Online Supplement for the Manuscript: Supplementary Material and Methods

Total Page:16

File Type:pdf, Size:1020Kb

Online Supplement for the Manuscript: Supplementary Material and Methods Supplementary material Ann Rheum Dis Online Supplement for the manuscript: The acyltransferase skinny hedgehog regulates TGF-dependent fibroblast activation in SSc by Ruifang Liang1, Rosebeth Kagwiria1, Ariella Zehender1, Clara Dees1, Christina Bergmann1, Andreas Ramming1, Dorota Krasowska2, Małgorzata Michalska-Jakubus2, Alexander Kreuter3, Georg Schett1, Jörg H. W. Distler1 Supplementary Material and Methods Patient and Public Involvement Patients were not involved in the design of the study or the interpretation of the results, but donated biopsies for this study. The results of the study will be presented on congress to enable distribution also by patients. Patients and fibroblasts Dermal fibroblasts were isolated from skin biopsies of 23 SSc patients and 21 matched healthy volunteers. Biopsies were taken at the forearm, 15 ± 2 cm away from the styloid processus. All patients fulfilled the 2013 ACR/EULAR criteria for SSc.[1] Sixteen patients were female, seven were male. The median age of SSc patients was 45 years (range: 19-65 years), and their median disease duration was 5 years (range: 0.5-10 years). All patients and healthy volunteers signed a consent form approved by the local institutional review board. Liang R, et al. Ann Rheum Dis 2019; 0:1269–1273. doi: 10.1136/annrheumdis-2019-215066 Supplementary material Ann Rheum Dis Murine models of SSc Three different murine models of SSc were employed: Bleomycin-induced, TBRact-induced and Topoisomerase 1 (topo)-induced dermal fibrosis. Bleomycin was injected every other day at concentrations of 0.5 mg/ml as described [2, 3]. Injections with the vehicle, 0.9% NaCl served as controls. For TBRact-induced fibrosis, 4-week-old mice received of 6.67 × 107 pfu/mouse of replication-deficient type 5 adenoviruses encoding for constitutively active TBRI construct into defined areas of at the upper back four times every other week [4]. Injections of 6.67 × 107 pfu/mouse of replication-deficient type 5 adenoviruses encoding for LacZ served as controls. In the Topo model, fibrosis was induced by four local injections of topo every other week. Recombinant human topo was diluted to 500 units/ml and mixed with Complete Freund’s Adjuvant (CFA) (Sigma-Aldrich, Taufkirchen, Germany) 3:2 (volume/volume). 250µl were injected subcutaneously into C57BL/6 mice (female, 6 weeks old) in defined areas of the upper back [5]. Injections of the vehicle, including CFA served as controls. Reporter assay NIH3T3-Light2 cells were kindly provided by Prof. Dr. Suzanne Eaton (Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany). Cells were transfected with siRNA against Hhat or non-targeting control siRNA (n.t.siRNA) by nucleofection as described [6]. 24h after transfection, cells were serum starved and stimulated with recombinant TGF. The fluorescence intensity was measured at a Luminoskan Ascent Microplate-Luminometer (ThermoFisher, Bonn, Germany). Coculture systems In transwell co-culture assays, direct cell-cell contact was prevented by using cell culture insert with a 0.4 µm pore size polycarbonate membrane (Falcon) in a 24-well plate. 3 x 104 of Liang R, et al. Ann Rheum Dis 2019; 0:1269–1273. doi: 10.1136/annrheumdis-2019-215066 Supplementary material Ann Rheum Dis SHH-light II reporter cells were cultured in the bottom of the well (100% confluence), whereas 3 x 104 NIH3T3 fibroblasts transfected with n.t.siRNA or Hhat siRNA were placed in the insert of 24-well plate (100% confluence). NIH3T3 cells were serum starved for 24 h and infected with adenoviruses encoding for LacZ or TBR. 24 hours after infection, the insert was removed, SHH-light II reporter cells were lysed and subsequent analyzed by Dual- Luciferase assays (Supplementary Fig. 3 A). In direct co-culture system, 2 x 104 of NIH3T3 cells transfected with Hhat siRNA or n.t. siRNA and 2 x 104 of SHH-light II (together with the NIH3T3 cells 100% confluency) cells were placed in a single well of 24-well plate. Cells