Nuclear Receptors in Metazoan Lineages: the Cross-Talk Between Evolution and Endocrine Disruption

Total Page:16

File Type:pdf, Size:1020Kb

Nuclear Receptors in Metazoan Lineages: the Cross-Talk Between Evolution and Endocrine Disruption Nuclear Receptors in Metazoan lineages: the cross -talk between Evolution and Endocrine Disruption Elza Sofia Silva Fonseca Tese de Doutoramento apresentada à Faculdade de Ciências da Universidade do Porto Biologia D 2020 Nuclear Receptors in Metazoan lineages: the cross-talk between Evolution and Endocrine Disruption D Elza Sofia Silva Foseca Doutoramento em Biologia Departamento de Biologia 2020 Orientador Doutor Luís Filipe Costa Castro, Professor Auxiliar, Faculdade de Ciências da Universidade do Porto, Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR) Coorientador Professor Doutor Miguel Alberto Fernandes Machado e Santos, Professor Auxiliar, Faculdade de Ciências da Universidade do Porto Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR) FCUP i Nuclear Receptors in Metazoan lineages: the cross-talk between Evolution and Endocrine Disruption This thesis was supported by FCT (ref: SFRH/BD/100262/2014), Norte2020 and FEDER (Coral – Sustainable Ocean Exploitation – Norte-01-0145-FEDER-000036 and EvoDis – Norte-01-0145-FEDER-031342). ii FCUP Nuclear Receptors in Metazoan lineages: the cross-talk between Evolution and Endocrine Disruption The present thesis is organized into seven chapters. Chapter 1 consists of a general introduction, providing an overview on Metazoa definition, and a review on the current knowledge of evolution and function of nuclear receptors and their role in endocrine disruption processes. Chapters 2, 3, 4 and 6 correspond to several projects developed during the doctoral programme presented here as independent articles, listed below (three articles published in peer reviewed international journals and one article in final preparation for submission). Chapter 5 was adapted from an article published in a peer reviewed international journal (listed below), in which I executed the methodology regarding the structural and functional analyses of rotifer RXR and I contributed to the writing of the sections referring to these analyses (Material and Methods, Results and Discussion). Finally, Chapter 7 contains a general discussion, the main conclusions and the future challenges. I declare that I have totally or partially peformed the work included in this thesis, in close cooperation/co-authorships with supervisors and other researchers. I have total responsibiliy for the conception of Chapters 1, 5 and 7, with revisions from the supervising team. In the remaining chapters, I contributed significantly to the development of the research ideas, to produce and analyse the data presented and to the writing of all chapters. CHAPTER 2 Fonseca E*, Machado AM, Arrondo N, Gomes-dos-Santos A, Veríssimo A, Esteves P, Almeida T, Themudo G, Ruivo R, Román E, da Fonseca RR, Santos MM, Froufe E, Pérez M, Venkatesh B, Castro LFC. Chondrichthyes Offer Unique Insights into the Evolution of the Nuclear Receptor Gene Repertoire in Gnathostomes (In preparation). CHAPTER 3 Fonseca E*, Ruivo R*, Lopes-Marques M, Zhang H, Santos MM, Venkatesh B, Castro LF. 2017. LXRα and LXRβ Nuclear Receptors Evolved in the Common Ancestor of Gnathostomes.Genome Biol Evol. 9(1):222-230. doi: 10.1093/gbe/evw305. CHAPTER 4 Fonseca ESS*, Ruivo R, Machado AM, Conrado F, Tay BH, Venkatesh B, Santos MM, Castro LFC. 2019. Evolutionary Plasticity in Detoxification Gene Modules: The Preservation and Loss of the Pregnane X Receptor in Chondrichthyes Lineages. Int J Mol Sci. 20(9):E2331. doi: 10.3390/ijms20092331. CHAPTER 5 adapted from FCUP iii Nuclear Receptors in Metazoan lineages: the cross-talk between Evolution and Endocrine Disruption Lee MC*, Fonseca E, Park JC, Yoon DS, Choi H, Kim M, Han J, Cho HS, Shin KH, Santos ML, Jung JH, Castro LFC, Lee JS. 2019. Tributyltin Affects Retinoid X Receptor-Mediated Lipid Metabolism in the Marine Rotifer Brachionus koreanus. Environ Sci Technol. 