PARP1-Mediated Necrosis Is Dependent on Parallel JNK and Ca
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Role of PARP1 in Monocyte and Macrophage
cells Review The Role of PARP1 in Monocyte and Macrophage Commitment and Specification: Future Perspectives and Limitations for the Treatment of Monocyte and Macrophage Relevant Diseases with PARP Inhibitors Maciej Sobczak 1, Marharyta Zyma 2 and Agnieszka Robaszkiewicz 1,* 1 Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; [email protected] 2 Department of Immunopathology, Medical University of Lodz, 7/9 Zeligowskiego, Bldg 2, Rm177, 90-752 Lodz, Poland; [email protected] * Correspondence: [email protected]; Tel.: +48-42-6354449; Fax: +48-42-6354449 or +48-42-635-4473 Received: 4 August 2020; Accepted: 4 September 2020; Published: 6 September 2020 Abstract: Modulation of PARP1 expression, changes in its enzymatic activity, post-translational modifications, and inflammasome-dependent cleavage play an important role in the development of monocytes and numerous subtypes of highly specialized macrophages. Transcription of PARP1 is governed by the proliferation status of cells at each step of their development. Higher abundance of PARP1 in embryonic stem cells and in hematopoietic precursors supports their self-renewal and pluri-/multipotency, whereas a low level of the enzyme in monocytes determines the pattern of surface receptors and signal transducers that are functionally linked to the NFκB pathway. In macrophages, the involvement of PARP1 in regulation of transcription, signaling, inflammasome activity, metabolism, and redox balance supports macrophage polarization towards the pro-inflammatory phenotype (M1), which drives host defense against pathogens. On the other hand, it seems to limit the development of a variety of subsets of anti-inflammatory myeloid effectors (M2), which help to remove tissue debris and achieve healing. -
Poly(ADP-Ribose) Polymerase-1 (PARP1) and P53 Labelling Index Correlates with Tumour Grade in Meningiomas
Original article Poly(ADP-ribose) polymerase-1 (PARP1) and p53 labelling index correlates with tumour grade in meningiomas Tamás Csonka1, Balázs Murnyák1, Rita Szepesi2, Andrea Kurucz1, Álmos Klekner3, Tibor Hortobágyi1 1Division of Neuropathology, Institute of Pathology, 2Department of Neurology, 3Department of Neurosurgery, Faculty of Medicine, University of Debrecen, Debrecen, Hungary Folia Neuropathol 2014; 52 (2): 111-120 DOI: 10.5114/fn.2014.43782 Abstract Meningiomas are one of the most frequent intracranial tumours, with 13 histological types and three grades accord- ing to the 2007 WHO Classification of Tumours of the Central Nervous System. p53, as one of the most potent tumour suppressor proteins, plays a role in nearly 50% of human tumours. Poly(ADP-ribose) polymerase (PARP) is a DNA repair enzyme with high ATP demand. It plays a role in apoptosis by activating an apoptosis inducing factor, and in necrosis by consuming NAD+ and ATP. Only PARP1 has been investigated in detail in tumours out of the 17 members of the PARP superfamily; however, its role has not been studied in meningiomas yet. The aim of this study was to determine the role of p53 and PARP1 in meningiomas of different grade and to establish whether there is any correlation between the p53 and PARP1 expression. Both PARP1 and p53 have been expressed in all examined meningiomas. PARP1 labelled grade II tumours with a higher intensity as compared to grade I and III neoplasms, respectively. An increased p53 expression was noted in grade III meningiomas. There was no statistical correlation between p53 and PARP1 expression. Our data indicate that both PARP1 and p53 activation is a feature in menin- giomas of higher grade, PARP1 overexpression being an early, whereas p53 overexpression, a late event in tumour progression. -
PARP Inhibitors in Prostate Cancer–The Preclinical Rationale and Current Clinical Development
