Macroinvertebrados Dulceacuícolas Del Parque Nacional Yendegaia, Chile

Total Page:16

File Type:pdf, Size:1020Kb

Macroinvertebrados Dulceacuícolas Del Parque Nacional Yendegaia, Chile Anales Instituto Patagonia (Chile), 2020. Vol. 48(3):23-37 23 ARTÍCULO CIENTÍFICO Macroinvertebrados dulceacuícolas del Parque Nacional Yendegaia, Chile: resolviendo brechas de conocimiento sobre la biodiversidad de la Reserva de la Biosfera Cabo de Hornos Freshwater macroinvertebrates from Yendegaia National Park, Chile: tackling knowledge biodiversity gaps in the Cape Horn Biosphere Reserve Javier Rendoll-Cárcamo1,2,3,4, Melisa Gañán1,5, Roy Mackenzie1,2,3, Sophia Troncoso1, Javiera Troncoso1, Tamara Contador1,2,3,5, Ricardo Rozzi2,3,6 & Peter Convey7 Resumen de las comunidades dulceacuícolas y sus relaciones El Parque Nacional Yendegaia, ubicado al sur de ambientales en el extremo sur de Chile. Tierra del Fuego y al margen de la vertiente oriental de la Cordillera Darwin, es parte de la Reserva de Palabras Claves: la Biosfera Cabo de Hornos, en la ecorregión Dulceacuícola, Ecología, ecorregión subantártica, subantártica de Magallanes. Este parque nacional Parques Nacionales, limnología. del extremo austral de Chile comprende un extenso valle rodeado de cadenas montañosas con ríos de Abstract origen glaciar y pluvio-nivales. El presente estudio The Yendegaia National Park, located to the constituye el primer inventario de macroinvertebrados south of Tierra del Fuego and at the eastern dulceacuícolas dentro del parque, y compara la margin of the Darwin Mountain Range, forms composición de especies en tres ríos con bosques ribereños contrastantes. Un río tiene vegetación 1 Laboratorio Wankara de Ecosistemas Dulceacuícolas ribereña dominada coihüe de Magallanes (Nothofagus Subantárticos y Antárticos, Universidad de Magallanes & betuloides), una especie siempreverde. Los bosques Instituto de Ecología y Biodiversidad (IEB), Puerto Williams, Chile ribereños de los otros dos ríos están dominados por https://orcid.org/0000-0003-1928-0914 especies arbóreas caducifolias, uno por ñirre (N. [email protected] antarctica) y el otro por lenga (N. pumilio). El río con vegetación ribereña dominada por lenga presentó una 2 Programa de Conservación Biocultural Subantártica, diversidad de macroinvertebrados significativamente Universidad de Magallanes, Chile. mayor que en los ríos con vegetación ribereña 3 Instituto de Ecología y Biodiversidad, dominada por ñirre y coihüe. La composición Estación de Campo Parque Omora, comunitaria de macroinvertebrados presenta algunas Teniente Muñoz 166, Puerto Williams, Chile. afinidades con la reportada para otras áreas dentro 4 de la reserva con composición vegetacional similar, Programa de Doctorado en Ciencias Antárticas y Subantárticas, Universidad de Magallanes, Chile. como Isla Navarino o el Parque Nacional Alberto de Agostini. La influencia de la vegetación ribereña 5 Núcleo Milenio de Salmónidos Invasores, INVASAL, y otras variables ambientales deben ser estudiadas a Iniciativa Científica Milenio, Concepción, Chile. través de otros enfoques. De esta manera, emerge la 6 necesidad de estudios que complementen el inventario Department of Philosophy and Religion Studies, University of North Texas, Denton, Texas, United States. aquí presentado, aportando a una caracterización que permita la evaluación de patrones ecológicos 7 British Antarctic Survey, NERC, de los macroinvertebrados acuáticos. Es así, que se Cambridge, CB3 0ET, UK. podrán determinar las generalidades y singularidades Recibido: 28, jul. 2020 Aceptado: 12, dic. 2020 24 J. RENDOLL-CÁRCAMO et al. part of the Cape Horn Biosphere Reserve dependen otros seres vivos incluidos los humanos. (CHBR) and lies in the Magellanic sub-Antarctic Sin embargo, el actual régimen y magnitud del ecoregion. This national park in the extreme impacto antropogénico sobre los ecosistemas south of Chile comprises an extensive valley representan una severa amenaza a la