53(13):7830-7839. doi: 10.1021/acs.est.9b01359. CHAPTER 6 Fonseca ESS*, Hiromori Y*, Kaite Y, Ruivo R, Franco JN, Nakanishi T, Santos MM, Castro LFC. 2019. An Orthologue of the Retinoic Acid Receptor (RAR) Is Present in the Ecdysozoa Phylum Priapulida, Genes. 10(12):985. doi: 10.3390/genes10120985. *First author or joint first authors iv FCUP Nuclear Receptors in Metazoan lineages: the cross-talk between Evolution and Endocrine Disruption Ao astro que me guiou, Ao anjo que me aconselhou, Ao lar que me acolheu. Não são os Lusíadas de Camões Tão pouco a Odisseia de Homero, Mas é parte da minha vida que vingou. Elza Fonseca “If I have the belief that I can do it, I shall surely acquire the capacity to do it even if I may not have it at the beginning.” Mahatma Gandhi FCUP v Nuclear Receptors in Metazoan lineages: the cross-talk between Evolution and Endocrine Disruption Agradecimentos Em primeiro lugar, tenho a agradecer à Fundação para a Ciências e a Tecnologias (FCT), à Faculdade de Ciências da Universidade do Porto (FCUP) e ao Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR) pelo financiamento e disponivbilização de infraestruturas necessários para a realização deste trabalho. Em segundo lugar, agradeço ao meu orientador Doutor Filipe Castro e ao meu coorientador Doutor Miguel Santos pela receção e integração nas suas equipas, bem como, por todo apoio prestado desde a conceção de todos os trabalhos, ao apoio psicológico e emocional que foram imperativos para a conclusão deste meu percurso. Um especial agradecimento a Filipe Castro, mais do que o orientador da minha tese de doutoramento, foi um conselheiro e amigo que levarei para toda a vida como exemplo a nível profissional e pessoal. Não poderia deixar de agradecer a todos os meus colegas de laboratório pelo apoio dado tanto a nível da conceção e da execução dos trabalhos, como pelos bons momentos passados nas memoráveis pausas para almoço. Muitos tornaram-se amigos que nunca esquecerei, pois ficarão com um lugar especial no meu coração. Teresa Neuparth, Raquel Ruivo, Ana André, Ana Capitão, Joana Soares, Rita Mendes, Inês Páscoa, André Machado, Susana Barros, Mónica Lopes e Patrícia Ferreira, mais do que colegas de trabalho, são pessoas excecionais com as quais tive o privilégio de trabalhar e com as quais pude partilhar todas as minhas frustrações e desabafos. Um grande obrigada pela vossa, disponibilidade, paciência, amizade e por devolverem à humanidade alguns dos seus valores perdidos. Não poderia deixar de agradecer a todos os membros integrantes do CIIMAR. Convosco sinto-me em família. Por último, mas não menos importante, agradeço à minha família, pais, irmã e sobrinho, que estiveram sempre dispostos a ajudar-me a superar todas as dificuldades que foram surgindo. A todos um enorme obrigada e a vós tudo devo. vi FCUP Nuclear Receptors in Metazoan lineages: the cross-talk between Evolution and Endocrine Disruption Resumo A multicelularidade é uma caraterística definidora dos metazoários. Neste contexto, o sistema endócrino desempenha um papel essencial na comunicação célula a célula e, consequentemente, na homeostasia destes organismos. Assim, a evolução e diversificação dos sistemas endócrinos dos metazoários representam um tópico fundamental de investigação em biologia. O sistema endócrino opera como uma rede altamente regulada, na qual os recetores nucleares (RNs) constituem componentes críticos. Os RNs são a superfamília de fatores de transcrição intracelulares mais abundante nos genomas dos metazoários. Têm como principal função a