Arithmetic Expressions
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Arithmetic Operators
Arithmetic Operators Section 2.15 & 3.2 p 60-63, 81-89 9/9/10 CS150 Introduction to Computer Science 1 1 Today • Arithmetic Operators & Expressions o Computation o Precedence o Associativity o Algebra vs C++ o Exponents 9/9/10 CS150 Introduction to Computer Science 1 2 Assigning floats to ints int intVariable; intVariable = 42.7; cout << intVariable; • What do you think is the output? 9/9/10 CS150 Introduction to Computer Science 1 3 Assigning doubles to ints • What is the output here? int intVariable; double doubleVariable = 78.9; intVariable = doubleVariable; cout << intVariable; 9/9/10 CS150 Introduction to Computer Science 1 4 Arithmetic Expressions Arithmetic expressions manipulate numeric data We’ve already seen simple ones The main arithmetic operators are + addition - subtraction * multiplication / division % modulus 9/9/05 CS120 The Information Era 5 +, -, and * Addition, subtraction, and multiplication behave in C++ in the same way that they behave in algebra int num1, num2, num3, num4, sum, mul; num1 = 3; num2 = 5; num3 = 2; num4 = 6; sum = num1 + num2; mul = num3 * num4; 9/9/05 CS120 The Information Era 6 Division • What is the output? o int grade; grade = 100 / 20; cout << grade; o int grade; grade = 100 / 30; cout << grade; 9/9/10 CS150 Introduction to Computer Science 1 7 Division • grade = 100 / 40; o Check operands of / . the data type of grade is not considered, why? o We say the integer is truncated. • grade = 100.0 / 40; o What data type should grade be declared as? 9/9/10 CS150 Introduction to Computer Science 1 8 -
Chapter 7 Expressions and Assignment Statements
Chapter 7 Expressions and Assignment Statements Chapter 7 Topics Introduction Arithmetic Expressions Overloaded Operators Type Conversions Relational and Boolean Expressions Short-Circuit Evaluation Assignment Statements Mixed-Mode Assignment Chapter 7 Expressions and Assignment Statements Introduction Expressions are the fundamental means of specifying computations in a programming language. To understand expression evaluation, need to be familiar with the orders of operator and operand evaluation. Essence of imperative languages is dominant role of assignment statements. Arithmetic Expressions Their evaluation was one of the motivations for the development of the first programming languages. Most of the characteristics of arithmetic expressions in programming languages were inherited from conventions that had evolved in math. Arithmetic expressions consist of operators, operands, parentheses, and function calls. The operators can be unary, or binary. C-based languages include a ternary operator, which has three operands (conditional expression). The purpose of an arithmetic expression is to specify an arithmetic computation. An implementation of such a computation must cause two actions: o Fetching the operands from memory o Executing the arithmetic operations on those operands. Design issues for arithmetic expressions: 1. What are the operator precedence rules? 2. What are the operator associativity rules? 3. What is the order of operand evaluation? 4. Are there restrictions on operand evaluation side effects? 5. Does the language allow user-defined operator overloading? 6. What mode mixing is allowed in expressions? Operator Evaluation Order 1. Precedence The operator precedence rules for expression evaluation define the order in which “adjacent” operators of different precedence levels are evaluated (“adjacent” means they are separated by at most one operand). -
A Concurrent PASCAL Compiler for Minicomputers
512 Appendix A DIFFERENCES BETWEEN UCSD'S PASCAL AND STANDARD PASCAL The PASCAL language used in this book contains most of the features described by K. Jensen and N. Wirth in PASCAL User Manual and Report, Springer Verlag, 1975. We refer to the PASCAL defined by Jensen and Wirth as "Standard" PASCAL, because of its widespread acceptance even though no international standard for the language has yet been established. The PASCAL used in this book has been implemented at University of California San Diego (UCSD) in a complete software system for use on a variety of small stand-alone microcomputers. This will be referred to as "UCSD PASCAL", which differs from the standard by a small number of omissions, a very small number of alterations, and several extensions. This appendix provides a very brief summary Of these differences. Only the PASCAL constructs used within this book will be mentioned herein. Documents are available from the author's group at UCSD describing UCSD PASCAL in detail. 1. CASE Statements Jensen & Wirth state that if there is no label equal to the value of the case statement selector, then the result of the case statement is undefined. UCSD PASCAL treats this situation by leaving the case statement normally with no action being taken. 2. Comments In UCSD PASCAL, a comment appears between the delimiting symbols "(*" and "*)". If the opening delimiter is followed immediately by a dollar sign, as in "(*$", then the remainder of the comment is treated as a directive to the compiler. The only compiler directive mentioned in this book is (*$G+*), which tells the compiler to allow the use of GOTO statements. -
