Biological Hydrogen Production from Lignocellulosic Biomass in an Up

Total Page:16

File Type:pdf, Size:1020Kb

Biological Hydrogen Production from Lignocellulosic Biomass in an Up University of Windsor Scholarship at UWindsor Electronic Theses and Dissertations 2014 Biological hydrogen production from lignocellulosic biomass in an up-flow anaerobic sludge blanket reactor using mixed microbial cultures Sathyanarayanan Sevilimedu Veeravalli University of Windsor Follow this and additional works at: http://scholar.uwindsor.ca/etd Recommended Citation Sevilimedu Veeravalli, Sathyanarayanan, "Biological hydrogen production from lignocellulosic biomass in an up-flow anaerobic sludge blanket reactor using mixed microbial cultures" (2014). Electronic Theses and Dissertations. Paper 5088. This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor students from 1954 forward. These documents are made available for personal study and research purposes only, in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution, Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder (original author), cannot be used for any commercial purposes, and may not be altered. Any other use would require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or thesis from this database. For additional inquiries, please contact the repository administrator via email ([email protected]) or by telephone at 519-253-3000ext. 3208. BIOLOGICAL HYDROGEN PRODUCTION FROM LIGNOCELLULOSIC BIOMASS IN AN UP-FLOW ANAEROBIC SLUDGE BLANKET REACTOR USING MIXED MICROBIAL CULTURES By Sathyanarayanan Sevilimedu Veeravalli A Dissertation Submitted to the Faculty of Graduate Studies through the Department of Civil and Environmental Engineering in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy at the University of Windsor Windsor, Ontario, Canada 2014 © 2014 Sathyanarayanan Sevilimedu Veeravalli Biological Hydrogen Production From Lignocellulosic Biomass in an Up-flow Anaerobic Sludge Blanket Reactor using Mixed Microbial Cultures by Sathyanarayanan Sevilimedu Veeravalli APPROVED BY: ______________________________________________ B. Liao, External Examiner Lakehead University ______________________________________________ D. Heath The Great Lakes Institute for Environmental Research (GLIER) ______________________________________________ R. Seth Department of Civil & Environmental Engineering ______________________________________________ X. Xu Department of Civil & Environmental Engineering ____________________________________________ J. Lalman, Advisor Department of Civil and Environmental Engineering 8 May 2014 Declaration of Co-Authorship / Previous Publication I. Co-Authorship Declaration I hereby declare that this dissertation incorporates material that is the result of joint research: It incorporates the outcome of laboratory work, which was done by Dr. Subba Rao Chaganti under the supervision of Dr. Daniel D. Heath. The contribution of co-authors is limited to the provision of microbiological results which are included in Chapters 4, 5, 6.2, 6.3, 7 and 8 of the dissertation. In all cases, the experimental design was sent to Dr. Jerald A. Lalman by the author, based on his suggestion and recommendations made, the primary contributions, engineering laboratory work, data analysis and interpretation, were performed by the author. I am aware of the University of Windsor Senate Policy on Authorship and I certify that I have properly acknowledged the contribution of other researchers to my dissertation, and have obtained written permission from each of the co-author(s) to include the above material(s) in my dissertation. I certify that, with the above qualifications, this dissertation, and the research to which it refers, is the product of my own work. II. Previous Publication: Chapter 6: This chapter was published under title ‘Effect of furans and linoleic acid on hydrogen production’ in Int J Hydrogen Energy , 2013, Volume 28, Issue 18, 12283-1293 (http://dx.doi.org/10.1016/j.ijhydene.2013.07.035 ). The initial draft was written by Mr. Veeravalli, for which Dr. Lalman provided significant changes for publication. The additional recommendations and suggestions given by Dr. Lalman were incorporated in the dissertation Chapter. I would like to thank Dr. Lalman, for his contribution. Chapter 7: This chapter was published under title ‘Optimizing