regulação da expressão de genes a jusante, normalmente após ativação por ligação específica a um ligando, modulando múltiplos processos biológicos como por exemplo a reprodução e o desenvolvimento embrionário, no seu conjunto definindo o “anel de fisiologia dos RNs”. Nos últimos anos, tornou-se evidente que existem diferenças cruciais entre os repertórios genéticos de RNs de vertebrados e invertebrados. Essas diferenças derivam em parte de processos genómicos, tais como, a duplicação em tandem, a perda secundária de genes, mutações na região codificante ou reguladora, e duplicações do genoma (DG) que ocorreram em momentos específicos da evolução dos metazoários (ex.: transição invertebrados/vertebrados), contribuindo para a evolução e diversificação dos RNs. Adicionalmente, tem-se verificado uma plasticidade estrutural de RNs ortólogos na acomodação de ligandos. Além disso, tal como as hormonas e os metabolitos resultantes da dieta, os xenobióticos podem também interagir com os RNs, mimetizando ligandos naturais. Desse modo, este grupo alargado de compostos tem a capacidade de bloquear a ação dos RNs, ou promover ora ativação ora repressão da transcrição de genes. Como são conhecidos por causar desequilíbrios fisiológicos nos metazoários, estes compostos são chamados de disruptores endócrinos (DEs). Por conseguinte, a persistência de DEs e de poluentes emergentes no meio ambiente, especialmente em ecossistemas aquáticos, tornou-se num assunto de preocupação global. Assim, de forma a esclarecer os mecanismos de disrupção endócrina por DEs que atuam via RNs em linhagens de metazoários e para evitar efeitos adversos na saúde humana e na fauna selvagem, é necessário investigar a evolução e a função dos RNs em linhagens com importantes posições filogenéticas (ex.: invertebrados vs. vertebrados, lofotrocozoários vs. ecdisozoários). Neste contexto, os repertórios de genes de RNs, a sua caraterização funcional e exploração por DEs foram investigados em linhagens filogeneticamente informativas para determinar a história evolutiva dos RNs no sistema endócrino dos metazoários. FCUP vii Nuclear Receptors in Metazoan lineages: the cross-talk
Recommended publications
  • Systematics , Zoogeography , Andecologyofthepriapu
    SYSTEMATICS, ZOOGEOGRAPHY, AND ECOLOGY OF THE PRIAPULIDA by J. VAN DER LAND (Rijksmuseum van Natuurlijke Historie, Leiden) With 89 text-figures and five plates CONTENTS Ι Introduction 4 1.1 Plan 4 1.2 Material and methods 5 1.3 Acknowledgements 6 2 Systematics 8 2.1 Historical introduction 8 2.2 Phylum Priapulida 9 2.2.1 Diagnosis 10 2.2.2 Classification 10 2.2.3 Definition of terms 12 2.2.4 Basic adaptive features 13 2.2.5 General features 13 2.2.6 Systematic notes 2 5 2.3 Key to the taxa 20 2.4 Survey of the taxa 29 Priapulidae 2 9 Priapulopsis 30 Priapulus 51 Acanthopriapulus 60 Halicryptus 02 Tubiluchidae 7° Tubiluchus 73 3 Zoogeography and ecology 84 3.1 Distribution 84 3.1.1 Faunistics 90 3.1.2 Expeditions 93 3.2 Ecology 96 3.2.1 Substratum 96 3.2.2 Depth 97 3.2.3 Temperature 97 3.24 Salinity 98 3.2.5 Oxygen 98 3.2.6 Food 99 3.2.7 Predators 100 3.2.8 Communities 102 3.3 Theoretical zoogeography 102 3.3.1 Bipolarity 102 3.3.2 Relict distribution 103 3.3.3 Concluding remarks 104 References 105 4 ZOOLOGISCHE VERHANDELINGEN 112 (1970) 1 INTRODUCTION The phylum Priapulida is only a very small group of marine worms but, since these animals apparently represent the last remnants of a once un- doubtedly much more important animal type, they are certainly of great scientific interest. Therefore, it is to be regretted that a comprehensive review of our present knowledge of the group does not exist, which does not only cause the faulty way in which the Priapulida are treated usually in textbooks and works on phylogeny, but also hampers further studies.