Operators and Expressions
UNIT – 3 OPERATORS AND EXPRESSIONS Lesson Structure 3.0 Objectives 3.1 Introduction 3.2 Arithmetic Operators 3.3 Relational Operators 3.4 Logical Operators 3.5 Assignment Operators 3.6 Increment and Decrement Operators 3.7 Conditional Operator 3.8 Bitwise Operators 3.9 Special Operators 3.10 Arithmetic Expressions 3.11 Evaluation of Expressions 3.12 Precedence of Arithmetic Operators 3.13 Type Conversions in Expressions 3.14 Operator Precedence and Associability 3.15 Mathematical Functions 3.16 Summary 3.17 Questions 3.18 Suggested Readings 3.0 Objectives After going through this unit you will be able to: Define and use different types of operators in Java programming Understand how to evaluate expressions? Understand the operator precedence and type conversion And write mathematical functions. 3.1 Introduction Java supports a rich set of operators. We have already used several of them, such as =, +, –, and *. An operator is a symbol that tells the computer to perform certain mathematical or logical manipulations. Operators are used in programs to manipulate data and variables. They usually form a part of mathematical or logical expressions. Java operators can be classified into a number of related categories as below: 1. Arithmetic operators 2. Relational operators 1 3. Logical operators 4. Assignment operators 5. Increment and decrement operators 6. Conditional operators 7. Bitwise operators 8. Special operators 3.2 Arithmetic Operators Arithmetic operators are used to construct mathematical expressions as in algebra. Java provides all the basic arithmetic operators. They are listed in Tabled 3.1. The operators +, –, *, and / all works the same way as they do in other languages. -
Parsing Arithmetic Expressions Outline
Parsing Arithmetic Expressions https://courses.missouristate.edu/anthonyclark/333/ Outline Topics and Learning Objectives • Learn about parsing arithmetic expressions • Learn how to handle associativity with a grammar • Learn how to handle precedence with a grammar Assessments • ANTLR grammar for math Parsing Expressions There are a variety of special purpose algorithms to make this task more efficient: • The shunting yard algorithm https://eli.thegreenplace.net/2010/01/02 • Precedence climbing /top-down-operator-precedence-parsing • Pratt parsing For this class we are just going to use recursive descent • Simpler • Same as the rest of our parser Grammar for Expressions Needs to account for operator associativity • Also known as fixity • Determines how you apply operators of the same precedence • Operators can be left-associative or right-associative Needs to account for operator precedence • Precedence is a concept that you know from mathematics • Think PEMDAS • Apply higher precedence operators first Associativity By convention 7 + 3 + 1 is equivalent to (7 + 3) + 1, 7 - 3 - 1 is equivalent to (7 - 3) – 1, and 12 / 3 * 4 is equivalent to (12 / 3) * 4 • If we treated 7 - 3 - 1 as 7 - (3 - 1) the result would be 5 instead of the 3. • Another way to state this convention is associativity Associativity Addition, subtraction, multiplication, and division are left-associative - What does this mean? You have: 1 - 2 - 3 - 3 • operators (+, -, *, /, etc.) and • operands (numbers, ids, etc.) 1 2 • Left-associativity: if an operand has operators -
Types of Operators Description Arithmetic Operators These Are
UNIT II OPERATORS Types of Operators Description These are used to perform mathematical calculations like addition, subtraction, Arithmetic_operators multiplication, division and modulus These are used to assign the values for Assignment_operators the variables in C programs. These operators are used to compare the Relational operators value of two variables. These operators are used to perform logical operations on the given two Logical operators variables. These operators are used to perform bit Bit wise operators operations on given two variables. Conditional operators return one value Conditional (ternary) if condition is true and returns another operators value is condition is false. These operators are used to either Increment/decrement increase or decrease the value of the operators variable by one. Special operators &, *, sizeof( ) and ternary operator ARITHMETIC OPERATORS IN C: C Arithmetic operators are used to perform mathematical calculations like addition, subtraction, multiplication, division and modulus in C programs. Arithmetic Operators/Operation Example + (Addition) A+B – (Subtraction) A-B * (multiplication) A*B / (Division) A/B % (Modulus) A%B EXAMPLE PROGRAM FOR C ARITHMETIC OPERATORS: // Working of arithmetic operators #include <stdio.h> int main() { int a = 9,b = 4, c; c = a+b; printf("a+b = %d \n",c); c = a-b; printf("a-b = %d \n",c); c = a*b; printf("a*b = %d \n",c); c = a/b; printf("a/b = %d \n",c); c = a%b; printf("Remainder when a divided by b = %d \n",c); return 0; } Output a+b = 13 a-b = 5 a*b = 36 a/b = 2 Remainder when a divided by b=1 Assignment Operators The Assignment Operator evaluates an expression on the right of the expression and substitutes it to the value or variable on the left of the expression. -