hydrogen production from a switchgrass steam exploded liquor using a mixed anaerobic culture in an upflow iii anaerobic sludge blanket reactor’ in Int J Hydrogen Energy , 2014,Volume 39, Issue 7, 3160-3175 (http://dx.doi.org/10.1016/j.ijhydene.2013.12.057). The initial draft was written by Mr.Veeravalli, which was reviewed by Dr. Lalman and Dr. Chaganti who provided additional recommendations for the improvement. Dr. Lalman provided significant changes for the publication, the additional recommendations and suggestions given by Dr. Lalman were incorporated in the dissertation Chapter. I would like to thank Dr. Lalman and Dr. Chaganti, for their contribution. Chapter 8: This chapter was published under title ‘Fermentative H 2 production from a switchgrass steam exploded liquor fed to mixed anaerobic cultures: Effect of hydraulic retention time, linoleic acid and nitrogen sparging’ in Int J Hydrogen Energy , 2014 (In Press) (http://dx.doi.org/10.1016/j.ijhydene.2014.04.114). The initial draft was written by Mr. Veeravalli, which was reviewed by Dr. Lalman who provided additional recommendations for the improvement. Dr. Lalman provided significant changes for the publication, the additional recommendations and suggestions given by Dr. Lalman were incorporated in the dissertation Chapter. I would like to thank Dr. Lalman, for his contributions. I hereby certify that no other part of this dissertation has been published or submitted for publication. I declare that, to the best of my knowledge, my dissertation does not infringe upon anyone’s copyright nor violate any proprietary rights and that any ideas, techniques, quotations, or any other material from the work of other people included in my dissertation, published or otherwise, are fully acknowledged in accordance with the standard referencing practices. I declare that this is a true copy of my dissertation, including any final revisions, as approved by my dissertation committee and the Graduate Studies office, and that this dissertation has not been submitted for a higher degree to any other University or Institution. iv ABSTRACT The current research investigated hydrogen (H 2) production potential from lignocellulosic biomass via dark-fermentation in upflow sludge blanket reactors (UASBRs) using mixed anaerobic culture. The effects of hydraulic retention time (HRT) and organic loading rate (OLR), on H 2 production were examined under mesophilic conditions using linoleic acid (LA), as a methanogenic inhibitor. The dynamics of the microbial community were explored using terminal restriction fragment length polymorphism analysis. -1 Studies with pure glucose revealed that high H2 yield ≥ 2.1 mol mol glucose was obtained in control cultures operating at HRTs ranging from 12 h to 20 h with OLRs corresponding to 16 g L -1 d-1 and 10 g L -1 d-1, respectively. Species belonging to Clostridia was observed under these conditions. A further decrease with the HRT in -1 control cultures reduced H 2 yields up to 1.3 mol mol glucose, while addition of LA -1 showed improved H 2 yields ≥ 2.0 mol mol glucose at HRTs ranging from 6 to 12 h. -1 A maximum H 2 yield of 303±20 mL g COD was obtained from switchgrass-derived sugars under the optimal conditions (pH 5.0, HRT 10 h and 1.75 g L -1 of LA) determined using response surface methodology. The microbial characterization under optimal conditions showed dominance of Ruminococcaceae and Clostridiaceae with efficient suppression of methanogens. Nitrogen sparging of the UASBRs under the optimal conditions, increased H 2 yield by 15% in comparison to unsparged cultures. Sparging the bioreactors increased the abundance of Clostridium sp. and Bacillus sp. under LA treated conditions. -1 A stable H 2 yield of 274±40 mL g COD was obtained by the control cultures fed corn stover hydrolysate and operating at 18 and 24 g COD L -1 d-1, suggesting furans and phenols could serve as methanogenic inhibitors at low levels. The dominance of Clostridium sp., Flavobacterium sp. and Eubacterium sp., were observed under these H2- producing conditions. v The results from current research suggest that H 2 production from lignocellulosic biomass is feasible and could be applied on a large scale by maintaining proper operational conditions. vi DEDICATION I dedicate this dissertation work to my mother Geetha, other family members and