    [Show full text]
  • Additional Methods
    Additional Methods Cell Expression Profiles The tissue-dependent gene expression dataset from the Genome Novartis Foundation contains 32 healthy major tissues, and 47 tumour samples and cell lines. The custom- designed whole-genome gene expression microarrays used on each sample targets 44775 human mRNA transcripts. Previous analysis of this dataset identified many chromo- somal regions of correlated transcription that are under the control of both tissue and parental allele-specific expression. The expression levels of TF genes across tissue sam- ples are observed to be lower than non-TF genes. This is coherent with the mechanistic explanation that the effect of a single TF molecule is amplified by transcribing many copies of mRNA from a target gene. Across all samples, the proportion of TFs rel- ative to all expressed genes is remarkably stable at ∼ 6%. In the bootstrap test for highly predictive CRMs, we resampled from this set of TFs to generate the bootstrap replicates. High variance in gene expression profiles are observed between replicates for samples with more heterogeneous composition. Therefore, we treat each replicate as an independent sample in our analysis. When analyzing expression variation in a single sample, we found that a Gaussian distributional assumption for gene expression is more suitable compared to other distributions. Smoothing and Model Fitting Since gene expression response by the target gene varies over different TF expression values in a smooth fashion, a curved function is needed to fit our gene expression data. For additive models, the partial response of the target gene to the expression of each TF is described by a smooth function.
    [Show full text]
  • Alpha Actinin 4: an Intergral Component of Transcriptional
    ALPHA ACTININ 4: AN INTERGRAL COMPONENT OF TRANSCRIPTIONAL PROGRAM REGULATED BY NUCLEAR HORMONE RECEPTORS By SIMRAN KHURANA Submitted in partial fulfillment of the requirements for the degree of doctor of philosophy Thesis Advisor: Dr. Hung-Ying Kao Department of Biochemistry CASE WESTERN RESERVE UNIVERSITY August, 2011 CASE WESTERN RESERVE UNIVERSITY SCHOOL OF GRADUATE STUDIES We hereby approve the thesis/dissertation of SIMRAN KHURANA ______________________________________________________ PhD candidate for the ________________________________degree *. Dr. David Samols (signed)_______________________________________________ (chair of the committee) Dr. Hung-Ying Kao ________________________________________________ Dr. Edward Stavnezer ________________________________________________ Dr. Leslie Bruggeman ________________________________________________ Dr. Colleen Croniger ________________________________________________ ________________________________________________ May 2011 (date) _______________________ *We also certify that written approval has been obtained for any proprietary material contained therein. TABLE OF CONTENTS LIST OF TABLES vii LIST OF FIGURES viii ACKNOWLEDEMENTS xii LIST OF ABBREVIATIONS xiii ABSTRACT 1 CHAPTER 1: INTRODUCTION Family of Nuclear Receptors 3 Mechanism of transcriptional regulation by co-repressors and co-activators 8 Importance of LXXLL motif of co-activators in NR mediated transcription 12 Cyclic recruitment of co-regulators on the target promoters 15 Actin and actin related proteins (ABPs) in transcription
    [Show full text]