G C A T T A C G G C A T genes Review PARP Inhibitors in Prostate Cancer–the Preclinical Rationale and Current Clinical Development Verneri Virtanen 1, Kreetta Paunu 1, Johanna K. Ahlskog 2, Reka Varnai 3,4 , Csilla Sipeky 5 and Maria Sundvall 1,6,* 1 Institute of Biomedicine, and Cancer Research Laboratories, Western Cancer Centre FICAN West, University of Turku, FI-20520 Turku, Finland 2 Faculty of Science and Engineering, Åbo Akademi University, and Turku Bioscience, University of Turku and Åbo Akademi University, FI-20520 Turku, Finland 3 Department of Primary Health Care, University of Pécs, H-7623 Pécs, Hungary 4 Faculty of Health Sciences, Doctoral School of Health Sciences, University of Pécs, H-7621 Pécs, Hungary 5 Institute of Biomedicine, University of Turku, FI-20520 Turku, Finland 6 Department of Oncology and Radiotherapy, Turku University Hospital, FI-20521 Turku, Finland * Correspondence: maria.sundvall@utu.fi; Tel.: +358-2-313-0000 Received: 3 June 2019; Accepted: 22 July 2019; Published: 26 July 2019 Abstract: Prostate cancer is globally the second most commonly diagnosed cancer type in men. Recent studies suggest that mutations in DNA repair genes are associated with aggressive forms of prostate cancer and castration resistance. Prostate cancer with DNA repair defects may be vulnerable to therapeutic targeting by Poly(ADP-ribose) polymerase (PARP) inhibitors. PARP enzymes modify target proteins with ADP-ribose in a process called PARylation and are in particular involved in single strand break repair. The rationale behind the clinical trials that led to the current use of PARP inhibitors to treat cancer was to target the dependence of BRCA-mutant cancer cells on the PARP-associated repair pathway due to deficiency in homologous recombination. -
A Review of the Recent Advances Made with SIRT6 and Its Implications on Aging Related Processes, Major Human Diseases, and Possible Therapeutic Targets
biomolecules Review A Review of the Recent Advances Made with SIRT6 and its Implications on Aging Related Processes, Major Human Diseases, and Possible Therapeutic Targets Rubayat Islam Khan †, Saif Shahriar Rahman Nirzhor † and Raushanara Akter * Department of Pharmacy, BRAC University, 1212 Dhaka, Bangladesh; [email protected] (R.I.K.); [email protected] (S.S.R.N.) * Correspondence: [email protected]; Tel.: +880-179-8321-273 † These authors contributed equally to this work. Received: 10 June 2018; Accepted: 26 June 2018; Published: 29 June 2018 Abstract: Sirtuin 6 (SIRT6) is a nicotinamide adenine dinucleotide+ (NAD+) dependent enzyme and stress response protein that has sparked the curiosity of many researchers in different branches of the biomedical sciences. A unique member of the known Sirtuin family, SIRT6 has several different functions in multiple different molecular pathways related to DNA repair, glycolysis, gluconeogenesis, tumorigenesis, neurodegeneration, cardiac hypertrophic responses, and more. Only in recent times, however, did the potential usefulness of SIRT6 come to light as we learned more about its biochemical activity, regulation, biological roles, and structure Frye (2000). Even until very recently, SIRT6 was known more for chromatin signaling but, being a nascent topic of study, more information has been ascertained and its potential involvement in major human diseases including diabetes, cancer, neurodegenerative diseases, and heart disease. It is pivotal to explore the mechanistic workings -
Oxidative Stress, Mitochondrial Dysfunction, and Neuroprotection of Polyphenols with Respect to Resveratrol in Parkinson’S Disease
biomedicines Review Oxidative Stress, Mitochondrial Dysfunction, and Neuroprotection of Polyphenols with Respect to Resveratrol in Parkinson’s Disease Heng-Chung Kung 1,2 , Kai-Jung Lin 1,3 , Chia-Te Kung 4,* and Tsu-Kung Lin 1,5,6,* 1 Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan; [email protected] (H.-C.K.); [email protected] (K.-J.L.) 2 Department of Biology, Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, MD 21218, USA 3 Department of Family Medicine, National Taiwan University Hospital, Taipei 100225, Taiwan 4 Department of Emergency Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan 5 Department of Neurology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan 6 Center of Parkinson’s Disease, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan * Correspondence: [email protected] (C.-T.K.); [email protected] (T.-K.L.) Abstract: Parkinson’s disease (PD) is the second most common neurodegenerative disease and is characterized by dopaminergic neuronal loss. The exact pathogenesis of PD is complex and not yet completely understood, but research has established the critical role mitochondrial dysfunction plays in the development of PD. As the main producer of cytosolic reactive oxygen species (ROS), mito- chondria are particularly susceptible to oxidative stress once an imbalance between ROS generation and the organelle’s antioxidative system occurs. An overabundance of ROS in the mitochondria can Citation: Kung, H.-C.; Lin, K.-J.; lead to mitochondrial dysfunction and further vicious cycles. -