were serum starved for 24 h and infected with adenoviruses LacZ or TBR. 24 h after infection, cells were lysed and Dual-luciferase were performed (Supplementary Fig. 3B). siRNA-mediated knockdown of HHAT and Smad3 Complexes of siRNA and atelocollagen (Koken, Tokyo, Japan) were prepared as described previously [7, 8]. The following siRNA duplexes (Thermo Fisher) were used: mHhat: 5´- GUUAAGAGAAGGUGGUACAUU-3´, antisense 5´-PUGUACCACCUUCUCUUAACUU- 3´. Non-targeting siRNA duplexes served as controls. Atelocollagen/siRNA complexes were injected intracutaneously once weekly. Analysis of dermal fibrosis and adverse effects Dermal thickness, -smooth muscle actin and hydroxyproline content were analyzed as described previously [2, 3, 9-14]. Mice were monitored daily for activity, weight loss, texture of the fur and diarrhea. Quantitative real time-PCR Liang R, et al. Ann Rheum Dis 2019; 0:1269–1273. doi: 10.1136/annrheumdis-2019-215066 Supplementary material Ann Rheum Dis Gene expression was quantified by SYBR-Green real-time-PCR using the MX3005P Detection System (Agilent Technologies, Santa Clara CA, US).[15, 16] Samples without enzyme in the reverse transcription reaction, without template and dissociation curve analysis served as controls. All primers are summarized in supplementary table 1. Western blotting Protein samples were separated by SDS-polyacrylamide gel and electrotransferred onto polyvinylidene fluoride membranes (Millipore, Billerica, MA, USA). After blocking, membranes were incubated with polyclonal antibodies against HHAT (Santa Cruz, Heidelberg, Germany) overnight at 4°C. For the detection of SHH, polyclonal antibodies against SHH (Santa Cruz) were used. Membranes were incubated with horseradish- peroxidase-conjugated secondary antibodies (Dako, Glostrup, Denmark). Conditioned cell supernatants from fibroblasts transfected with Hhat siRNA or non-targeting siRNA were collected and centrifuged at 500 g for 15 minutes to remove cellular debris. The supernatants were concentrated by using Amicon Ultra-0.5 mL Centrifugal Filters 50 kDa to enrich for oligomeric SHH (75 kDa, 120 kDa, 180 kDa) [17]. The flow-through was concentrated by trichloroacetic acid precipitation to enrich for monomeric SHH (19 kDa). After addition of reducing SDS sample buffer, samples were heated at 95 °C for 10 minutes, briefly centrifuged at 14,000 x g for 5 minutes, and loaded onto the 12% (for oligomeric SHH) and 6% (for monomeric SHH) SDS-PAGE. We confirmed these findings by an additional approach. In this approach, proteins in the supernatants were cross-linked with 1% PFA for 10min. The supernatants were then applied to Amicon Ultra-0.5 mL Centrifugal Filters and the flow-through was precipitated by TCA and further preceded as described above. Immunofluorescence staining Liang R, et al. Ann Rheum Dis 2019; 0:1269–1273. doi: 10.1136/annrheumdis-2019-215066 Supplementary material Ann Rheum Dis Paraffin-embedded skin sections or cultured fibroblasts were stained with antibodies against prolyl-4-hydroxylase- (P4H), -smooth muscle actin (SMA) (Sigma-Aldrich), HHAT (Sigma-Aldrich), GLI2 and DAPI. Myofibroblasts were identified as single, spindle shaped cells in the dermis positive for -smooth muscle actin. Concentration-matched species- specific immunoglobulins (Vector Laboratories) served as control antibodies. The staining was analyzed using a Nikon Eclipse 80i microscope (Nikon, Tokyo, Japan). Statistics All in vitro data are presented as median with interquartile range (IQR), and all in vivo data as dot blots. Differences between the groups were tested by non-parametric Mann-Whitney U test. P-values less than 0.05 were considered as significant. Liang R, et al. Ann Rheum Dis 2019; 0:1269–1273. doi: 10.1136/annrheumdis-2019-215066 Supplementary material Ann Rheum Dis Supplementary Figures Supplementary Figure 1: Hedgehog signaling is active in fibroblasts expressing HHAT. A, Co-stainings of HHAT with the hedgehog transcription factor GLI2 and the fibroblast marker prolyl-4-hydroxylase- (P4H) at 200-fold magnification. Semi-quantitative analysis of HHAT staining in fibroblasts in the skin of SSc