  • Evolutionary Plasticity in Detoxification Gene Modules: the Preservation
    International Journal of Molecular Sciences Article Evolutionary Plasticity in Detoxification Gene Modules: The Preservation and Loss of the Pregnane X Receptor in Chondrichthyes Lineages Elza S. S. Fonseca 1,2, Raquel Ruivo 1 , André M. Machado 1 , Francisca Conrado 1, Boon-Hui Tay 3, Byrappa Venkatesh 3, Miguel M. Santos 1,2 and L. Filipe C. Castro 1,2,* 1 CIIMAR/CIMAR—Interdisciplinary Centre of Marine and Environmental Research, 4450-208 Matosinhos, Portugal; [email protected] (E.S.S.F.); [email protected] (R.R.); [email protected] (A.M.M.); fi[email protected] (F.C.); [email protected] (M.M.S.) 2 FCUP—Faculty of Sciences, Department of Biology, University of Porto, 4150-177 Porto, Portugal 3 Comparative Genomics Laboratory, Institute of Molecular and Cell Biology, A*STAR (Agency for Science, Technology and Research), Biopolis, Singapore 138673, Singapore; [email protected] (B.-H.T.); [email protected] (B.V.) * Correspondence: fi[email protected]; Tel.: +351-22-3401800 Received: 25 February 2019; Accepted: 6 May 2019; Published: 10 May 2019 Abstract: To appraise how evolutionary processes, such as gene duplication and loss, influence an organism’s xenobiotic sensitivity is a critical question in toxicology. Of particular importance are gene families involved in the mediation of detoxification responses, such as members of the nuclear receptor subfamily 1 group I (NR1I), the pregnane X receptor (PXR), and the constitutive androstane receptor (CAR). While documented in multiple vertebrate genomes, PXR and CAR display an intriguing gene distribution. PXR is absent in birds and reptiles, while CAR shows a tetrapod-specific occurrence.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Laboratory Reference Module Summary Report LR22
    Laboratory Reference Module Summary Report Benthic Invertebrate Component - 2017/18 LR22 26 March 2018 Author: Tim Worsfold Reviewer: David Hall, NMBAQCS Project Manager Approved by: Myles O'Reilly, Contract Manager, SEPA Contact: [email protected] MODULE / EXERCISE DETAILS Module: Laboratory Reference (LR) Exercises: LR22 Data/Sample Request Circulated: 10th July 2017 Sample Submission Deadline: 31st August 2017 Number of Subscribing Laboratories: 7 Number of LR Received: 4 Contents Table 1. Summary of mis-identified taxa in the Laboratory Reference module (LR22) (erroneous identifications in brackets). Table 2. Summary of identification policy differences in the Laboratory Reference Module (LR22) (original identifications in brackets). Appendix. LR22 individual summary reports for participating laboratories. Table 1. Summary of mis-identified taxa in the Laboratory Reference Module (LR22) (erroneous identifications in brackets). Taxonomic Major Taxonomic Group LabCode Edits Polychaeta Oligochaeta Crustacea Mollusca Other Spio symphyta (Spio filicornis ) - Leucothoe procera (Leucothoe ?richardii ) - - Scolelepis bonnieri (Scolelepis squamata ) - - - - BI_2402 5 Laonice (Laonice sarsi ) - - - - Dipolydora (Dipolydora flava ) - - - - Goniada emerita (Goniadella bobrezkii ) - Nebalia reboredae (Nebalia bipes ) - - Polydora sp. A (Polydora cornuta ) - Diastylis rathkei (Diastylis cornuta ) - - BI_2403 7 Syllides? (Anoplosyllis edentula ) - Abludomelita obtusata (Tryphosa nana ) - in mixture - - Spirorbinae (Ditrupa arietina ) - - - -
    [Show full text]
  • Mouse Anti-Human Testicular Receptor 4