Brief Overview of Python Programming Language
Brief Overview Chapter of Python 3 In this chapter » Introduction to Python » Python Keywords “Don't you hate code that's not properly » Identifiers indented? Making it [indenting] part of » Variables the syntax guarantees that all code is » Data Types properly indented.” » Operators » Expressions — G. van Rossum » Input and Output » Debugging » Functions » if..else Statements » 3.1 INTRODUCTION TO PYTHON for Loop » Nested Loops An ordered set of instructions or commands to be executed by a computer is called a program. The language used to specify those set of instructions to the computer is called a programming language for example Python, C, C++, Java, etc. This chapter gives a brief overview of Python programming language. Python is a very popular and easy to learn programming language, created by Guido van Rossum in 1991. It is used in a variety of fields, including software development, web development, scientific computing, big data 2021-22 Chap 3.indd 31 19-Jul-19 3:16:31 PM 32 INFORMATICS PRACTICES – CLASS XI and Artificial Intelligence. The programs given in this book are written using Python 3.7.0. However, one can install any version of Python 3 to follow the programs given. Download Python 3.1.1 Working with Python The latest version of To write and run (execute) a Python program, we need Python is available on the to have a Python interpreter installed on our computer official website: or we can use any online Python interpreter. The https://www.python. interpreter is also called Python shell. A sample screen org/ of Python interpreter is shown in Figure 3.1. -
Syntax of Mini-Pascal (Spring 2016)
Syntax of Mini-Pascal (Spring 2016) Mini-Pascal is a simplified (and slightly modified) subset of Pascal. Generally, the meaning of the features of Mini-Pascal programs are similar to their semantics in other common imperative languages, such as C. 1. Mini-Pascal allows nested functions and procedures, i.e. subroutines which are defined within another. A nested function is invisible outside of its immediately enclosing function (procedure / block), but can access preceding visible local objects (data, functions, etc.) of its enclosing functions (procedures / blocks). Within the same scope (procedure / function / block), identifiers must be unique but it is OK to redefine a name in an inner scope. 2. A var parameter is passed by reference , i.e. its address is passed, and inside the subroutine the parameter name acts as a synonym for the variable given as an argument. A called procedure or function can freely read and write a variable that the caller passed in the argument list. 3. Mini-Pascal includes a C-style assert statement (if an assertion fails the system prints out a diagnostic message and halts execution). 4. The Mini-Pascal operation a.size only applies to values of type array of T (where T is a type). There are only one-dimensional arrays. Array types are compatible only if they have the same element type. Arrays' indices begin with zero. The compatibility of array indices and array sizes is usually checked at run time. 5. By default, variables in Pascal are not initialized (with zero or otherwise); so they may initially contain rubbish values. -
Operators Precedence and Associativity This Page Lists All C Operators in Order of Their Precedence (Highest to Lowest)
Operators Precedence and Associativity This page lists all C operators in order of their precedence (highest to lowest). Operators within the same box have equal precedence. Precedence Operator Description Associativity () Parentheses (grouping) left-to-right [] Brackets (array subscript) 1 . Member selection via object name -> Member selection via pointer ++ -- Postfix increment/decrement (see Note 1) ++ -- Prefix increment/decrement right-to-left + - Unary plus/minus ! ~ Logical negation/bitwise complement 2 (type) Cast (change type) * Dereference & Address sizeof Determine size in bytes 3 */% Multiplication/division/modulus left-to-right 4 + - Addition/subtraction left-to-right 5 << >> Bitwise shift left, Bitwise shift right left-to-right 6 < <= Relational less than/less than or equal to left-to-right > >= Relational greater than/greater than or equal to 7 == != Relational is equal to/is not equal to left-to-right 8 & Bitwise AND left-to-right 9 ^ Bitwise exclusive OR left-to-right 10 | Bitwise inclusive OR left-to-right 11 && Logical AND left-to-right 12 || Logical OR left-to-right 13 ?: Ternary conditional right-to-left = Assignment right-to-left += -= Addition/subtraction assignment 14 *= /= Multiplication/division assignment %= &= Modulus/bitwise AND assignment ^= |= Bitwise exclusive/inclusive OR assignment <<= >>= Bitwise shift left/right assignment 15 , Comma (separate expressions) left-to-right Note 1 - Postfix increment/decrement have high precedence, but the actual increment or decrement of the operand is delayed (to be accomplished sometime before the statement completes execution). So in the statement y = x * z++; the current value of z is used to evaluate the expression (i.e., z++ evaluates to z) and z only incremented after all else is done. -
What Is Python ?