biodiversidad, surrounded by mountain ranges that give rise especialmente para los invertebrados (Sánchez- to glacial and rain or snow-melt streams. The Bayo & Wyckhuys, 2019, Rendoll et al. 2020a). present study provides the first inventory of El impacto humano no es homogéneo entre freshwater macroinvertebrates within the park, las sociedades ni entre los tipos de hábitats, further comparing the species composition of y los ambientes dulceacuícolas se encuentran three rivers with contrasting riparian vegetation. bajo un riesgo mayor (Collen et al. 2012). One river has a riparian vegetation dominated Consecuentemente, lugares prístinos y remotos by Coihüe de Magallanes (Nothofagus como la Reserva de la Biosfera Cabo de Hornos betuloides), an evergreen species. The river (RBCH) donde los impactos antropogénicos son with riparian vegetation dominated by lenga todavía incipientes, son globalmente importantes presented a significantly higher diversity of para monitorear y conservar, para proteger macroinvertebrates than in the rivers with riparian sus comunidades biológicas, incluyendo los vegetation dominated by ñirre and coihüe. The macroinvertebrados dulceacuícolas. community composition of macroinvertebrates Se estima que alrededor de 126.000 presents some affinities with that reported especies de invertebrados habitan durante alguna for other areas within the reserve with similar fase de su ciclo de vida en hábitats dulceacuícolas, vegetational composition, such as Navarino y que entre un 10 y un 15% se han extinguido o se Island or the Alberto de Agostini National Park. encuentran amenazados de extinción (Vörösmarty The influence of riparian vegetation and other et al. 2010, Reid et al. 2019, Dudgeon 2019). environmental variables must be studied through En Europa (Hallman et al. 2017) y algunos sitios other approaches. In this way, the need for studies en otros continentes (Sánchez-Bayo & Wyckhuys that complement the inventory presented here 2019) se ha registrado una abrupta disminución emerges, contributing to a characterization that en la abundancia de insectos, y se ha estimado allows the evaluation of ecological patterns of que la degradación de hábitats y la contaminación aquatic macroinvertebrates. In this way, it will be podría llevar a la extinción hasta un 40% de las possible to identify generalities and singularities especies de insectos durante el siglo XXI. A su of the freshwater biological communities and vez, aproximadamente un 40% de estos insectos their environmental relationships in the southern correspondería a especies que utilizan hábitats tip of Chile. acuáticos. Sin embargo, la identificación tanto de las principales causas de esta amenaza de Key words: extinción como de los grupos taxonómicos o freshwater, Ecology, sub-Antarctic ecoregion, funcionales más amenazados, se basa en estudios National Parks, Limnology. desarrollados casi exclusivamente en el hemisferio norte (Contador et al. 2012, Sánchez-Bayo INTRODUCCIÓN & Wyckhuys op. cit.). Lugares remotos y bien conservados del hemisferio sur, especialmente Los invertebrados son los organismos zonas de latitudes altas, representan un gran vacío multicelulares dominantes en términos de riqueza de información. Además, estas regiones pueden y abundancia, y corresponden al 80% de las ofrecer oportunidades para superar estas brechas y especies descritas en el mundo (Collen et al. disminuir la incertidumbre de nuestras evaluaciones 2012). Habitan prácticamente todos los tipos de ambientales y predicciones, al mismo tiempo que ecosistemas y hábitats del planeta, incluyendo permiten conservar la entomofauna (Contador et ambientes marinos, terrestres, y dulceacuícolas. al. 2020). En este contexto, el extremo austral de Representan un componente clave de la la ecorregión subantártica de Magallanes con su estructura y función de los ecosistemas, de los que heterogénea orografía, fiordos, canales y cuencas MACROINVERTEBRADOS DULCEACUÍCOLAS DEL PARQUE NACIONAL