade of galaxies. The accepted abbreviation when enumerating grass, or a palm frond, in her right hand. Spica will be objects within the constellation is Vir, the genitive form is important for us in navigating Virgo in the modern night Virginis and meteor showers that appear to originate from sky. Spica was most likely the star that helped the Greek Virgo are called Virginids.
    [Show full text]
  • Dr. Konstantin Batygin Curriculum Vitae Division of Geological & Planetary Sciences [email protected] California Institute of Technology (626) 395-2920 1200 E
    Dr. Konstantin Batygin Curriculum Vitae Division of Geological & Planetary Sciences [email protected] California Institute of Technology (626) 395-2920 1200 E. California Blvd. Pasadena, CA 91125 Education Ph.D., Planetary Science (2012) California Institute of Technology doctoral advisors: David J. Stevenson & Michael E. Brown M.S., Planetary Science (2010) California Institute of Technology B.S., Astrophysics (2008) (with honors) University of California, Santa Cruz undergraduate advisor: Gregory Laughlin Academic Employment Professor of Planetary Science, Caltech May 2019 - present Van Nuys Page Scholar, Caltech May 2017 - May 2019 Assistant Professor of Planetary Science, Caltech Jun. 2014 - May 2019 Harvard ITC Postdoctoral Fellow, Harvard Center for Astrophysics Nov. 2012 - Jun. 2014 Postdoctoral Fellow, Observatoire de la Cote d’Azur, Nice, France Jul. 2012 - Nov. 2012 Visiting Scientist, Observatoire de la Cote d’Azur, Nice, France Feb. 2011 - Mar. 2011 Graduate Research Assistant/Teaching Assistant, Caltech Sep. 2008 - Jun. 2012 Research Assistant, UCO/Lick Observatory Mar. 2006 - Sep. 2008 Supplemental Instructor, University of California, Santa Cruz Mar. 2006 - Jun. 2006 Research Assistant, NASA Ames Research Center Jul. 2005 - Jan. 2006 Awards Sloan Fellowship in Physics - 2018 Packard Fellowship for Science & Engineering - 2017 Genius100 Visionary Award, Albert Einstein Legacy Foundation - 2017 Garfinkel Lectureship in Celestial Mechanics (Yale) - 2017 AAS WWT Prize in Research - 2016 Popular Science Brilliant 10 - 2016
    [Show full text]