patients and healthy volunteers (n=5 for SSc patients and 5 for matched healthy controls). B, immunofluorescence staining (400-fold and 1000-fold magnification) with quantification in healthy and SSc patients skins by two independent human observers (n=6). Supplementary Figure 2: TGF induces HHAT expression in a SMAD3-dependent manner. A-B, Effects of siRNA-mediated knockdown of SMAD3 on the mRNA (A) and protein (B) levels of HHAT in human dermal fibroblasts (n=4 biological replicates with ≥2 technical replicates).C-D, Costaining for Hhat, Smad3, Vimentin and DAPI in murine models of skin fibrosis with quantification (C) and representative images (D) (200-fold and 600-fold magnification n=5). Supplementary Figure 3: Knockdown of Hhat abrogates TBR-induced long-range hedgehog signaling. A, Transwell assays with physical separation of fibroblasts and reporter cells and activation of the reporter exclusively by long-range hedgehog signaling; schematic presentation of the experiment (left) and quantification of the reporter activity (right). B,Direct coculture of reporter cells and fibroblasts. Reporter activity is mediated by short- and long-range hedgehog Liang R, et al. Ann Rheum Dis 2019; 0:1269–1273. doi: 10.1136/annrheumdis-2019-215066 Supplementary material Ann Rheum Dis signaling. Schematic presentation of the experiment (left) and quantification of the reporter activity (right). Fibroblasts were transfected with a constitutively active TGF receptor type I (TBR) (or LacZ) and Hhat siRNA (or scrambled siRNA) (n=10). C, Western blot analysis of oligomeric and monomeric forms of SHH in the supernatant of fibroblasts transfected with a constitutively active TGF receptor type I (TBR) (or LacZ) and Hhat siRNA (or scrambled siRNA) in direct coculture and transwell settings. One representative WB (coculture) and quantification (n=4 independent experiments for each setting). Supplementary Figure 4: Knockdown efficacy of Hhat in murine skin. Protein levels of Hhat in the skin of bleomycin- (A) or Topo-challenged (B) mice with or without atellocollagen/siRNA complexes (n=6). Liang R, et al. Ann Rheum Dis 2019; 0:1269–1273.
Recommended publications
  • Material and Method
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Spiral - Imperial College Digital Repository Attenuation of Hedgehog acyltransferase-catalyzed Sonic hedgehog palmitoylation causes reduced signaling, proliferation and invasiveness of human carcinoma cells Shu-Chun Chang 1, #, Antonio D Konitsiotis 1, Biljana Jovanović 1, *, Paulina Ciepla 2, 3, Naoko Masumoto 2, 3, Christopher P. Palmer 4, Edward W. Tate 2, 3, John R. Couchman 5 and Anthony I. Magee 1, 3 1 Molecular Medicine Section, National Heart & Lung Institute Imperial College London, Sir Alexander Fleming Building, South Kensington London SW7 2AZ, UK 2 Department of Chemistry, Imperial College London, South Kensington London SW7 2AZ, UK 3 Institute of Chemical Biology, Imperial College London 4 Institute for Health Research and Policy, London Metropolitan University London N7 8DB, UK 5 Department of Biomedical Sciences, University of Copenhagen, Biocenter, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark # Current address: Department of Biological Sciences, National University of Singapore 14 Science Drive 4, S1A-05-11, Singapore 117543 * Current address: Department of Biosciences and Nutrition, Karolinska Institutet SE-141 57 Huddinge, Sweden Running title: Carcinoma dependence on Hhat Key words: sonic hedgehog; Hedgehog acyltransferase; MBOAT; carcinoma; pancreatic; lung Corresponding author: Anthony I. Magee, Molecular Medicine Section, National Heart & Lung Institute Imperial College London, South Kensington Campus, London SW7 2AZ, UK. Tel: +44 (0)20 7594 3135 E-mail: [email protected] Abbreviations: PDAC, pancreatic ductal adenocarcinoma; NSCLC, non-small cell lung cancer; Shh, Sonic hedgehog; Hhat, Hedgehog acyltransferase; KD, knockdown; siRNA, small interfering RNA; CFSE, 5(6)-Carboxyfluorescein diacetate N-succinimidyl ester; ALP, alkaline phosphatase 1 ABSTRACT Overexpression of Hedgehog family proteins contributes to the aetiology of many cancers.
