Microvesicles and Chemokines in Tumor Microenvironment
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
TNF-Α Promotes Colon Cancer Cell Migration and Invasion by Upregulating TROP-2
3820 ONCOLOGY LETTERS 15: 3820-3827, 2018 TNF-α promotes colon cancer cell migration and invasion by upregulating TROP-2 PENG ZHAO and ZHONGTAO ZHANG Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, P.R. China Received March 3, 2017; Accepted October 24, 2017 DOI: 10.3892/ol.2018.7735 Abstract. High levels of tumor-associated calcium signal but did not significantly affect p38 and JNK phosphoryla- transduction protein (TROP)-2 have been demonstrated to tion levels. Treatment with a specific ERK1/2 inhibitor be strongly associated with tumor necrosis factor (TNF)-α suppressed the TNF-α-induced upregulation of TROP-2 and levels in colon cancer. In the present study, the effect of the TNF-α-induced colon cancer cell migration and inva- TNF-α on the regulation of TROP-2 expression and its effect sion. In conclusion, the present results demonstrated that in colon cancer cell migration and invasion were investigated low concentrations of TNF-α significantly enhanced colon in vitro. TROP-2 protein levels were evaluated in HCT-116 cancer cell migration and invasion by upregulating TROP-2 human colon cancer cells cultured with various concentra- via the ERK1/2 signaling pathway. tions of TNF-α using western blot analysis. Changes in the migratory and invasive potential of the cells were evaluated Introduction using a wound healing and transwell assay, respectively. Then, TROP-2 expression was downregulated in cells by use Colon cancer is a common malignant tumor of the digestive of siRNA, and TROP‑2 knockdown was confirmed at the tract, from which morbidity and mortality have been increasing mRNA and protein level by reverse transcription-quantitative in recent years. -
Caveolin-1 Selectively Regulates Microrna Sorting Into Microvesicles After Noxious Stimuli
Published Online: 24 June, 2019 | Supp Info: http://doi.org/10.1084/jem.20182313 Downloaded from jem.rupress.org on October 1, 2019 ARTICLE Caveolin-1 selectively regulates microRNA sorting into microvesicles after noxious stimuli Heedoo Lee1, Chunhua Li2, Yang Zhang2, Duo Zhang1, Leo E. Otterbein3, and Yang Jin1 Emerging evidence suggests that extracellular vesicle (EV)–containing miRNAs mediate intercellular communications in response to noxious stimuli. It remains unclear how a cell selectively sorts the cellular miRNAs into EVs. We report that caveolin-1 (cav-1) is essential for sorting of selected miRNAs into microvesicles (MVs), a main type of EVs generated by outward budding of the plasma membrane. We found that cav-1 tyrosine 14 (Y14)–phosphorylation leads to interactions between cav-1 and hnRNPA2B1, an RNA-binding protein. The cav-1/hnRNPA2B1 complex subsequently traffics together into MVs. Oxidative stress induces O-GlcNAcylation of hnRNPA2B1, resulting in a robustly altered hnRNPA2B1-bound miRNA repertoire. Notably, cav-1 pY14 also promotes hnRNPA2B1 O-GlcNAcylation. Functionally, macrophages serve as the principal recipient of epithelial MVs in the lung. MV-containing cav-1/hnRNPA2B1 complex-bound miR-17/93 activate tissue macrophages. Collectively, cav-1 is the first identified membranous protein that directly guides RNA-binding protein into EVs. Our work delineates a novel mechanism by which oxidative stress compels epithelial cells to package and secrete specific miRNAs and elicits an innate immune response. Introduction Extracellular vesicles (EVs) have been shown to transfer func- This process involves an ATP-dependent, active sorting mech- tional miRNAs to neighboring or distant recipient cells as a rapid anism (Xu et al., 2013) and involves RNA-binding proteins that modality by which to manipulate gene expression in the recip- are enriched in EVs (Laffont et al., 2013; Villarroya-Beltri et al., ient cells (Phinney et al., 2015; Shipman, 2015). -
Adenine-Based Purines and Related Metabolizing Enzymes: Evidence for Their Impact on Tumor Extracellular Vesicle Activities