YENDEGAIA 25 hidrográficas, donde se localiza la RBCH, ofrece de elevación (Contador et al. 2015, Rendoll- una oportunidad ideal para abordar estas brechas Cárcamo et al. 2019). Sin embargo, la estructura (Rendoll-Cárcamo et al. 2020a). de estas comunidades de macroinvertebrados La ecorregión subantártica de Magallanes ha sido evaluada en cuencas de origen pluvio- incluye los bosques y humedales más australes nival y son escasos los estudios en ambientes del planeta que por su condición remota han con influencia glaciar (Moorman et al. 2006). experimentado escaso impacto antropogénico, La influencia directa del valle glaciar limita las desarrollo urbano e industrial (Rozzi et al. 2012). extrapolaciones desde otras áreas estudiadas Para esta ecorregión se ha descrito un alto nivel dentro de la reserva. de endemismo para plantas vasculares, no- La vegetación ribereña constituye un vasculares y vertebrados (Rozzi et al. 2006), ecotono entre los hábitats terrestre y acuático, pero un esfuerzo sistemático similar para la fauna con características bióticas y físicas únicas que son de macroinvertebrados dulceacuícolas no se ha determinantes en la estructura y funcionalidad de los realizado (Contador et al. 2012). No obstante, cuerpos de agua (Mancilla et al. 2009, Simanonok la descripción de nuevas especies sugiere que et al. 2011). Además, constituye la principal fuente los niveles de endemismo podrían ser similares de aportes energéticos a los ríos y alimento para los (Valdovinos et al. 2010, Morrone, 2015). La macroinvertebrados dulceacuícolas (Vannote et al. RBCH fue creada en 2005 para proteger el 1980). No obstante, su relevancia se encuentra extremo austral de esta ecorregión archipelágica altamente impactada por el desarrollo de diversas chilena, considerando un enfoque
Recommended publications
  • Glacier Fluctuations During the Past 2000 Years
    Quaternary Science Reviews 149 (2016) 61e90 Contents lists available at ScienceDirect Quaternary Science Reviews journal homepage: www.elsevier.com/locate/quascirev Invited review Glacier fluctuations during the past 2000 years * Olga N. Solomina a, , Raymond S. Bradley b, Vincent Jomelli c, Aslaug Geirsdottir d, Darrell S. Kaufman e, Johannes Koch f, Nicholas P. McKay e, Mariano Masiokas g, Gifford Miller h, Atle Nesje i, j, Kurt Nicolussi k, Lewis A. Owen l, Aaron E. Putnam m, n, Heinz Wanner o, Gregory Wiles p, Bao Yang q a Institute of Geography RAS, Staromonetny-29, 119017 Staromonetny, Moscow, Russia b Department of Geosciences, University of Massachusetts, Amherst, MA 01003, USA c Universite Paris 1 Pantheon-Sorbonne, CNRS Laboratoire de Geographie Physique, 92195 Meudon, France d Department of Earth Sciences, University of Iceland, Askja, Sturlugata 7, 101 Reykjavík, Iceland e School of Earth Sciences and Environmental Sustainability, Northern Arizona University, Flagstaff, AZ 86011, USA f Department of Geography, Brandon University, Brandon, MB R7A 6A9, Canada g Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales (IANIGLA), CCT CONICET Mendoza, CC 330 Mendoza, Argentina h INSTAAR and Geological Sciences, University of Colorado Boulder, USA i Department of Earth Science, University of Bergen, Allegaten 41, N-5007 Bergen, Norway j Uni Research Climate AS at Bjerknes Centre for Climate Research, Bergen, Norway k Institute of Geography, University of Innsbruck, Innrain 52, 6020 Innsbruck, Austria l Department of Geology,
    [Show full text]
  • First Ice Thickness Measurements in Tierra Del Fuego at Schiaparelli Glacier, Chile