    [Show full text]
  • Gain-Of-Function Shh Mutants Activate Smo in Cis Independent of Ptch1/2 Function
    bioRxiv preprint doi: https://doi.org/10.1101/172429; this version posted June 5, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Gain-of-function Shh mutants activate Smo in cis independent of Ptch1/2 function Catalina Casillas and Henk Roelink Department of Molecular and Cell Biology, 16 Barker Hall, 3204, University of California, Berkeley CA 94720, USA [email protected] bioRxiv preprint doi: https://doi.org/10.1101/172429; this version posted June 5, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Abstract Sonic Hedgehog (Shh) signaling is characterized by strict non-cell autonomy; cells expressing Shh do not respond to their ligand. Here, we identify several Shh mutations that gain the ability to activate the Hedgehog (Hh) pathway in cis. This activation requires the extracellular cysteine rich domain of Smoothened, but is otherwise independent of Ptch1/2. Many of the identified mutations disrupt either a highly conserved catalytic motif found in peptidases or an a-helix domain frequently mutated in holoprosencephaly-causing SHH alleles. The expression of gain- of-function mutants often results in the accumulation of unprocessed Shh pro-peptide, a form of Shh we demonstrate is sufficient to activate the Hh response cell-autonomously.
    [Show full text]
  • Role of Hedgehog Signaling in Breast Cancer: Pathogenesis and Therapeutics
    cells Review Role of Hedgehog Signaling in Breast Cancer: Pathogenesis and Therapeutics Natalia A. Riobo-Del Galdo 1,2,* , Ángela Lara Montero 3 and Eva V. Wertheimer 3,* 1 School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK 2 Leeds Institute of Medical Research, School of Medicine, University of Leeds, Leeds LS2 9JT, UK 3 Laboratorio de Transducción de señales y cáncer, Centro de Estudios Farmacológicos y Botánicos (CEFYBO-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires C1121ABG, Argentina; [email protected] * Correspondence: [email protected] (N.A.R.-D.G.); [email protected] (E.V.W.); Tel.: +44-0113-343-9184 (N.A.R.-D.G.); +54-0115-285-3596 (E.V.W.) Received: 2 April 2019; Accepted: 23 April 2019; Published: 25 April 2019 Abstract: Breast cancer (BC) is the leading cause of cancer-related mortality in women, only followed by lung cancer. Given the importance of BC in public health, it is essential to identify biomarkers to predict prognosis, predetermine drug resistance and provide treatment guidelines that include personalized targeted therapies. The Hedgehog (Hh) signaling pathway plays an essential role in embryonic development, tissue regeneration, and stem cell renewal. Several lines of evidence endorse the important role of canonical and non-canonical Hh signaling in BC. In this comprehensive review we discuss the role of Hh signaling in breast development and homeostasis and its contribution to tumorigenesis and progression of different subtypes of BC. We also examine the efficacy of agents targeting different components of the Hh pathway both in preclinical models and in clinical trials.