    Catalog Clonality, clone Reactive Reg. Product Name Quantity Applications Number (isotype) species Status mAb clone H0107B WB, ELISA, 434700 Mouse anti-human TR4 100 µg Hu, Ms, Rt RUO (Ms IgG2a) IP, IHC Mouse Anti-Human Testicular Receptor 4 Description Testicular receptor 4 (TR4, TAK1; NR2C2) is a member of the orphan nuclear receptor family. TR4 was originally cloned from lymphoblastoma Raji cells or mouse brain cDNA library. No ligand has been reported. Northern blot shows TR4 is transcribed as a 9kb mRNA in many tissues and as a 2.8kb mRNA in testis, mainly in spermatocytes. TR4 has two isoforms called TR4α1 and TR4-α2, which differ in 19 amino acids coded by two separate exons. Both products translated from 9kb transcript are ubiquitously expressed. Since TR4 binds to the same elements for the RAR-RXR or TR-RXR heterodimers, TR4 may have an inhibitory affect for retinoic-acid mediated transactivation. Nomenclature NR2C2 Genbank L27586 Origin Produced in BALB/c mouse ascites after inoculation with hybridoma of mouse myeloma cells (NS-1) and spleen cells derived from a BALB/c mouse immunized with Baculovirus-expressed recombinant human TR4 (23-52 aa). Specificity This antibody specifically recognizes human TR4 and cross reacts with mouse and rat TR4. Purification Ammonium sulfate fractionation Formulation Concentration is 1 mg/mL in physiological saline with 0.1% sodium azide as a preservative. Application Recommended Concentration* Western Blot 2 μg/mL Non reducing Western Blot Not tested ELISA 0.1 μg/mL Immunoprecipitation Determine by use Electrophoretic Mobility Shift Assay Not tested Chromatin Immunoprecipitation Not tested Immunohistochemistry 10 μg/mL *In order to obtain the best results, optimal working dilutions should be determined by each individual user.
    [Show full text]
  • Mouse Tmem106c Knockout Project (CRISPR/Cas9)
    https://www.alphaknockout.com Mouse Tmem106c Knockout Project (CRISPR/Cas9) Objective: To create a Tmem106c knockout Mouse model (C57BL/6J) by CRISPR/Cas-mediated genome engineering. Strategy summary: The Tmem106c gene (NCBI Reference Sequence: NM_201359 ; Ensembl: ENSMUSG00000052369 ) is located on Mouse chromosome 15. 8 exons are identified, with the ATG start codon in exon 2 and the TAG stop codon in exon 8 (Transcript: ENSMUST00000064200). Exon 2~8 will be selected as target site. Cas9 and gRNA will be co-injected into fertilized eggs for KO Mouse production. The pups will be genotyped by PCR followed by sequencing analysis. Note: Exon 2 starts from about 0.13% of the coding region. Exon 2~8 covers 100.0% of the coding region. The size of effective KO region: ~4867 bp. The KO region does not have any other known gene. Page 1 of 9 https://www.alphaknockout.com Overview of the Targeting Strategy Wildtype allele 5' gRNA region gRNA region 3' 1 2 3 4 5 6 7 8 Legends Exon of mouse Tmem106c Knockout region Page 2 of 9 https://www.alphaknockout.com Overview of the Dot Plot (up) Window size: 15 bp Forward Reverse Complement Sequence 12 Note: The 2000 bp section upstream of start codon is aligned with itself to determine if there are tandem repeats. No significant tandem repeat is found in the dot plot matrix. So this region is suitable for PCR screening or sequencing analysis. Overview of the Dot Plot (down) Window size: 15 bp Forward Reverse Complement Sequence 12 Note: The 2000 bp section downstream of stop codon is aligned with itself to determine if there are tandem repeats.