    Earth Syst. Sci. Data, 13, 231–236, 2021 https://doi.org/10.5194/essd-13-231-2021 © Author(s) 2021. This work is distributed under the Creative Commons Attribution 4.0 License. First ice thickness measurements in Tierra del Fuego at Schiaparelli Glacier, Chile Guisella Gacitúa1, Christoph Schneider2, Jorge Arigony3, Inti González1,4, Ricardo Jaña5, and Gino Casassa1 1Centro de Investigación Gaia Antártica, Universidad de Magallanes, Punta Arenas, Chile 2Geography Department, Humboldt-Universität zu Berlin, Berlin, Germany 3Instituto de Oceanografia, Universidade Federal do Rio Grande, Rio Grande, Brazil 4CEQUA, Punta Arenas, Chile 5Instituto Antártico Chileno, Chile, Punta Arenas, Chile Correspondence: Guisella Gacitúa ([email protected]) Received: 1 May 2020 – Discussion started: 20 August 2020 Revised: 16 December 2020 – Accepted: 20 December 2020 – Published: 3 February 2021 Abstract. Cordillera Darwin in Tierra del Fuego (Chile) remains one of the least studied glaciated regions in the world. However, this region being one of very few terrestrial sites at this latitude in the Southern Hemisphere has the potential to provide key information on the effect of climate variability and climate change on the cryosphere at sub-polar mid-latitudes of the Southern Hemisphere. Schiaparelli Glacier is located at the northern side of the Cordillera Darwin draining the north side of Monte Sarmiento (2187 m a.s.l.). Despite being one of the largest glaciers in the Cordillera Darwin, no previous in situ observation of its ice thickness had been made either at this glacier or at any other location in the Cordillera Darwin. Ice thickness is one of the fundamental parameters to understand glacier dynamics, constrain ice dynamical modelling, and predict glacier evolution.
    [Show full text]
  • Estrategia Nacional De Glaciares Fundamentos
    REPÚBLICA DE CHILE MINISTERIO DE OBRAS PÚBLICAS DIRECCIÓN GENERAL DE AGUAS ESTRATEGIA NACIONAL DE GLACIARES FUNDAMENTOS REALIZADO POR: CENTRO DE ESTUDIOS CIENTÍFICOS - CECS S.I.T. N° 205 Santiago, Diciembre 2009 MINISTERIO DE OBRAS PÚBLICAS Ministro de Obras Públicas Ingeniero Civil Industrial Sr. Sergio Bitar Ch. Director General de Aguas Abogado Sr. Rodrigo Weisner L. Jefe Unidad de Glaciología y Nieves Geógrafo Sr. Gonzalo Barcaza S. Inspectores Fiscales Ingeniero Civil Sr. Fernando Escobar C. Ingeniero Civil Sr. Cristóbal Cox O. CENTRO DE ESTUDIOS CIENTÍFICOS Jefe de Proyecto Dr. Andrés Rivera (Glaciólogo) Profesionales MSc Francisca Bown (Glacióloga) Claudio Bravo (Geógrafo) Daniela Carrión (Licenciada en Geografía) Dr. Gino Casassa (Glaciólogo) Claudia Flores (Secretaria) Dra. Paulina López (Hidroglacióloga) MSc Camilo Rada (Geofísico) Sebastián Vivero (Licenciado en Geografía) Pablo Zenteno (Geógrafo) Índice 1. INTRODUCCIÓN ..................................................................................................................6 1.1. ORIGEN DEL PROYECTO Y TRATAMIENTO GENERAL DEL TEMA .............................................6 1.2. HIPÓTESIS DE TRABAJO .........................................................................................................6 1.3. OBJETIVOS ............................................................................................................................7 1.4. ¿P OR QUÉ UNA ESTRATEGIA NACIONAL DE GLACIARES ? .....................................................8 2. GLACIARES
    [Show full text]
  • Glacier Inventory and Recent Glacier Variations in the Andes of Chile, South America
    Annals of Glaciology 58(75pt2) 2017 doi: 10.1017/aog.2017.28 166 © The Author(s) 2017. This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives licence (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is unaltered and is properly cited. The written permission of Cambridge University Press must be obtained for commercial re-use or in order to create a derivative work. Glacier inventory and recent glacier variations in the Andes of Chile, South America Gonzalo BARCAZA,1 Samuel U. NUSSBAUMER,2,3 Guillermo TAPIA,1 Javier VALDÉS,1 Juan-Luis GARCÍA,4 Yohan VIDELA,5 Amapola ALBORNOZ,6 Víctor ARIAS7 1Dirección General de Aguas, Ministerio de Obras Públicas, Santiago, Chile. E-mail: [email protected] 2Department of Geography, University of Zurich, Zurich, Switzerland 3Department of Geosciences, University of Fribourg, Fribourg, Switzerland 4Institute of Geography, Pontificia