cells Review Adenine-Based Purines and Related Metabolizing Enzymes: Evidence for Their Impact on Tumor Extracellular Vesicle Activities Patrizia Di Iorio 1,2 and Renata Ciccarelli 1,2,* 1 Department of Medical, Oral and Biotechnological Sciences, ‘G. D’Annunzio’ University of Chieti-Pescara, 66100 Chieti, Italy; [email protected] 2 Center for Advanced Studies and Technology (CAST), ‘G. D’Annunzio’ University of Chieti-Pescara, 66100 Chieti, Italy * Correspondence: [email protected] Abstract: Extracellular vesicles (EVs), mainly classified as small and large EVs according to their size/origin, contribute as multi-signal messengers to intercellular communications in normal/pathological conditions. EVs are now recognized as critical players in cancer processes by promoting transformation, growth, invasion, and drug-resistance of tumor cells thanks to the release of molecules contained inside them (i.e., nucleic acids, lipids and proteins) into the tumor microenvironment (TME). Interestingly, secre- tion from donor cells and/or uptake of EVs/their content by recipient cells are regulated by extracellular signals present in TME. Among those able to modulate the EV-tumor crosstalk, purines, mainly the adenine-based ones, could be included. Indeed, TME is characterized by high levels of ATP/adenosine and by the presence of enzymes deputed to their turnover. Moreover, ATP/adenosine, interacting with their own receptors, can affect both host and tumor responses. However, studies on whether/how the purinergic system behaves as a modulator of EV biogenesis, release and functions in cancer are still poor. Thus, this review is aimed at collecting data so far obtained to stimulate further research in this regard. -
PDGFR-Β+ Fibroblasts Deteriorate Survival in Human Solid Tumors: a Meta-Analysis
www.aging-us.com AGING 2021, Vol. 13, No. 10 Research Paper PDGFR-β+ fibroblasts deteriorate survival in human solid tumors: a meta-analysis Guoming Hu1,*, Liming Huang1,*, Kefang zhong1, Liwei Meng1, Feng Xu1, Shimin Wang2, Tao Zhang3,& 1Department of General Surgery (Breast and Thyroid Surgery), Shaoxing People’s Hospital, Shaoxing Hospital, Zhejiang University School of Medicine, Zhejiang 312000, China 2Department of Nephrology, Shaoxing People’s Hospital, Shaoxing Hospital, Zhejiang University School of Medicine, Zhejiang 312000, China 3Department of General Surgery III, Affiliated Hospital of Shaoxing University, Zhejiang 312000, China *Equal contribution Correspondence to: Tao Zhang, Guoming Hu; email: [email protected], https://orcid.org/0000-0001-7533-4900; [email protected] Keywords: tumor-infiltrating PDGFR-β+ fibroblasts, worse prognosis, solid tumor, meta-analysis Received: January 11, 2021 Accepted: April 2, 2021 Published: May 3, 2021 Copyright: © 2021 Hu et al. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. ABSTRACT Fibroblasts are a highly heterogeneous population in tumor microenvironment. PDGFR-β+ fibroblasts, a subpopulation of activated fibroblasts, have proven to correlate with cancer progression through multiple of mechanisms including inducing angiogenesis and immune evasion. However, the prognostic role of these cells in solid tumors is still not conclusive. Herein, we carried out a meta-analysis including 24 published studies with 6752 patients searched from PubMed, Embase and EBSCO to better comprehend the value of such subpopulation in prognosis prediction for solid tumors. -
Exosomes Or Microvesicles, a Secreted Subcellular Organelle Contributing to Inflammation and Diabetes
2154 Diabetes Volume 67, November 2018 Exosomes or Microvesicles, a Secreted Subcellular Organelle Contributing to Inflammation and Diabetes Yang D. Dai1,2 and Peter Dias1 Diabetes 2018;67:2154–2156 | https://doi.org/10.2337/dbi18-0021 Type 1 and type 2 diabetes (T1D and T2D) are generally etc., represent a pool of mixed EVs, with each subspecies recognized as distinct disease entities based on the mech- having a different cargo and function. The cargo of the EVs anism of induction of disease: T1D results from low or no contains important complex molecules such as RNA, DNA, insulin production due to the gradual loss of cells that proteins, lipids, and carbohydrates. The ratio of each sub- produce insulin, whereas T2D is generally thought to occur species and their molecular content may vary depending on as a result of the body’s development of resistance to the physiological/pathological status of the parent cells and insulin. Although the events initiating T1D and T2D might tissues that release the EVs. Thus, EVs may potentially be be very different, the progression to diabetes and