friends. vii ACKNOWLEDGEMENTS First I would like to thank the ALMIGHTY, for imparting moral support towards the completion of my doctoral work at Windsor, Ontario, Canada. With a deep sense of gratitude, I wish to express my sincere thanks to my guide Dr. Jerald A. Lalman for his invaluable guidance at every stage of this research project and helping me get out the publications. I would like to acknowledge my committee member Dr. Rajesh Seth , Dr. Iris Xu and Dr. Daniel Heath for reviewing this dissertation and for their valuable comments and suggestion. In particular, I express my sincere thanks to Dr. Daniel D. Heath , Director, Great Lakes Institute of Environment and Research (GLIER), University of Windsor, for funding and providing the lab space in performing the genomic work in his Lab and
Recommended publications
  • Tessaracoccus Arenae Sp. Nov., Isolated from Sea Sand
    TAXONOMIC DESCRIPTION Thongphrom et al., Int J Syst Evol Microbiol 2017;67:2008–2013 DOI 10.1099/ijsem.0.001907 Tessaracoccus arenae sp. nov., isolated from sea sand Chutimon Thongphrom,1 Jong-Hwa Kim,1 Nagamani Bora2,* and Wonyong Kim1,* Abstract A Gram-stain positive, non-spore-forming, non-motile, facultatively anaerobic bacterial strain, designated CAU 1319T, was isolated from sea sand and the strain’s taxonomic position was investigated using a polyphasic approach. Strain CAU 1319T grew optimally at 30 C and at pH 7.5 in the presence of 2 % (w/v) NaCl. Phylogenetic analysis, based on the 16S rRNA gene sequence, revealed that strain CAU 1319T belongs to the genus Tessaracoccus, and is closely related to Tessaracoccus lapidicaptus IPBSL-7T (similarity 97.69 %), Tessaracoccus bendigoensis Ben 106T (similarity 95.64 %) and Tessaracoccus T T flavescens SST-39 (similarity 95.84 %). Strain CAU 1319 had LL-diaminopimelic acid as the diagnostic diamino acid in the cell-wall peptidoglycan, MK-9 (H4) as the predominant menaquinone, and anteiso-C15 : 0 as the major fatty acid. The polar lipids consisted of phosphatidylglycerol, phosphatidylinositol, two unidentified aminolipids, three unidentified phospholipids and one unidentified glycolipid. Predominant polyamines were spermine and spermidine. The DNA–DNA hybridization value between strain CAU 1319T and T. lapidicaptus IPBSL-7T was 24 %±0.2. The DNA G+C content of the novel strain was 69.5 mol %. On the basis of phenotypic and chemotaxonomic properties, as well as phylogenetic relatedness, strain CAU 1319Tshould be classified as a novel species of the genus Tessaracoccus, for which the name Tessaracoccus arenae sp.
    [Show full text]
  • Raineyella Antarctica Gen. Nov., Sp. Nov., a Psychrotolerant, D-Amino
    International Journal of Systematic and Evolutionary Microbiology (2016), 66, 5529–5536 DOI 10.1099/ijsem.0.001552 Raineyella antarctica gen. nov., sp. nov., a psychrotolerant, D-amino-acid-utilizing anaerobe isolated from two geographic locations of the Southern Hemisphere Elena Vladimirovna Pikuta,1 Rodolfo Javier Menes,2 Alisa Michelle Bruce,3† Zhe Lyu,4 Nisha B. Patel,5 Yuchen Liu,6 Richard Brice Hoover,1 Hans-Jürgen Busse,7 Paul Alexander Lawson5 and William Barney Whitman4 Correspondence 1Department of Mathematical, Computer and Natural Sciences, Athens State University, Athens, Elena Vladimirovna Pikuta AL 35611, USA [email protected] 2Catedra de Microbiología, Facultad de Química y Facultad de Ciencias, UDELAR, 11800 or Montevideo, Uruguay [email protected] 3Biology Department, University of Alabama in Huntsville, Huntsville, AL 35899, USA 4Microbiology Department, University of Georgia in Athens, Athens, GA 30602, USA 5Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK 73019, USA 6Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA 7Institut für Mikrobiologie - Veterinarmedizinische€ Universitat€ Wien, A-1210 Wien, Austria A Gram-stain-positive bacterium, strain LZ-22T, was isolated from a rhizosphere of moss Leptobryum sp. collected at the shore of Lake Zub in Antarctica. Cells were motile, straight or pleomorphic rods with sizes of 0.6–1.0Â3.5–10 µm. The novel isolate was a facultatively anaerobic, catalase-positive, psychrotolerant mesophile. Growth was observed at 3–41 C (optimum 24–28 C), with 0–7 % (w/v) NaCl (optimum 0.25 %) and at pH 4.0–9.0 (optimum pH 7.8). The quinone system of strain LZ-22T possessed predominately menaquinone MK-9(H4).