    [Show full text]
  • Role of Nuclear Receptors in Central Nervous System Development and Associated Diseases
    Role of Nuclear Receptors in Central Nervous System Development and Associated Diseases The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Olivares, Ana Maria, Oscar Andrés Moreno-Ramos, and Neena B. Haider. 2015. “Role of Nuclear Receptors in Central Nervous System Development and Associated Diseases.” Journal of Experimental Neuroscience 9 (Suppl 2): 93-121. doi:10.4137/JEN.S25480. http:// dx.doi.org/10.4137/JEN.S25480. Published Version doi:10.4137/JEN.S25480 Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:27320246 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA Journal name: Journal of Experimental Neuroscience Journal type: Review Year: 2015 Volume: 9(S2) Role of Nuclear Receptors in Central Nervous System Running head verso: Olivares et al Development and Associated Diseases Running head recto: Nuclear receptors development and associated diseases Supplementary Issue: Molecular and Cellular Mechanisms of Neurodegeneration Ana Maria Olivares1, Oscar Andrés Moreno-Ramos2 and Neena B. Haider1 1Department of Ophthalmology, Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA. 2Departamento de Ciencias Biológicas, Facultad de Ciencias, Universidad de los Andes, Bogotá, Colombia. ABSTRACT: The nuclear hormone receptor (NHR) superfamily is composed of a wide range of receptors involved in a myriad of important biological processes, including development, growth, metabolism, and maintenance.
    [Show full text]
  • Anti-Testicular Receptor 2 (TR2) (Rabbit) Antibody - 100-401-E45
    Anti-Testicular Receptor 2 (TR2) (Rabbit) Antibody - 100-401-E45 Code: 100-401-E45 Size: 100 µL Product Description: Anti-Testicular Receptor 2 (TR2) (Rabbit) Antibody - 100-401-E45 Concentration: Titrated value sufficient to run approximately 10 mini blots. PhysicalState: Liquid Label Unconjugated Host Rabbit Gene Name NR2C1 Species Reactivity mouse, human, rat Storage Condition Store vial at -20° C prior to opening. This product is stable at 4° C as an undiluted liquid. For extended storage, aliquot contents and freeze at -20° C or below. Avoid cycles of freezing and thawing. Dilute only prior to immediate use. Synonyms Nuclear receptor subfamily 2 group C member 1, Orphan nuclear receptor TR2, mTR2 Application Note Anti-Testicular Receptor 2 (Rabbit) antibody is suitable for use in Western Blots. Anti-Testicular Receptor 2 antibodies are specific for the ~64 kDa TR2 protein in Western blots of testes and nuclear extracts from MEL cell lines. Researchers should determine optimal titers for applications that are not stated below. Background TR2 antibody detects Testicular receptor 2 (TR2), which is a member of the orphan nuclear receptor family. It is widely expressed at a low level throughout the adult testis. TR2 represses transcription and binds DNA directly interacting with HDAC3 and HDAC4 via DNA-binding domains. TR2 has also been implicated in regulation of estrogen receptor activity in mammary glands. In addition, TR2 has recently been shown to form a heterodimer with TR4 that can bind to the direct repeat 6 element of the hepatitis B virus (HBV) enhancer II region thus suppressing HBV gene expression.