Universidad Católica de Chile, Santiago, Chile 5Centre for Hydrology, University of Saskatchewan, Saskatoon, Canada 6Department of Geology, University of Concepción, Concepción, Chile 7Department of Geology, University of Chile, Santiago, Chile ABSTRACT. The first satellite-derived inventory of glaciers and rock glaciers in Chile, created from Landsat TM/ETM+ images spanning between 2000 and 2003 using a semi-automated procedure, is pre- sented in a single standardized format. Large glacierized areas in the Altiplano, Palena Province and the periphery of the Patagonian icefields are inventoried. The Chilean glacierized area is 23 708 ± 1185 km2, including ∼3200 km2 of both debris-covered glaciers and rock glaciers.
    [Show full text]
  • This Article Appeared in a Journal Published by Elsevier. the Attached
    This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution and sharing with colleagues. Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited. In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier’s archiving and manuscript policies are encouraged to visit: http://www.elsevier.com/copyright Author's personal copy Quaternary Science Reviews 28 (2009) 2165–2212 Contents lists available at ScienceDirect Quaternary Science Reviews journal homepage: www.elsevier.com/locate/quascirev Glaciation in the Andes during the Lateglacial and Holocene Donald T. Rodbell a,*, Jacqueline A. Smith b, Bryan G. Mark c a Geology Department, Union College, Schenectady, NY 12308, USA b Department of Physical and Biological Sciences, The College of Saint Rose, Albany, NY 12203, USA c Department of Geography, The Ohio State University, Columbus, OH 43210, USA article info abstract Article history: This review updates the chronology of Andean glaciation during the Lateglacial and the Holocene from Received 23 March 2008 the numerous articles and reviews published over the past three decades. The Andes, which include Received in revised form some of the world’s wettest and driest mountainous regions, offer an unparalleled opportunity to 29 March 2009 elucidate spatial and temporal patterns of glaciation along a continuous 68-degree meridional transect.
    [Show full text]
  • 10 DAY SOUTHERN PATAGONIA CRUISE Puerto Natales to Puerto Williams
    10 DAY SOUTHERN PATAGONIA CRUISE Puerto Natales to Puerto Williams Vast, exotic, wild and infinite in its beauty. That’s how Patagonia was described by the explorers who arrived here almost 500 years ago. Little has changed to this day. Visitors will discover a truly unspoiled wilderness of mountains, fjords, glaciers, forests and steppes. For a real once-in-a-lifetime adventure, exploring the southernmost extreme of the American continent, navigating through countless sea fjords and channels and crossing the famous Straits of Magellan before setting sail for Antarctica, is an experience that visitors will never forget in their life. Visitors can marvel at the imposing millennial glaciers (of which there are hundreds) and experience close encounters with whales, dolphins, penguins and killer whales. They can even make Cape Horn – the southernmost tip of the continent – their destination, or continue by sea to Antarctica – truly a scientific and ecological treasure. The countless islands, channels, inlets, glaciers and coves along the southern Patagonia of Chile between Puerto Montt and Puerto Williams can satisfy the thirst for discovery of even the most curious navigator. The landmarks found on the charts bear the names of mystical propensities: Cape Horn, Tierra del Fuego, Patagonia, Magellan Straight, Drake Passage, Beagle Canal, and many more. The navigators who sailed these waters are among the greatest of all time: Fernando Magallanes, Francis Drake, James Cook, Louis A. de Bougainville, Robert Fitz Roy, Charles Darwin, Joshua Slocum, Vito Dumas, Peter Blake to name a few. A world of stunning beauty with the imposing backdrop of the Andes will be the sailor’s constant companion.