compli- a powerful source for noninvasive diagnosis of diseases (10). cations are similar and involve interactions between the The study by Freeman et al. (11) in this issue of immune system and the metabolic system. Notably, chronic Diabetes is unique in that it uses an ex vivo approach to inflammation is a shared manifestation of the two types study the role and mechanism of action of EVs derived of diabetes (1,2). Recently, secreted microvesicles, particu- from blood plasma of normal patients, patients with pre- larly exosomes, were suggested to be intermediates linking diabetes, and patients with diabetes in the development of inflammation to diabetes (3). -
The Evolving Relationship of Wound Healing and Tumor Stroma
The evolving relationship of wound healing and tumor stroma Deshka S. Foster, … , Michael T. Longaker, Jeffrey A. Norton JCI Insight. 2018;3(18):e99911. https://doi.org/10.1172/jci.insight.99911. Review The stroma in solid tumors contains a variety of cellular phenotypes and signaling pathways associated with wound healing, leading to the concept that a tumor behaves as a wound that does not heal. Similarities between tumors and healing wounds include fibroblast recruitment and activation, extracellular matrix (ECM) component deposition, infiltration of immune cells, neovascularization, and cellular lineage plasticity. However, unlike a wound that heals, the edges of a tumor are constantly expanding. Cell migration occurs both inward and outward as the tumor proliferates and invades adjacent tissues, often disregarding organ boundaries. The focus of our review is cancer associated fibroblast (CAF) cellular heterogeneity and plasticity and the acellular matrix components that accompany these cells. We explore how similarities and differences between healing wounds and tumor stroma continue to evolve as research progresses, shedding light on possible therapeutic targets that can result in innovative stromal-based treatments for cancer. Find the latest version: https://jci.me/99911/pdf REVIEW The evolving relationship of wound healing and tumor stroma Deshka S. Foster,1,2 R. Ellen Jones,1 Ryan C. Ransom,1 Michael T. Longaker,1,2 and Jeffrey A. Norton1,2 1Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Division of Plastic and Reconstructive Surgery, and 2Department of Surgery, Stanford University School of Medicine, Stanford, California, USA. The stroma in solid tumors contains a variety of cellular phenotypes and signaling pathways associated with wound healing, leading to the concept that a tumor behaves as a wound that does not heal. -
Monoclonal Antibodies in Cancer Therapy
Clin Oncol Cancer Res (2011) 8: 215–219 215 DOI 10.1007/s11805-011-0583-7 Monoclonal Antibodies in Cancer Therapy Yu-Ting GUO1,2 ABSTRACT Monoclonal antibodies (MAbs) are a relatively new Qin-Yu HOU1,2 innovation in cancer treatment. At present, some monoclonal antibodies have increased the efficacy of the treatment of certain 1,2 Nan WANG tumors with acceptable safety profiles. When monoclonal antibodies enter the body and attach to cancer cells, they function in several different ways: first, they can trigger the immune system to attack and kill that cancer cell; second, they can block the growth signals; third, they can prevent the formation of new blood vessels. Some naked 1 Key Laboratory of Industrial Fermentation MAbs such as rituximab can be directed to attach to the surface of Microbiology, Ministry of Education, Tianjin, cancer cells and make them easier for the immune system to find and 300457, China. destroy. The ability to produce antibodies with limited immunogeni- 2 Tianjin Key Laboratory of Industrial Micro- city has led to the production and testing of a host of agents, several biology, College of Biotechnology, Tianjin of which have demonstrated clinically important antitumor activity University of Science and Technology, Tianjin, 300457, China. and have received U.S. Food & Drug Administration (FDA) approval as cancer treatments. To reduce the immunogenicity of murine anti- bodies, murine molecules are engineered to remove the immuno- genic content and to increase their immunologic efficiency. Radiolabeled antibodies composed of antibodies conjugated to radionuclides show efficacy in non-Hodgkin’s lymphoma. Anti- vascular endothelial growth factor (VEGF) antibodies such as bevacizumab intercept the VEGF signal of tumors, thereby stopping them from connecting with their targets and blocking tumor growth. -