    [Show full text]
  • Diagnostics of Halitosis Complaints by a Multidisciplinary Team
    JOP. J Pancreas (Online) 2015 Jan 31; 16(1):25-32. REVIEW ARTICLE Regulation Mechanisms of the Hedgehog Pathway in Pancreatic Cancer: A Review Kim Christin Honselmann, Moritz Pross, Carlo Maria Felix Jung, Ulrich Friedrich Wellner, Stef- fen Deichmann, Tobias Keck, Dirk Bausch Department of General-, Visceral-, Thoracic and Vascular Surgery, University Medical Center Schleswig-Holstein, Campus Luebeck, Ratzeburgerallee 160, 23538 Luebeck, Germany ABSTRACT Pancreatic ductal adenocarcinoma (PDAC) is the fourth most common cause of death from cancer. Its 5-year survival rate is less than 5%. This poor prognosis is mostly due to the cancer’s early invasion and metastasis formation, leading to an initial diagnosis at an advanced incurable stage in the majority of patients. The only potentially curative treatment is radical surgical resection. The effect of current che- motherapeutics or radiotherapy is limited. Novel therapeutic strategies are therefore much needed. One of the hallmarks of PDAC is its abundant desmoplastic (stromal) reaction. The Hedgehog (Hh) signaling pathway is critical for em- bryologic development of the pancreas. Aberrant Hh signaling promotes pancreatic carcinogenesis, the maintenance of the tumor micro- environment and stromal growth. The canonical Hh-pathway in the tumor stroma has been targeted widely but has not yet lead to hopeful clinical results. Targeting both the tumor and its surrounding stroma through Hh pathway inhibition by also targeting non-canonical pathways as apparent in the tumor cell may therefore be a novel treatment strategy for PDAC. INTRODUCTION mucinous epithelium replacing the physiological cuboi- dal epithelium. Developmental stages range from PanIN Pancreatic Cancer 1A to PanIN 3 (carcinoma in situ) [6].
    [Show full text]
  • NKX6-1 Mediates Cancer Stem-Like Properties and Regulates Sonic Hedgehog Signaling in Leiomyosarcoma
    Su et al. J Biomed Sci (2021) 28:32 https://doi.org/10.1186/s12929-021-00726-6 RESEARCH Open Access NKX6-1 mediates cancer stem-like properties and regulates sonic hedgehog signaling in leiomyosarcoma Po‑Hsuan Su1,2,3, Rui‑Lan Huang1,2,3, Hung‑Cheng Lai1,2,3,4, Lin‑Yu Chen1,2, Yu‑Chun Weng1,2, Chih‑Chien Wang5 and Chia‑Chun Wu5* Abstract Background: Leiomyosarcoma (LMS), the most common soft tissue sarcoma, exhibits heterogeneous and complex genetic karyotypes with severe chromosomal instability and rearrangement and poor prognosis. Methods: Clinical variables associated with NKX6‑1 were obtained from The Cancer Genome Atlas (TCGA). NKX6‑1 mRNA expression was examined in 49 human uterine tissues. The in vitro efects of NXK6‑1 in LMS cells were deter‑ mined by reverse transcriptase PCR, western blotting, colony formation, spheroid formation, and cell viability assays. In vivo tumor growth was evaluated in nude mice. Results: Using The Cancer Genome Atlas (TCGA) and human uterine tissue datasets, we observed that NKX6-1 expression was associated with poor prognosis and malignant potential in LMS. NKX6-1 enhanced in vitro tumor cell aggressiveness via upregulation of cell proliferation and anchorage‑independent growth and promoted in vivo tumor growth. Moreover, overexpression and knockdown of NKX6-1 were associated with upregulation and downregulation, respectively, of stem cell transcription factors, including KLF8, MYC, and CD49F, and afected sphere formation, chem‑ oresistance, NOTCH signaling and Sonic hedgehog (SHH) pathways in human sarcoma cells. Importantly, treatment with an SHH inhibitor (RU‑SKI 43) but not a NOTCH inhibitor (DAPT) reduced cell survival in NKX6-1‑expressing cancer cells, indicating that an SHH inhibitor could be useful in treating LMS.