    [Show full text]
  • Taxonomic Binning Approaches and Functional Characteristics of the Microbial Community During the Anaerobic Digestion of Hydrolyzed Corncob
    energies Article Taxonomic Binning Approaches and Functional Characteristics of the Microbial Community during the Anaerobic Digestion of Hydrolyzed Corncob Luz Breton-Deval 1 , Ilse Salinas-Peralta 1 , Jaime Santiago Alarcón Aguirre 2, Belkis Sulbarán-Rangel 2,* and Kelly Joel Gurubel Tun 2,* 1 Catedras Conacyt, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca 62210, Mexico; [email protected] (L.B.-D.); [email protected] (I.S.-P.) 2 Department of Water and Energy, University of Guadalajara Campus Tonalá, Tonalá 45425, Mexico; [email protected] * Correspondence: [email protected] (B.S.-R.); [email protected] (K.J.G.T.); Tel.: +52-33-2000-2300 (K.J.G.T.) Abstract: Maize forms the basis of Mexican food. As a result, approximately six million tons of corncob are produced each year, which represents an environmental issue, as well as a potential feedstock for biogas production. This research aimed to analyze the taxonomic and functional shift in the microbiome of the fermenters using a whole metagenome shotgun approach. Two strategies were used to understand the microbial community at the beginning and the end of anaerobic digestion: (i) phylogenetic analysis to infer the presence and coverage of clade-specific markers to assign taxonomy and (ii) the recovery of the individual genomes from the samples using the binning of the assembled scaffolds. The results showed that anaerobic digestion brought some noticeable changes and the main microbial community was composed of Corynebacterium variable, Desulfovibrio desulfuricans, Vibrio furnissii, Shewanella spp., Actinoplanes spp., Pseudoxanthomonas spp., Saccharomonospora azurea, Citation: Breton-Deval, L.; Agromyces spp., Serinicoccus spp., Cellulomonas spp., Pseudonocardia spp., Rhodococcus rhodochrous, Salinas-Peralta, I.; Alarcón Aguirre, Sphingobacterium spp.
    [Show full text]
  • Nocardioides Zeicaulis Sp. Nov., an Endophyte Actinobacterium of Maize Peter Ka¨Mpfer,1 Stefanie P
    International Journal of Systematic and Evolutionary Microbiology (2016), 66, 1869–1874 DOI 10.1099/ijsem.0.000959 Nocardioides zeicaulis sp. nov., an endophyte actinobacterium of maize Peter Ka¨mpfer,1 Stefanie P. Glaeser,1 John A. McInroy2 and Hans-Ju¨rgen Busse3 Correspondence 1Institut fu¨r Angewandte Mikrobiologie, Justus-Liebig-Universita¨t Giessen, D-35392 Giessen, Peter Ka¨mpfer Germany peter.kaempfer@ 2Entomology and Plant Pathology Dept., Auburn University, Alabama, AL 36849, USA umwelt.uni-giessen.de 3Abteilung fu¨r Klinische Mikrobiologie und Infektionsbiologie, Institut fu¨r Mikrobiologie, Veterina¨rmedizinische Universita¨t Wien, A-1210 Wien, Austria A Gram-stain-positive, aerobic organism was isolated as an endophyte from the stem tissue of healthy maize (Zea mays) and investigated in detail for its taxonomic position. On the basis of the 16S rRNA gene sequence analysis, strain JM-601T was shown to be most closely related to Nocardioides alpinus (98.3 %), and Nocardioides ganghwensis (98.0 %). The 16S rRNA gene sequence similarity to all other species of the genus Nocardioides was j98.0 %. The diagnostic diamino acid of the peptidoglycan was LL-diaminopimelic acid. The major T quinone of strain JM-601 was menaquinone MK-8(H4). The polar lipid profile revealed the major components diphosphatidylglycerol, phosphatidylglycerol, phosphatidylinositol, phosphatidylcholine and an unidentified phospholipid. The polyamine pattern contained predominantly spermine and moderate amounts of spermidine. In the fatty acid profile, iso-C16 : 0,C17 : 1v8c and 10-methyl C17 : 0 were present in major amounts. All these data support the allocation of the strain to the genus Nocardioides. The results of physiological and biochemical characterization allow in addition a phenotypic differentiation of strain JM-601T from N.