The Tumor Microenvironment Regulates Retinoblastoma Cell Survival
University of Tennessee Health Science Center UTHSC Digital Commons Theses and Dissertations (ETD) College of Graduate Health Sciences 12-2018 The umorT Microenvironment Regulates Retinoblastoma Cell Survival Zachary K. Goldsmith University of Tennessee Health Science Center Follow this and additional works at: https://dc.uthsc.edu/dissertations Part of the Eye Diseases Commons, Medical Cell Biology Commons, Neoplasms Commons, and the Ophthalmology Commons Recommended Citation Goldsmith, Zachary K. (http://orcid.org/0000-0002-7393-733), "The umorT Microenvironment Regulates Retinoblastoma Cell Survival" (2018). Theses and Dissertations (ETD). Paper 467. http://dx.doi.org/10.21007/etd.cghs.2018.0472. This Dissertation is brought to you for free and open access by the College of Graduate Health Sciences at UTHSC Digital Commons. It has been accepted for inclusion in Theses and Dissertations (ETD) by an authorized administrator of UTHSC Digital Commons. For more information, please contact [email protected]. The umorT Microenvironment Regulates Retinoblastoma Cell Survival Document Type Dissertation Degree Name Doctor of Philosophy (PhD) Program Biomedical Sciences Track Neurosciences Research Advisor Monica M. Jablonski, Ph.D. Committee Vanessa M. Morales-Tirado, M.S., Ph.D. Lawrence M. Pfeffer, Ph.D. Anton J. Reiner, Ph.D. Matthew W. Wilson, M.D. ORCID http://orcid.org/0000-0002-7393-733 DOI 10.21007/etd.cghs.2018.0472 This dissertation is available at UTHSC Digital Commons: https://dc.uthsc.edu/dissertations/467 The Tumor Microenvironment Regulates Retinoblastoma Cell Survival A Dissertation Presented for The Graduate Studies Council The University of Tennessee Health Science Center In Partial Fulfillment Of the Requirements for the Degree Doctor of Philosophy From The University of Tennessee By Zachary K. -
Lung Epithelial Cell–Derived Microvesicles Regulate Macrophage Migration Via Microrna-17/221–Induced Integrin B1 Recycling
Lung Epithelial Cell−Derived Microvesicles Regulate Macrophage Migration via MicroRNA-17/221−Induced Integrin β1 Recycling This information is current as of September 26, 2021. Heedoo Lee, Duo Zhang, Jingxuan Wu, Leo E. Otterbein and Yang Jin J Immunol published online 3 July 2017 http://www.jimmunol.org/content/early/2017/07/01/jimmun ol.1700165 Downloaded from Supplementary http://www.jimmunol.org/content/suppl/2017/07/01/jimmunol.170016 Material 5.DCSupplemental http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication by guest on September 26, 2021 *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2017 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. Published July 3, 2017, doi:10.4049/jimmunol.1700165 The Journal of Immunology Lung Epithelial Cell–Derived Microvesicles Regulate Macrophage Migration via MicroRNA-17/221–Induced Integrin b1 Recycling Heedoo Lee,* Duo Zhang,* Jingxuan Wu,* Leo E. Otterbein,† and Yang Jin* Robust lung inflammation is one of the prominent features in the pathogenesis of acute lung injury (ALI). -
Emerging Role of Extracellular Vesicles in the Pathophysiology of Multiple Sclerosis
International Journal of Molecular Sciences Review Emerging Role of Extracellular Vesicles in the Pathophysiology of Multiple Sclerosis 1, 1, 1,2, 1 Ettore Dolcetti y, Antonio Bruno y , Livia Guadalupi y, Francesca Romana Rizzo , Alessandra Musella 2,3, Antonietta Gentile 2, Francesca De Vito 4, Silvia Caioli 4, Silvia Bullitta 1,2, Diego Fresegna 2, Valentina Vanni 1,2, Sara Balletta 1, Krizia Sanna 1, Fabio Buttari 4, Mario Stampanoni Bassi 4 , Diego Centonze 1,4,* and Georgia Mandolesi 2,3 1 Synaptic Immunopathology Lab, Department of Systems Medicine, Tor Vergata University, 00133 Rome, Italy; [email protected] (E.D.); [email protected] (A.B.); [email protected] (L.G.); [email protected] (F.R.R.); [email protected] (S.B.); [email protected] (V.V.); [email protected] (S.B.); [email protected] (K.S.) 2 Synaptic Immunopathology Lab, IRCCS San Raffaele Pisana, 00163 Rome, Italy; [email protected] (A.M.); [email protected] (A.G.); [email protected] (D.F.); [email protected] (G.M.) 3 Department of Human Sciences and Quality of Life Promotion, University of Rome San Raffaele, 00163 Rome, Italy 4 Unit of Neurology, IRCCS Neuromed, Pozzilli (Is), 86077 Pozzilli, Italy; [email protected] (F.D.V.); [email protected] (S.C.); [email protected] (F.B.); [email protected] (M.S.B.) * Correspondence: [email protected]; Tel.:+39-06 7259-6010; Fax: +39-06-7259-6006 Co-first authors. y Received: 30 August 2020; Accepted: 1 October 2020; Published: 4 October 2020 Abstract: Extracellular vesicles (EVs) represent a new reality for many physiological and pathological functions as an alternative mode of intercellular communication. -