    [Show full text]
  • First Record of the Occurrence of Sea Ice in the Cordillera Darwin Fjords (54°S), Chile
    Annals of Glaciology First record of the occurrence of sea ice in the Cordillera Darwin fjords (54°S), Chile Charles Salame1,2 , Inti Gonzalez3,4, Rodrigo Gomez-Fell3,5, Ricardo Jaña6 and Jorge Arigony-Neto1,2 Article 1Instituto de Oceanografia, Universidade Federal do Rio Grande (IO-FURG), Rio Grande, Brazil; 2Instituto Nacional 3 Cite this article: Salame C, Gonzalez I, Gomez- de Ciência e Tecnologia da Criosfera (INCT-Criosfera), Rio Grande, Brazil; Centro de Estudios del Cuaternario, Fell R, Jaña R, Arigony-Neto J (2020). First Fuego-Patagonia y Antártica (CEQUA), Punta Arenas, Chile; 4Centro de Investigación Gaia Antártica, Universidad de record of the occurrence of sea ice in the Magallanes, Punta Arenas, Chile; 5Gateway Antarctica, School of Earth and Environment, University of Canterbury, Cordillera Darwin fjords (54°S), Chile. Annals of Christchurch, New Zealand and 6Instituto Antártico Chileno (INACH), Punta Arenas, Chile Glaciology 61(83), 472–482. https://doi.org/ 10.1017/aog.2021.3 Abstract Received: 11 March 2019 This paper provides the first evidence for sea-ice formation in the Cordillera Darwin (CD) fjords Revised: 28 March 2021 Accepted: 29 March 2021 in southern Chile, which is farther north than sea ice has previously been reported for the First published online: 26 April 2021 Southern Hemisphere. Initially observed from a passenger plane in September 2015, the presence of sea ice was then confirmed by aerial reconnaissance and subsequently identified in satellite keywords: imagery. A time series of Sentinel-1 and Landsat-8 images during austral winter 2015 was Calving; icebergs; sea ice used to examine the chronology of sea-ice formation in the Cuevas fjord.
    [Show full text]
  • Glacier Inventory and Recent Glacier Variations in the Andes of Chile, South America
    Annals of Glaciology 58(75pt2) 2017 doi: 10.1017/aog.2017.28 166 © The Author(s) 2017. This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives licence (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is unaltered and is properly cited. The written permission of Cambridge University Press must be obtained for commercial re-use or in order to create a derivative work. Glacier inventory and recent glacier variations in the Andes of Chile, South America Gonzalo BARCAZA,1 Samuel U. NUSSBAUMER,2,3 Guillermo TAPIA,1 Javier VALDÉS,1 Juan-Luis GARCÍA,4 Yohan VIDELA,5 Amapola ALBORNOZ,6 Víctor ARIAS7 1Dirección General de Aguas, Ministerio de Obras Públicas, Santiago, Chile. E-mail: [email protected] 2Department of Geography, University of Zurich, Zurich, Switzerland 3Department of Geosciences, University of Fribourg, Fribourg, Switzerland 4Institute of Geography, Pontificia Universidad Católica de Chile, Santiago, Chile 5Centre for Hydrology, University of Saskatchewan, Saskatoon, Canada 6Department of Geology, University of Concepción, Concepción, Chile 7Department of Geology, University of Chile, Santiago, Chile ABSTRACT. The first satellite-derived inventory of glaciers and rock glaciers in Chile, created from Landsat TM/ETM+ images spanning between 2000 and 2003 using a semi-automated procedure, is pre- sented in a single standardized format. Large glacierized areas in the Altiplano, Palena Province and the periphery of the Patagonian icefields are inventoried. The Chilean glacierized area is 23 708 ± 1185 km2, including ∼3200 km2 of both debris-covered glaciers and rock glaciers.