    [Show full text]
  • Aestuariimicrobium Ganziense Sp. Nov., a New Gram-Positive Bacterium Isolated from Soil in the Ganzi Tibetan Autonomous Prefecture, China
    Aestuariimicrobium ganziense sp. nov., a new Gram-positive bacterium isolated from soil in the Ganzi Tibetan Autonomous Prefecture, China Yu Geng Yunnan University Jiang-Yuan Zhao Yunnan University Hui-Ren Yuan Yunnan University Le-Le Li Yunnan University Meng-Liang Wen yunnan university Ming-Gang Li yunnan university Shu-Kun Tang ( [email protected] ) Yunnan Institute of Microbiology, Yunnan University https://orcid.org/0000-0001-9141-6244 Research Article Keywords: Aestuariimicrobium ganziense sp. nov., Chemotaxonomy, 16S rRNA sequence analysis Posted Date: February 11th, 2021 DOI: https://doi.org/10.21203/rs.3.rs-215613/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Version of Record: A version of this preprint was published at Archives of Microbiology on March 12th, 2021. See the published version at https://doi.org/10.1007/s00203-021-02261-2. Page 1/11 Abstract A novel Gram-stain positive, oval shaped and non-agellated bacterium, designated YIM S02566T, was isolated from alpine soil in Shadui Towns, Ganzi County, Ganzi Tibetan Autonomous Prefecture, Sichuan Province, PR China. Growth occurred at 23–35°C (optimum, 30°C) in the presence of 0.5-4 % (w/v) NaCl (optimum, 1%) and at pH 7.0–8.0 (optimum, pH 7.0). The phylogenetic analysis based on 16S rRNA gene sequence revealed that strain YIM S02566T was most closely related to the genus Aestuariimicrobium, with Aestuariimicrobium kwangyangense R27T and Aestuariimicrobium soli D6T as its closest relative (sequence similarities were 96.3% and 95.4%, respectively). YIM S02566T contained LL-diaminopimelic acid in the cell wall.
    [Show full text]
  • INVESTIGATING the ACTINOMYCETE DIVERSITY INSIDE the HINDGUT of an INDIGENOUS TERMITE, Microhodotermes Viator
    INVESTIGATING THE ACTINOMYCETE DIVERSITY INSIDE THE HINDGUT OF AN INDIGENOUS TERMITE, Microhodotermes viator by Jeffrey Rohland Thesis presented for the degree of Doctor of Philosophy in the Department of Molecular and Cell Biology, Faculty of Science, University of Cape Town, South Africa. April 2010 ACKNOWLEDGEMENTS Firstly and most importantly, I would like to thank my supervisor, Dr Paul Meyers. I have been in his lab since my Honours year, and he has always been a constant source of guidance, help and encouragement during all my years at UCT. His serious discussion of project related matters and also his lighter side and sense of humour have made the work that I have done a growing and learning experience, but also one that has been really enjoyable. I look up to him as a role model and mentor and acknowledge his contribution to making me the best possible researcher that I can be. Thank-you to all the members of Lab 202, past and present (especially to Gareth Everest – who was with me from the start), for all their help and advice and for making the lab a home away from home and generally a great place to work. I would also like to thank Di James and Bruna Galvão for all their help with the vast quantities of sequencing done during this project, and Dr Bronwyn Kirby for her help with the statistical analyses. Also, I must acknowledge Miranda Waldron and Mohammed Jaffer of the Electron Microsope Unit at the University of Cape Town for their help with scanning electron microscopy and transmission electron microscopy related matters, respectively.
    [Show full text]
  • New Insights Into the Biology, Ecology and Control of Black-Foot Disease in Grapevine
    TESIS DOCTORAL Título New insights into the biology, ecology and control of black-foot disease in grapevine Autor/es Carmen Berlanas Vicente Director/es David Gramaje Pérez y Enrique García-Escudero Domínguez Facultad Facultad de Ciencia y Tecnología Titulación Departamento Agricultura y Alimentación Curso Académico Tesis presentada como compendio de publicaciones. La edición en abierto de la misma NO incluye las partes afectadas por cesión de derechos New insights into the biology, ecology and control of black-foot disease in grapevine, tesis doctoral de Carmen Berlanas Vicente, dirigida por David Gramaje Pérez y Enrique García-Escudero Domínguez (publicada por la Universidad de La Rioja), se difunde bajo una Licencia Creative Commons Reconocimiento-NoComercial- SinObraDerivada 3.0 Unported. Permisos que vayan más allá de lo cubierto por esta licencia pueden solicitarse a los titulares del copyright. © El autor © Universidad de La Rioja, Servicio de Publicaciones, 2020 publicaciones.unirioja.es E-mail: [email protected] New insights into the biology, ecology and control of black-foot disease in grapevine Carmen Berlanas Vicente Ph.D. thesis 2020 Universidad de La Roja Departamento de Agricultura y Alimentación Los abajo firmantes, el Dr. David Gramaje Pérez y el Dr. Enrique García-Escudero Domínguez, investigadores del Instituto de Ciencias de la Vid y del Vino (Gobierno de la Rioja, Universidad de La Rioja, CSIC). CERTIFICAN: Que el presente trabajo titulado “New insights into the biology, ecology anc control of black-foot disease in grapevine” ha sido realizado en el Departamento de Agricultura y Alimentación de la Universidad de La Rioja bajo nuestra dirección, por Carmen Berlanas Vicente, y reúne las condiciones exigidas para optar al grado de Doctor con Mención Internacional.