The Role of the Tumour Microenvironment in Immunotherapy
2412 S Gasser et al. Tumour microenvironment 24:12 T283–T295 Thematic Review and therapeutic implications The role of the tumour microenvironment in immunotherapy Stephan Gasser1,2, Lina H K Lim3 and Florence S G Cheung3 1Roche Pharma Research and Early Development, Roche Innovation Center Zurich, Roche Glycart AG, Schlieren, Switzerland Correspondence 2 Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, NUS Immunology should be addressed Programme, Centre for Life Sciences, National University of Singapore, Singapore to S Gasser or F S G Cheung 3 Department of Physiology, Yong Loo Lin School of Medicine, NUS Immunology Programme, Centre for Email Life Sciences, National University of Singapore, Singapore [email protected] or [email protected] Abstract Recent success in immunomodulating strategies in lung cancer and melanoma has Key Words prompted much enthusiasm in their potential to treat other advanced solid malignancies. f pancreatic cancer However, their applications have shown variable success and are even ineffective f thyroid cancer against some tumours. The efficiency of immunotherapies relies on an immunogenic f immunotherapy tumour microenvironment. The current field of cancer immunology has focused on f tumour microenvironment understanding the interaction of cancer and host immune cells to break the state of f endometrial cancer immune tolerance and explain how molecular patterns of cytokines and chemokines affect tumour progression. Here, we review our current knowledge of how inherent properties of tumours and their different tumour microenvironments affect therapeutic Endocrine-Related Cancer Endocrine-Related outcome. We also discuss insights into recent multimodal therapeutic approaches that Endocrine-Related Cancer target tumour immune evasion and suppression to restore anti-tumour immunity. -
The Tumor Microenvironment
The Tumor Microenvironment A Critical Component of Tumor Progression and Metastasis And a Target for Therapeutic Intervention Joan S. Brugge, Ph.D Department of Cell Biology Harvard Medical School Former View: Tumors are autonomous cell masses whose progression is driven by genetic alterations Normal Early colorectal Intermediate Advanced Colorectal Invasive Metastatic Adenoma Epithelium Adenoma Adenoma Carcinoma Carcinoma Carcinoma Unknown APC K-ras Locus on P53 ? ? 18Q From: RA weinberg How Cancer Arises Sci Am 1996 Current View: Tumors are “organs” composed of many interdependent cell types that contribute to tumor development and metastasis ECM Fibroblasts, adipocytes Leukocytes, macrophages,etc Modified from: RA Weinberg Sci Am How Cancer Arises 1996 Heterogeneity of Cells Within Tumors Squamous cell carcinoma Immune Cells -Pecam/CD31 H&E -neutrophil Lisa McCawley/ Lynn Matrisian The Microenvironment Controls Normal Development and Homeostasis Fat Fibroblasts Basement membrane Developing mammary gland Myoepithelial cells Luminal epithelial cells The Microenvironment (E) Can Exert Positive and Negative Influences on Tumors Tumor Suppressive Influences of the Microenvironment • Cell-cell and cell-matrix interactions as well as hormones and growth inhibitory factors present in the E can suppress aberrant behavior of genetically altered cells • These play an important role in early lesions where suppressive interactions limit the proliferation and invasion of dysplasias, hyperplasias and in-situ Glandular tumors Epithelium Alterations in cells/matrix in the tumor E can release these negative influences and allow uncontrolled proliferation and invasion The Malignant Potential of Teratocarcinoma Cells Can Be Restrained During Embryonic Development Embryonal carcinoma cells Strain 129 Mintz and Illmensee PNAS 1975; cartoon modified from Kenny and Bissell Int.