    [Show full text]
  • First Record of the Occurrence of Sea Ice in the Cordillera Darwin Fjords (54°S), Chile
    Annals of Glaciology First record of the occurrence of sea ice in the Cordillera Darwin fjords (54°S), Chile Charles Salame1,2 , Inti Gonzalez3,4, Rodrigo Gomez-Fell3,5, Ricardo Jaña6 and Jorge Arigony-Neto1,2 Article 1Instituto de Oceanografia, Universidade Federal do Rio Grande (IO-FURG), Rio Grande, Brazil; 2Instituto Nacional 3 Cite this article: Salame C, Gonzalez I, Gomez- de Ciência e Tecnologia da Criosfera (INCT-Criosfera), Rio Grande, Brazil; Centro de Estudios del Cuaternario, Fell R, Jaña R, Arigony-Neto J (2020). First Fuego-Patagonia y Antártica (CEQUA), Punta Arenas, Chile; 4Centro de Investigación Gaia Antártica, Universidad de record of the occurrence of sea ice in the Magallanes, Punta Arenas, Chile; 5Gateway Antarctica, School of Earth and Environment, University of Canterbury, Cordillera Darwin fjords (54°S), Chile. Annals of Christchurch, New Zealand and 6Instituto Antártico Chileno (INACH), Punta Arenas, Chile Glaciology 61(83), 472–482. https://doi.org/ 10.1017/aog.2021.3 Abstract Received: 11 March 2019 This paper provides the first evidence for sea-ice formation in the Cordillera Darwin (CD) fjords Revised: 28 March 2021 Accepted: 29 March 2021 in southern Chile, which is farther north than sea ice has previously been reported for the First published online: 26 April 2021 Southern Hemisphere. Initially observed from a passenger plane in September 2015, the presence of sea ice was then confirmed by aerial reconnaissance and subsequently identified in satellite keywords: imagery. A time series of Sentinel-1 and Landsat-8 images during austral winter 2015 was Calving; icebergs; sea ice used to examine the chronology of sea-ice formation in the Cuevas fjord.
    [Show full text]
  • First Ice Thickness Measurements in Tierra Del Fuego at Glacier
    First ice thickness measurements in Tierra del Fuego at Glacier Schiaparelli, Chile Guisella Gacitúa1, Christoph Schneider2, Jorge Arigony3, Inti González1,4, Ricardo Jaña5, and Gino Casassa1 1Centro de Investigación Gaia Antártica, Universidad de Magallanes, Punta Arenas, Chile 2Geography Department, Humboldt-Universität zu Berlin, Germany 3Instituto de Oceanografia, Universidade Federal do Rio Grande, Rio Grande, Brazil 4CEQUA, Punta Arenas, Chile 5Instituto Antártico Chileno, Chile, Punta Arenas, Chile Correspondence: Guisella Gacitúa ([email protected]) Abstract. Cordillera Darwin in Tierra del Fuego (Chile) remains one of the least studied glaciated regions in the world. However, this region being one of very few terrestrial sites at this latitude in the Southern Hemisphere has the potential to provide key information on the effect of climate variability and climate change on the cryosphere at sub-polar mid-latitudes of the Southern Hemisphere. Glacier Schiaparelli is located at the northern side of the Cordillera Darwin draining the north 5 side of Monte Sarmiento (2187 m asl). Despite being one of the largest glaciers in the Cordillera Darwin no previous in situ observation of its ice thickness had been made neither at this glacier nor at any other location in the Cordillera Darwin. Ice thickness is one of the fundamental parameters to understand glaciers dynamics, constrain ice dynamical modelling and predict glacier evolution. In April 2016 we performed the first successful ice thickness measurements using terrestrial ground- penetrating radar in the ablation area of Glacier Schiaparelli (Gacitúa et al., 2020), https://doi.org/10.1594/PANGAEA.919331. 10 The measurements were made along a transect line perpendicular to the ice flow.