    [Show full text]
  • Microbial Community Structures and in Situ Sulfate-Reducing and Sulfur-Oxidizing Activities in Biofilms Developed on Title Mortar Specimens in a Corroded Sewer System
    Microbial community structures and in situ sulfate-reducing and sulfur-oxidizing activities in biofilms developed on Title mortar specimens in a corroded sewer system Author(s) Satoh, Hisashi; Odagiri, Mitsunori; Ito, Tsukasa; Okabe, Satoshi Water Research, 43(18), 4729-4739 Citation https://doi.org/10.1016/j.watres.2009.07.035 Issue Date 2009-10 Doc URL http://hdl.handle.net/2115/45290 Type article (author version) File Information satoh2009corrosion.pdf Instructions for use Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP 1 2 Microbial community structures and in situ sulfate-reducing and 3 sulfur-oxidizing activities in biofilms developed on mortar specimens in a 4 corroded sewer system 5 6 Running title: Microbial communities and activities in sewer biofilms 7 8 By 9 Hisashi Satoha, Mitsunori Odagirib, Tsukasa Itoc, and Satoshi Okabea,* 10 11 aDepartment of Urban and Environmental Engineering, Graduate school of Engineering, 12 Hokkaido University, North-13, West-8, Sapporo 060-8628, Japan. 13 bKajima Technical Research Institute, 2-19-1 Tobitakyu, Chofu 182-0036, Japan 14 cDepartment of Civil Engineering, Faculty of Engineering, Gunma University, 1-5-1 15 Tenjin-cho, Kiryu 376-8515, Japan 16 17 *Corresponding author. 18 Mailing address: 19 Satoshi OKABE 20 Department of Urban and Environmental Engineering, Graduate School of Engineering, 21 Hokkaido University 22 Kita 13, Nishi 8, Kita-ku, Sapporo 060-8628, Japan. 23 Tel: +81-(0)11-706-6266 1 1 Fax: +81-(0)11-706-6266 2 E-mail: [email protected] 3 4 2 1 ABSTRACT 2 3 Microbially induced concrete corrosion (MICC) caused by sulfuric acid attack in 4 sewer systems has been a serious problem for a long time.
    [Show full text]
  • Raineyella Antarctica Gen. Nov., Sp. Nov., a Psychrotolerant, D-Amino-Acid-Utilizing Anaerobe Isolated from Two Geographic Locat
    International Journal of Systematic and Evolutionary Microbiology (2016), 66, 5529–5536 DOI 10.1099/ijsem.0.001552 Raineyella antarctica gen. nov., sp. nov., a psychrotolerant, D-amino-acid-utilizing anaerobe isolated from two geographic locations of the Southern Hemisphere Elena Vladimirovna Pikuta,1 Rodolfo Javier Menes,2 Alisa Michelle Bruce,3† Zhe Lyu,4 Nisha B. Patel,5 Yuchen Liu,6 Richard Brice Hoover,1 Hans-Jürgen Busse,7 Paul Alexander Lawson5 and William Barney Whitman4 Correspondence 1Department of Mathematical, Computer and Natural Sciences, Athens State University, Athens, Elena Vladimirovna Pikuta AL 35611, USA [email protected] 2Catedra de Microbiología, Facultad de Química y Facultad de Ciencias, UDELAR, 11800 or Montevideo, Uruguay [email protected] 3Biology Department, University of Alabama in Huntsville, Huntsville, AL 35899, USA 4Microbiology Department, University of Georgia in Athens, Athens, GA 30602, USA 5Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK 73019, USA 6Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA 7Institut für Mikrobiologie - Veterinarmedizinische€ Universitat€ Wien, A-1210 Wien, Austria A Gram-stain-positive bacterium, strain LZ-22T, was isolated from a rhizosphere of moss Leptobryum sp. collected at the shore of Lake Zub in Antarctica. Cells were motile, straight or pleomorphic rods with sizes of 0.6–1.0Â3.5–10 µm. The novel isolate was a facultatively anaerobic, catalase-positive, psychrotolerant mesophile. Growth was observed at 3–41 C (optimum 24–28 C), with 0–7 % (w/v) NaCl (optimum 0.25 %) and at pH 4.0–9.0 (optimum pH 7.8). The quinone system of strain LZ-22T possessed predominately menaquinone MK-9(H4).