    [Show full text]
  • Acanthochitona Crinita (Pennant, 1777)
    Acanthochitona crinita (Pennant, 1777) AphiaID: 138675 CHITON © Vasco Ferreira - OMARE / Dez. 30 2018 Marta Martins Serge Gofas © Marta Martins - CIIMAR 1 © Marta Martins - CIIMAR © Marta Martins - CIIMAR Facilmente confundível com: Acanthochitona fascicularis Quítone Principais ameaças Sinónimos Acanthochaetes vulgaris Leach, 1852 Acanthochites adansoni Rochebrune, 1881 Acanthochites aeneus Risso, 1826, sensu Monterosato, 1879 2 Acanthochites carinatus Risso, 1826 Acanthochites fascicularis (Linnaeus, 1767) Acanthochites fascicularis var. cinnabrina Dautzenberg & Durouchoux, 1906 Acanthochites fascicularis var. fusca Dautzenberg & Durouchoux, 1906 Acanthochites fascicularis var. lutescens Dautzenberg & Durouchoux, 1906 Acanthochiton adansoni (Rochebrune, 1881) Acanthochitona crinita crinita (Pennant, 1777) Acanthochitona crinitus (Pennant) Acanthochitona gracilis (Jeffreys, 1859) Chiton crinitus Pennant, 1777 Chiton fascicularis var. attenuata Jeffreys, 1865 Chiton fascicularis var. minor Philippi, 1836 Chiton onyx Spengler, 1797 Chiton onyx Spengler, 1797 Referências basis of record Gofas, S.; Le Renard, J.; Bouchet, P. (2001). Mollusca. in: Costello, M.J. et al. (eds), European Register of Marine Species: a check-list of the marine species in Europe and a bibliography of guides to their identification. Patrimoines Naturels. 50: 180-213. [details] subsequent type designation Kaas, P. (1985). The genus Acanthochitona Gray, 1821 (Mollusca, Polyplacophora) in the north-eastern Atlantic Ocean and in the Mediterranean Sea, with designation of neotypes of A. fascicularis (L. 1767) and of A. crinita (Pennant, 1777). Bulletin du Muséum National d’Histoire Naturelle (section A Zoologie). (4) 7 (3): 579-603., available online at http://bibliotheques.mnhn.fr/EXPLOITATION/infodoc/ged/viewportalpublished.ashx?eid=IFD_FICJOINT_B MAZO_S004_1985_T007_N003_1 [details] status source Bonfitto, A., Dell’Angelo, B., Evangelisti, F. & Sabelli, B. (2011). The genus Acanthochitona (Mollusca: Polyplacophora) in the Mediterranean Sea: morphological and molecular data.
    [Show full text]
  • Characterization of Transcription Factor Complexes Involved in Globin Gene Regulation
    Characterization of Transcription Factor Complexes involved in Globin Gene Regulation Katarzyna Ewa Kołodziej 26th March 2008 Cover: Rodota The work presented in this thesis was performed at the Department of Cell Biology at the Erasmus Univer- sity Medical Center Rotterdam. This department is member of the Medisch Genetisch Centrum Zuid-West Nederland. The research was partially supported by the Netherlandse Organizatie voor Wetenschappelijk Onderzoek (NWO) and by EU. Characterization of Transcription Factor Complexes involved in Globin Gene Regulation Karakterizering van transcriptie factor complexen betrokken bij de regulatie van globine genen PROEFSCHRIFT ter verkrijging van de graad van doctor aan de Erasmus Universiteit Rotterdam op gezag van de Rector Magnificus Prof.dr. S.W.J. Lamberts en volgens besluit van het College voor Promoties. De openbare verdediging zal plaatsvinden op woensdag 26 maart 2008 om 15.45 uur. door Katarzyna Ewa Kołodziej geboren te Wrocław, Polen Promotiecommissie Promotor: Prof.dr. F.G. Grosveld Overige laden: Prof.dr. J.N.J. Philipsen Prof.dr. J.D. Engel Dr.ir. D.N. Meijer Copromotor: Dr. J. Strouboulis Moim rodzicom & for Luc TABLE OF CONTENTS Chapter 1 : Introduction 9 Chapter 2 : Isolation of transcription factor complexes by in vivo biotinylation tagging and direct binding to streptavidin beads (Patrick Rodriguez, Harald Braun, Katarzyna E. Kolodziej, Ernie de Boer, Jennifer Campbel, Edgar Bonte, Sjaak Philipsen and John Strouboulis Methods Mol Bio. 2006; 338: 305-23 ) 33 Chapter 3 : GATA-1 forms distinct activating and repressive complexes in erythroid cells (Patrick Rodriguez, Edgar Bonte, Jeroen Krijgsveld, Katarzyna E. Kolodziej, Boris Guyot, Albert Heck, Paresh Vyas, Ernie de Boer, Frank Grosveld and John Strouboulis, EMBO J.
    [Show full text]