    [Show full text]
  • Hedgehog Signaling and Truncated GLI1 in Cancer
    cells Review Hedgehog Signaling and Truncated GLI1 in Cancer Daniel Doheny 1 , Sara G. Manore 1 , Grace L. Wong 1 and Hui-Wen Lo 1,2,* 1 Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27101, USA; [email protected] (D.D.); [email protected] (S.G.M.); [email protected] (G.L.W.) 2 Wake Forest Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, NC 27101, USA * Correspondence: [email protected]; Tel.: +1-336-716-0695 Received: 22 August 2020; Accepted: 15 September 2020; Published: 17 September 2020 Abstract: The hedgehog (HH) signaling pathway regulates normal cell growth and differentiation. As a consequence of improper control, aberrant HH signaling results in tumorigenesis and supports aggressive phenotypes of human cancers, such as neoplastic transformation, tumor progression, metastasis, and drug resistance. Canonical activation of HH signaling occurs through binding of HH ligands to the transmembrane receptor Patched 1 (PTCH1), which derepresses the transmembrane G protein-coupled receptor Smoothened (SMO). Consequently, the glioma-associated oncogene homolog 1 (GLI1) zinc-finger transcription factors, the terminal effectors of the HH pathway, are released from suppressor of fused (SUFU)-mediated cytoplasmic sequestration, permitting nuclear translocation and activation of target genes. Aberrant activation of this pathway has been implicated in several cancer types, including medulloblastoma, rhabdomyosarcoma, basal cell carcinoma, glioblastoma, and cancers of lung, colon, stomach, pancreas, ovarian, and breast. Therefore, several components of the HH pathway are under investigation for targeted cancer therapy, particularly GLI1 and SMO. GLI1 transcripts are reported to undergo alternative splicing to produce truncated variants: loss-of-function GLI1DN and gain-of-function truncated GLI1 (tGLI1).
    [Show full text]
  • Activation of the Hedgehog-Signaling Pathway in Human Cancer and the Clinical Implications
    Oncogene (2010) 29, 469–481 & 2010 Macmillan Publishers Limited All rights reserved 0950-9232/10 $32.00 www.nature.com/onc REVIEW Activation of the hedgehog-signaling pathway in human cancer and the clinical implications L Yang, G Xie, Q Fan and J Xie Wells Center for Pediatric Research, Division of Hematology and Oncology, Department of Pediatrics and IU Simon Cancer Center, Indiana University, Indianapolis, IN, USA The hedgehog pathway, initially discovered by two Nobel found in most basal cell carcinomas (BCCs) and many laureates Drs E Wieschaus and C Nusslein-Volhard in extracutaneous cancers (Xie, 2005; Epstein, 2008; Jiang Drosophila, is a major regulator for cell differentiation, and Hui, 2008; Xie, 2008a, c). The emerging role of Hh tissue polarity and cell proliferation. Studies from many signaling in human cancer further emphasizes the laboratories reveal activation of this pathway in a variety relevance of studying this pathway to human health. of human cancer, including basal cell carcinomas (BCCs), Overall, the general signaling mechanisms of the Hh medulloblastomas, leukemia, gastrointestinal, lung, ovar- pathway is conserved from fly to the humans (Ingham ian, breast and prostate cancers. It is thus believed that and Placzek, 2006). The seven transmembrane domain targeted inhibition of hedgehog signaling may be effective containing protein smoothened (SMO) serves as the key in treatment and prevention of human cancer. Even more player for signal transduction of this pathway, whose exciting is the discovery and synthesis of specific signaling function is inhibited by another transmembrane protein antagonists for the hedgehog pathway, which have Patched (PTC) in the absence of Hh ligands.