    [Show full text]
  • WO 2016/150855 Al 29 September 2016 (29.09.2016) P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2016/150855 Al 29 September 2016 (29.09.2016) P O P C T (51) International Patent Classification: DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, C12N 15/63 (2006.01) C12N 15/90 (2006.01) HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, (21) International Application Number: MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PCT/EP2016/055967 PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, (22) International Filing Date: SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, 18 March 2016 (18.03.2016) TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (25) Filing Language: English (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, (26) Publication Language: English GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, (30) Priority Data: TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, 15 160126.7 20 March 2015 (20.03.2015) EP TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, (71) Applicant: DANMARKS TEKNISKE UNFVERSITET LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, [DK/DK]; Anker Engelunds Vej 1, Bygning 101A, 2800 SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, Kgs.
    [Show full text]
  • Provided for Non-Commercial Research and Educational Use. Not for Reproduction, Distribution Or Commercial Use
    Provided for non-commercial research and educational use. Not for reproduction, distribution or commercial use. This article was originally published in the Encyclopedia of Microbiology published by Elsevier, and the attached copy is provided by Elsevier for the author’s benefit and for the benefit of the author’s institution, for non-commercial research and educational use including without limitation use in instruction at your institution, sending it to specific colleagues who you know, and providing a copy to your institution’s administrator. All other uses, reproduction and distribution, including without limitation commercial reprints, selling or licensing copies or access, or posting on open internet sites, your personal or institution’s website or repository, are prohibited. For exceptions, permission may be sought for such use through Elsevier’s permissions site at: http://www.elsevier.com/locate/permissionusematerial E M Wellington. Actinobacteria. Encyclopedia of Microbiology. (Moselio Schaechter, Editor), pp. 26-[44] Oxford: Elsevier. Author's personal copy BACTERIA Contents Actinobacteria Bacillus Subtilis Caulobacter Chlamydia Clostridia Corynebacteria (including diphtheria) Cyanobacteria Escherichia Coli Gram-Negative Cocci, Pathogenic Gram-Negative Opportunistic Anaerobes: Friends and Foes Haemophilus Influenzae Helicobacter Pylori Legionella, Bartonella, Haemophilus Listeria Monocytogenes Lyme Disease Mycoplasma and Spiroplasma Myxococcus Pseudomonas Rhizobia Spirochetes Staphylococcus Streptococcus Pneumoniae Streptomyces
    [Show full text]
  • Systematic Bacteriology Second Edition
    BERGEY’S MANUAL® OF Systematic Bacteriology Second Edition Volume Five The Actinobacteria, Part A and B BERGEY’S MANUAL® OF Systematic Bacteriology Second Edition Volume Five The Actinobacteria, Part A and B Michael Goodfellow, Peter Kämpfer, Hans-Jürgen Busse, Martha E. Trujillo, Ken-ichiro Suzuki, Wolfgang Ludwig and William B. Whitman EDITORS, VOLUME FIVE William B. Whitman DIRECTOR OF THE EDITORIAL OFFICE Aidan C. Parte MANAGING EDITOR EDITORIAL BOARD Fred A. Rainey, Chairman, Peter Kämpfer, Vice Chairman, Paul De Vos, Jongsik Chun, Martha E. Trujillo and William B. Whitman WITH CONTRIBUTIONS FROM 116 COLLEAGUES William B. Whitman Bergey’s Manual Trust Department of Microbiology 527 Biological Sciences Building University of Georgia Athens, GA 30602-2605 USA ISBN 978-0-387-95043-3 ISBN 978-0-387-68233-4 (eBook) DOI 10.1007/978-0-387-68233-4 Springer New York Dordrecht Heidelberg London Library of Congress Control Number: 2012930836 © 2012, 1984–1989 Bergey’s Manual Trust Bergey’s Manual is a registered trademark of Bergey’s Manual Trust. All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden. The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.
    [Show full text]