P53-Dependent Cell Cycle Checkpoint After DNA Damage and Its
Research and Review Insights Review Article ISSN: 2515-2637 p53-dependent cell cycle checkpoint after DNA damage and its relevance to PARP1 Tadashige Nozaki1* and Mitsuko Masutani2,3 1Department of Pharmacology, Faculty of Dentistry, Osaka Dental University, Japan 2Department of Frontier Life Sciences, Graduate School of Biomedical Sciences, Nagasaki University, Japan 3Division of Cellular Signaling, Laboratory of Collaborative Research, National Cancer Center Research Institute, Japan Abstract The poly(ADP-ribose) polymerase (PARP) inhibitors, including 3-aminobenzamide (3-AB), suppress G1 arrest after DNA damage following gamma-irradiation, suggesting that PARP1, a major PARP family protein, is involved in the induction of G1 arrest. Furthermore, p53 stabilization following gamma-irradiation is not inhibited, but the p53-responsive transient increases of WAF1/CIP1/p21 and MDM2 mRNA have been shown to be suppressed by 3-AB. Therefore, it is suggested that PARP1 participates as a downstream mediator of p53 dependent signal-transduction pathway through the modulation of WAF1/CIP1/p21 and MDM2 mRNA expression. In this review, we discuss p53 cell cycle checkpoint after DNA damage, and its relevance to PARP1. Moreover, the role of PARP1 as a sensor of DNA damage will be proposed. Regulation of p53 and PARP1 activities is an attractive and promising target for the development of clinical treatments for particular diseases. Therefore, it is anticipated that the clinical application of drugs that specifically regulate PARP1 activity will develop in the near future. p53 and G1 checkpoint in cancer DNA damage owing to the abnormal transcriptional regulation by p53 [11,14]. Therefore, it is hypothesized that DNA damage accumulation During the development of cancer, multiple abnormalities occur causes mutated cells to progress into a cancer. -
Inhibition of Helicase Activity by a Small Molecule Impairs Werner Syndrome Helicase (WRN) Function in the Cellular Response to DNA Damage Or Replication Stress
Inhibition of helicase activity by a small molecule impairs Werner syndrome helicase (WRN) function in the cellular response to DNA damage or replication stress Monika Aggarwala, Joshua A. Sommersa, Robert H. Shoemakerb, and Robert M. Brosh, Jr.a,1 aLaboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health Biomedical Research Center, National Institutes of Health, Baltimore, MD 21224; and bScreening Technologies Branch, Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute at Frederick, National Institutes of Health, Frederick, MD 21702 Edited by Richard D. Kolodner, Ludwig Institute for Cancer Research, La Jolla, CA, and approved December 15, 2010 (received for review May 11, 2010) Modulation of DNA repair proteins by small molecules has many clinical symptoms of aging at an accelerated rate (7). The attracted great interest. An in vitro helicase activity screen was WRN gene product that is defective in the chromosomal in- used to identify molecules that modulate DNA unwinding by stability disorder has DNA helicase and exonuclease activities Werner syndrome helicase (WRN), mutated in the premature aging and interacts with a number of nuclear proteins to maintain disorder Werner syndrome. A small molecule from the National genomic stability (8). We investigated the hypothesis that a po- Cancer Institute Diversity Set designated NSC 19630 [1-(propox- tent and specific WRN helicase inhibitor could be identified and ymethyl)-maleimide] was identified that inhibited WRN helicase used to inhibit WRN-dependent functions in vivo. Our findings activity but did not affect other DNA helicases [Bloom syndrome provide evidence that a small molecule can modulate in vivo the (BLM), Fanconi anemia group J (FANCJ), RECQ1, RecQ, UvrD, or function of a human helicase in the DNA damage response. -
Characterization of Poly(ADP-Ribose) (PAR) As a Death Signal in PARP-1 Dependent Cell Death