    [Show full text]
  • Stromal Hedgehog Pathway Activation by IHH Suppresses Lung Adenocarcinoma Growth and Metastasis by Limiting Reactive Oxygen Species
    Oncogene (2020) 39:3258–3275 https://doi.org/10.1038/s41388-020-1224-5 ARTICLE Stromal Hedgehog pathway activation by IHH suppresses lung adenocarcinoma growth and metastasis by limiting reactive oxygen species 1 1 1 1 2 Sahba Kasiri ● Baozhi Chen ● Alexandra N. Wilson ● Annika Reczek ● Simbarashe Mazambani ● 2 1 1 3 3 1 3 Jashkaran Gadhvi ● Evan Noel ● Ummay Marriam ● Barbara Mino ● Wei Lu ● Luc Girard ● Luisa M. Solis ● 4 5 2 1,6 Katherine Luby-Phelps ● Justin Bishop ● Jung-Whan Kim ● James Kim Received: 10 August 2019 / Revised: 10 February 2020 / Accepted: 14 February 2020 / Published online: 27 February 2020 © The Author(s) 2020. This article is published with open access Abstract Activation of the Hedgehog (Hh) signaling pathway by mutations within its components drives the growth of several cancers. However, the role of Hh pathway activation in lung cancers has been controversial. Here, we demonstrate that the canonical Hh signaling pathway is activated in lung stroma by Hh ligands secreted from transformed lung epithelia. Genetic deletion of Shh, the primary Hh ligand expressed in the lung, in KrasG12D/+;Trp53fl/fl autochthonous murine lung 1234567890();,: 1234567890();,: adenocarcinoma had no effect on survival. Early abrogation of the pathway by an anti-SHH/IHH antibody 5E1 led to significantly worse survival with increased tumor and metastatic burden. Loss of IHH, another Hh ligand, by in vivo CRISPR led to more aggressive tumor growth suggesting that IHH, rather than SHH, activates the pathway in stroma to drive its tumor suppressive effects—a novel role for IHH in the lung. Tumors from mice treated with 5E1 had decreased blood vessel density and increased DNA damage suggestive of reactive oxygen species (ROS) activity.
    [Show full text]
  • Hedgehog Acyltransferase As a Target in Pancreatic Ductal Adenocarcinoma
    Oncogene (2015) 34, 263–268 & 2015 Macmillan Publishers Limited All rights reserved 0950-9232/15 www.nature.com/onc SHORT COMMUNICATION Hedgehog acyltransferase as a target in pancreatic ductal adenocarcinoma E Petrova1,2,5, A Matevossian1,3 and MD Resh1,3,4 Sonic Hedgehog (Shh) is abnormally expressed in pancreatic cancer and is associated with disease onset and progression. Inhibition of Shh signaling is thus an attractive clinical target for therapeutic intervention. Most efforts to block Shh signaling have focused on inhibitors of Smoothened, which target the canonical Shh signaling pathway. These approaches have met with limited success, in part due to development of resistance-conferring mutations and contributions from non-canonical signaling pathways. Here, we show that Hedgehog acyltransferase (Hhat), the enzyme responsible for the attachment of palmitate onto Shh, is a novel target for inhibition of Shh signaling in pancreatic cancer cells. Depletion of Hhat with lentivirally delivered small hairpin RNA decreased both anchorage-dependent and independent proliferation of human pancreatic cancer cells. In vivo, Hhat knockdown led to reduction of tumor growth in a mouse xenograft model of pancreatic cancer. RU-SKI 43, a small molecule inhibitor of Hhat recently developed by our group, reduced pancreatic cancer cell proliferation and Gli-1 activation through Smoothened-independent non-canonical signaling. In addition, RU-SKI 43 treatment inhibited two key proliferative pathways regulated by Akt and mTOR. This work demonstrates that Hhat has a critical role in pancreatic cancer and that a small molecule inhibitor of Hhat can successfully block pancreatic cancer cell proliferation. It also highlights the importance of developing optimized Hhat inhibitors to be used as therapeutics in pancreatic cancer, as well as in other malignancies characterized by Shh overexpression.