Class-XI Computer Science Python Fundamentals Notes What is python ? Python is object oriented high level computer language developed by Guido Van Rossum in 1990s . It was named after a British TV show namely ‘Monty Python’s Flying circus’. Python is a programming language, as are C, Fortran, BASIC, PHP, etc. Some specific features of Python are as follows: • an interpreted (as opposed to compiled) language. Contrary to e.g. C or Fortran, one does not compile Python code before executing it. In addition, Python can be used interactively: many Python interpreters are available, from which commands and scripts can be executed. • a free software released under an open-source license: Python can be used and distributed free of charge, even for building commercial software. • multi-platform: Python is available for all major operating systems, Windows, Linux/Unix, MacOS X, most likely your mobile phone OS, etc. • a very readable language with clear non-verbose syntax • a language for which a large variety of high-quality packages are available for various applications, from web frameworks to scientific computing. • a language very easy to interface with other languages, in particular C and C++. • Some other features of the language are illustrated just below. For example, Python is an object-oriented language, with dynamic typing (the same variable can contain objects of different types during the course of a program). Python character set: • Letters : A-Z , a-z • Digits : 0-9 • Special symbols : space,+,-,*,/,** etc. • Whitespace : blank space, tabs(->),carriage return, newline, formfeed • Other characters :python can process all ASCII and unicode characters as part of data PYTHON TERMINOLOGY : Tokens: A smallest individual unit in a program is known as tokens. -
Expressions and Assignment Statements Operator Precedence
Chapter 6 - Expressions and Operator Precedence Assignment Statements • A unary operator has one operand • Their evaluation was one of the motivations for • A binary operator has two operands the development of the first PLs • A ternary operator has three operands • Arithmetic expressions consist of operators, operands, parentheses, and function calls The operator precedence rules for expression evaluation define the order in which “adjacent” Design issues for arithmetic expressions: operators of different precedence levels are 1. What are the operator precedence rules? evaluated 2. What are the operator associativity rules? – “adjacent” means they are separated by at 3. What is the order of operand evaluation? most one operand 4. Are there restrictions on operand evaluation side effects? Typical precedence levels: 5. Does the language allow user-defined operator 1. parentheses overloading? 2. unary operators 6. What mode mixing is allowed in expressions? 3. ** (if the language supports it) 4. *, / 5. +, - Chapter 6 Programming 1 Chapter 6 Programming 2 Languages Languages Operator Associativity Operand Evaluation Order The operator associativity rules for expression The process: evaluation define the order in which adjacent 1. Variables: just fetch the value operators with the same precedence level are evaluated 2. Constants: sometimes a fetch from memory; sometimes the constant is in the machine Typical associativity rules: language instruction • Left to right, except **, which is right to left • Sometimes unary operators associate -
Software II: Principles of Programming Languages Why Expressions?
Software II: Principles of Programming Languages Lecture 7 – Expressions and Assignment Statements Why Expressions? • Expressions are the fundamental means of specifying computations in a programming language • To understand expression evaluation, need to be familiar with the orders of operator and operand evaluation • Essence of imperative languages is dominant role of assignment statements 1 Arithmetic Expressions • Arithmetic evaluation was one of the motivations for the development of the first programming languages • Arithmetic expressions consist of operators, operands, parentheses, and function calls Arithmetic Expressions: Design Issues • Design issues for arithmetic expressions – Operator precedence rules? – Operator associativity rules? – Order of operand evaluation? – Operand evaluation side effects? – Operator overloading? – Type mixing in expressions? 2 Arithmetic Expressions: Operators • A unary operator has one operand • A binary operator has two operands • A ternary operator has three operands Arithmetic Expressions: Operator Precedence Rules • The operator precedence rules for expression evaluation define the order in which “adjacent” operators of different precedence levels are evaluated • Typical precedence levels – parentheses – unary operators – ** (if the language supports it) – *, / – +, - 3 Arithmetic Expressions: Operator Associativity Rule • The operator associativity rules for expression evaluation define the order in which adjacent operators with the same precedence level are evaluated • Typical associativity