Characterization of Poly(ADP-ribose) (PAR) as a death signal in PARP-1 dependent cell death by Calvin Chang A thesis submitted to Johns Hopkins University in conformity with the requirements for the degree of Master of Science in Engineering. Baltimore, Maryland May 2015 ©2015 Calvin Chang All Rights Reserved Abstract Poly(ADP-ribose)polymerase (PARP) overactivation induces cell death called parthanatos via production of large swells of PAR. Parthanatos is apparent in debilitating diseases such as stroke and Parkinson’s disease. PAR is complex polymer of ADP-ribose with different sizes and branching structures. Complex PAR is more toxic as compared to shorter length PAR. The role of different PAR species play in disease complexity and progression is still unknown. Moreover, the tools currently available are not sensitive enough to detect the differences in PAR species. While the current antibodies available are capable of detecting PAR for immunoblot analysis and immunohistochemistry analysis, the detection threshold is high and specificity for varying PAR structures is low. Here, we generated a panel of recombinant antibodies using phage display HuCal technology to effectively detect PAR species in different disease models. PAR induces cell death via translocation of AIF to the nucleus. To further understand how different species of PAR regulate the nuclear translocation of AIF, we generated a PAR-binding mutant AIF transgenic knock-in mouse. Induction of stroke via middle cerebral artery occlusion (MCAO) is used to detect the PAR-induced cell death. Thesis Readers: Dr. Ted Dawson Dr. Kevin Yarema Dr. Aleksander Popel ii Acknowledgments I would like to thank my mentor and thesis advisor Dr. -
Molecular Definitions of Cell Death Subroutines
Cell Death and Differentiation (2012) 19, 107–120 & 2012 Macmillan Publishers Limited All rights reserved 1350-9047/12 www.nature.com/cdd Review Molecular definitions of cell death subroutines: recommendations of the Nomenclature Committee on Cell Death 2012 L Galluzzi1,2,3, I Vitale1,2,3, JM Abrams4, ES Alnemri5, EH Baehrecke6, MV Blagosklonny7, TM Dawson8, VL Dawson8, WS El-Deiry9, S Fulda10, E Gottlieb11, DR Green12, MO Hengartner13, O Kepp1,2,3, RA Knight14, S Kumar15,16, SA Lipton17,18,19,20,XLu21, F Madeo22, W Malorni23,24, P Mehlen25,26,27,28, G Nun˜ez29, ME Peter30, M Piacentini31,32, DC Rubinsztein33, Y Shi34, H-U Simon35, P Vandenabeele36,37, E White38, J Yuan39, B Zhivotovsky40, G Melino41,42 and G Kroemer*,1,43,44,45,46 In 2009, the Nomenclature Committee on Cell Death (NCCD) proposed a set of recommendations for the definition of distinct cell death morphologies and for the appropriate use of cell death-related terminology, including ‘apoptosis’, ‘necrosis’ and ‘mitotic catastrophe’. In view of the substantial progress in the biochemical and genetic exploration of cell death, time has come to switch from morphological to molecular definitions of cell death modalities. Here we propose a functional classification of cell death subroutines that applies to both in vitro and in vivo settings and includes extrinsic apoptosis, caspase-dependent or -independent intrinsic apoptosis, regulated necrosis, autophagic cell death and mitotic catastrophe. Moreover, we discuss the utility of expressions indicating additional cell death modalities. On the basis of the new, revised NCCD classification, cell death subroutines are defined by a series of precise, measurable biochemical features. -
Simultaneous Polychromatic Flow Cytometric Detection of Multiple Forms of Regulated Cell Death
Apoptosis (2019) 24:453–464 https://doi.org/10.1007/s10495-019-01528-w Simultaneous polychromatic flow cytometric detection of multiple forms of regulated cell death D. Bergamaschi1 · A. Vossenkamper2 · W. Y. J. Lee2 · P. Wang2 · E. Bochukova3 · G. Warnes4 Published online: 20 February 2019 © The Author(s) 2019 Abstract Currently the study of Regulated Cell Death (RCD) processes is limited to the use of lysed cell populations for Western blot analysis of each separate RCD process. We have previously shown that intracellular antigen flow cytometric analysis of RIP3, Caspase-3 and cell viability dye allowed the determination of levels of apoptosis (Caspase-3+ ve/RIP3− ve), necroptosis (RIP3Hi + ve/Caspase-3− ve) and RIP1-dependent apoptosis (Caspase-3+ ve/RIP3+ ve) in a single Jurkat cell population. The addi- tion of more intracellular markers allows the determination of the incidence of parthanatos (PARP), DNA Damage Response (DDR, H2AX), H2AX hyper-activation of PARP (H2AX/PARP) autophagy (LC3B) and ER stress (PERK), thus allowing the identification of 124 sub-populations both within live and dead cell populations. Shikonin