    [Show full text]
  • The Hedgehog Processing Pathway Is Required for NSCLC Growth and Survival
    Oncogene (2013) 32, 2335–2345 & 2013 Macmillan Publishers Limited All rights reserved 0950-9232/13 www.nature.com/onc ORIGINAL ARTICLE The Hedgehog processing pathway is required for NSCLC growth and survival J Rodriguez-Blanco1,11, NS Schilling1,2,11, R Tokhunts1,2, C Giambelli1, J Long1, D Liang Fei1,2, S Singh1, KE Black1, Z Wang1, F Galimberti2, PA Bejarano3, S Elliot4, MK Glassberg5, DM Nguyen1,6, WW Lockwood7, WL Lam8, E Dmitrovsky2,9, AJ Capobianco1,6 and DJ Robbins1,6,10 Considerable interest has been generated from the results of recent clinical trials using smoothened (SMO) antagonists to inhibit the growth of hedgehog (HH) signaling-dependent tumors. This interest is tempered by the discovery of SMO mutations mediating resistance, underscoring the rationale for developing therapeutic strategies that interrupt HH signaling at levels distinct from those inhibiting SMO function. Here, we demonstrate that HH-dependent non-small cell lung carcinoma (NSCLC) growth is sensitive to blockade of the HH pathway upstream of SMO, at the level of HH ligand processing. Individually, the use of different lentivirally delivered shRNA constructs targeting two functionally distinct HH-processing proteins, skinny hedgehog (SKN) or dispatched-1 (DISP-1), in NSCLC cell lines produced similar decreases in cell proliferation and increased cell death. Further, providing either an exogenous source of processed HH or a SMO agonist reverses these effects. The attenuation of HH processing, by knocking down either of these gene products, also abrogated tumor growth in mouse xenografts. Finally, we extended these findings to primary clinical specimens, showing that SKN is frequently overexpressed in NSCLC and that higher DISP-1 expression is associated with an unfavorable clinical outcome.
    [Show full text]
  • Structure and Function of Hedgehog Acyltransferase
    STRUCTURE AND FUNCTION OF HEDGEHOG ACYLTRANSFERASE IN NORMAL AND CANCER CELLS by Armine Matevossian A Dissertation Presented to the Faculty of the Louis V.Gerstner, Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy New York, NY May, 2015 ___________________________ _________________________ Marilyn D. Resh, PhD Date Dissertation Mentor Copyright by Armine Matevossian 2015 © DEDICATION To my parents, Azniv and Achot, for showing me how to lead a meaningful and joyous life. To my siblings, Ara and Anouch, for always being by my side in this journey. iii ABSTRACT Hedgehog acyltransferase (Hhat) is a multipass transmembrane enzyme that mediates the covalent attachment of the 16-carbon fatty acid palmitate to the N-terminal cysteine of Sonic Hedgehog (Shh). Palmitoylation of Shh by Hhat is critical for short and long range signaling. The Shh signaling pathway has been implicated in the progression of breast cancer. To determine the functional significance of Hhat expression in breast cancer, we used a panel of estrogen receptor (ER) positive and negative cell lines. Here we show that Hhat is a novel target for inhibition of ER positive, HER2 amplified, and tamoxifen resistant breast cancer cell growth. Depletion of Hhat with lentiviral shRNA decreased both anchorage-dependent and anchorage-independent proliferation of ER positive, but not triple negative, breast cancer cells. Treatment with RU-SKI 43, a small molecule inhibitor of Hhat recently identified by our group, also reduced ER positive cell proliferation. Overexpression of Hhat in ER positive cells not only rescued the growth defect in the presence of RU-SKI 43 but also resulted in increased cell proliferation in the absence of drug.
    [Show full text]
  • Hedgehog Signaling Inhibators and Their Importance for Cancer Treatment
    South Dakota State University Open PRAIRIE: Open Public Research Access Institutional Repository and Information Exchange Biology and Microbiology Graduate Students Plan B Research Projects Department of Biology and Microbiology 2020 Hedgehog Signaling Inhibators and Their Importance for Cancer Treatment Haileselassie Tefera Follow this and additional works at: https://openprairie.sdstate.edu/biomicro_plan-b Part of the Biology Commons, and the Microbiology Commons Hedgehog Signaling Inhibitors and Their Importance for Cancer Treatment 1 Table of Contents Table of content ..............................................................................................................................1 ABSTRACT ....................................................................................................................................2 INTRODUCTION..........................................................................................................................3 Hedgehog Ligands ......................................................................................................................... 4 Hedgehog signaling pathway and Key Components...................................................................4 Signaling pathway in the absence of Hh ligands ............................................................6 Signaling pathway in the presence of Hh ligands ..........................................................6 Molecular mechanisms of Hh ligands and key components ......................................................8
    [Show full text]