    [Show full text]
  • 'Little Ice Age' Glacier Fluctuations, Gran Campo Nevado
    The Holocene 15,1 (2005) pp. 20–28 ‘Little Ice Age’ glacier fluctuations, Gran Campo Nevado, southernmost Chile Johannes Koch1* and Rolf Kilian2 (1Department of Earth Sciences, Simon Fraser University, Burnaby, BC V5A 1S6, Canada;2Lehrstuhl fu¨r Geologie, FB VI, Universita¨t Trier, 54286 Trier, Germany) Received 8 May 2003; revised manuscript accepted 1 January 2004 Abstract: Moraine systems of Glaciar Lengua (unofficial name) and neighbouring glaciers of Gran Campo Nevado (53S) in the southernmost Andes were mapped and dated by dendrochronological means. They were formed around AD 1628, 1872=1875, 1886, 1902, 1912 and 1941 with the advance in the 1870s being calendar dated. Recessional moraines within each moraine system correspond to brief standstills or minor readvances. A significantly older moraine could not be directly dated by dendrochronological methods as the forest on it was assumed to be second-generation or older. From soil-formation rates, it is assumed that this moraine was formed at some time between AD 1280 and 1460, a time in which many other glaciers in Patagonia formed moraines. Overall, fluctuations of Glaciar Lengua show a strong synchronicity to other glaciers in the Patagonian Andes between 41S and 55S. This study suggests that Glaciar Lengua and possibly all glaciers of Gran Campo Nevado reached their Holocene maximum during the ‘Little Ice Age.’ Key words: ‘Little Ice Age’, glacier variations, dendrochronology, southernmost Andes, late Holocene. Introduction to topographic-climatic effects and glacier dynamics (Warren and Sugden, 1993; Holmlund and Fuenzalida, 1995), further The ‘Little Ice Age’, a period during the last millennium in studies are needed to establish a complete picture of the which glacier cover was generally more extensive (Grove, Holocene glacial chronology in Patagonia.
    [Show full text]
  • Cordillera Darwin
    AAC Publications Recon: Cordillera Darwin The Wild Mountains of Tierra del Fuego Cerro Erguido (1,243 meters) from the south, seen from Fiordo de Agostini at the northwest end of the Cordillera Darwin. The mountain is unclimbed. Photo by Bernard Taberlet In today’s closely connected, heavily touristed world, there are still a few places whose beauty and secrets are guarded by many barriers to entry—strata of difficulty, like the layers of a pearl. One such place is the mountains of western Tierra del Fuego. The Tierra del Fuego archipelago constitutes the southern tip of the Americas, pointing like an arrow toward Antarctica, forged by the westerlies and the bash of waves. The Isla Grande (“big island”) of Tierra del Fuego is larger than Denmark, and the myriad surrounding islands and islets add an area the size of Belgium. In the southwestern corner of the Isla Grande, extending far to the west of the town of Ushuaia, a labyrinthine peninsula of fjords, channels, glaciers, and twisted fingers of land holds the 140-kilometer-long Cordillera Darwin, the southernmost fortress of the Andes. Many aspects of the Cordillera Darwin make it unusual among the world’s mountains. The most obvious, when comparing it to the rest of the Andes, is that its main axis runs east to west. Most of the South American continent belongs to a single tectonic plate, but the southern part of Tierra del Fuego is riding a completely different one: the Scotia Plate. (This plate moves eastward an average of 6.4mm per year relative to the South American Plate.) The Cordillera Darwin experiences, to a lesser extent, the same climatic gradient that characterizes Patagonia: rainy, green, and heavily glaciated in the west (where Monte Sarmiento is the dominant peak) and progressively drier and colder toward the eastern end (dominated by the mountains Frances, Bove, and Roncagli).
    [Show full text]