simultaneously induced Jurkat cell apoptosis and necroptosis the degree of which can be shown flow cytometrically together with the effects of blockade of these forms of cell death by zVAD and necrostatin-1 have on specific RCD populations including necroptosis, early and late apoptosis and RIP1-dependent apoptosis phenotypes in live and dead cells. Necrostatin-1 and zVAD was shown to modulate levels of shikonin induced DDR, hyper-action of PARP and parthanatos in the four forms of RCD processes analysed. LC3B was up-regulated by combined treatment of zVAD with chloroquine which also revealed that DNA damage was reduced in live cells but enhanced in dead cells indicating the role of autophagy in maintaining cell health. -
The PARP Inhibitor Olaparib Modulates the Transcriptional Regulatory Networks of Long Non-Coding Rnas During Vasculogenic Mimicry
cells Article The PARP Inhibitor Olaparib Modulates the Transcriptional Regulatory Networks of Long Non-Coding RNAs during Vasculogenic Mimicry Mónica Fernández-Cortés , Eduardo Andrés-León and Francisco Javier Oliver * Instituto de Parasitología y Biomedicina López Neyra, CSIC, CIBERONC, 18016 Granada, Spain; [email protected] (M.F.-C.); [email protected] (E.A.-L.) * Correspondence: [email protected] Received: 19 October 2020; Accepted: 11 December 2020; Published: 15 December 2020 Abstract: In highly metastatic tumors, vasculogenic mimicry (VM) involves the acquisition by tumor cells of endothelial-like traits. Poly-(ADP-ribose) polymerase (PARP) inhibitors are currently used against tumors displaying BRCA1/2-dependent deficient homologous recombination, and they may have antimetastatic activity. Long non-coding RNAs (lncRNAs) are emerging as key species-specific regulators of cellular and disease processes. To evaluate the impact of olaparib treatment in the context of non-coding RNA, we have analyzed the expression of lncRNA after performing unbiased whole-transcriptome profiling of human uveal melanoma cells cultured to form VM. RNAseq revealed that the non-coding transcriptomic landscape differed between olaparib-treated and non-treated cells: olaparib significantly modulated the expression of 20 lncRNAs, 11 lncRNAs being upregulated, and 9 downregulated. We subjected the data to different bioinformatics tools and analysis in public databases. We found that copy-number variation alterations in some olaparib-modulated lncRNAs had a statistically significant correlation with alterations in some key tumor suppressor genes. Furthermore, the lncRNAs that were modulated by olaparib appeared to be regulated by common transcription factors: ETS1 had high-score binding sites in the promoters of all olaparib upregulated lncRNAs, while MZF1, RHOXF1 and NR2C2 had high-score binding sites in the promoters of all olaparib downregulated lncRNAs. -
Predictive Biomarkers for Cancer Therapy with PARP Inhibitors
Oncogene (2014) 33, 3894–3907 & 2014 Macmillan Publishers Limited All rights reserved 0950-9232/14 www.nature.com/onc REVIEW Predictive biomarkers for cancer therapy with PARP inhibitors J Michels1,2,3, I Vitale4,5, M Saparbaev2,3,6, M Castedo1,2,3,11 and G Kroemer1,2,3,7,8,9,10,11 Poly(ADP-ribose) polymerase (PARP) inhibitors have raised high expectations for the treatment of multiple malignancies. PARP inhibitors, which can be used as monotherapies or in combination with DNA-damaging agents, are particularly efficient against tumors with defects in DNA repair mechanisms, in particular the homologous recombination pathway, for instance due to BRCA mutations. Thus, deficient DNA repair provides a framework for the success of PARP inhibitors in medical oncology. Here, we review encouraging results obtained in recent clinical trials investigating the safety and efficacy of PARP inhibitors as anti- cancer agents. We discuss emerging mechanisms of regulation of homologous recombination and how inhibition of DNA repair might be used in cancer therapy. We surmise that the identification of patients that are likely to benefit from PARP inhibition will improve the clinical use of PARP inhibitors in a defined target population. Thus, we will place special emphasis on biomarker discovery. Oncogene (2014) 33, 3894–3907; doi:10.1038/onc.2013.352; published online 16 September 2013 Keywords: PAR; base excision repair; homologous recombination; BRCAness; synthetic lethality INTRODUCTION PARP1 IN PHYSIOLOGICAL AND PATHOLOGICAL RESPONSES The superfamily of