A Survey of the Quality of Salt Cured Fish Produced in the Kanyakumari Disrict [I.E

Total Page:16

File Type:pdf, Size:1020Kb

A Survey of the Quality of Salt Cured Fish Produced in the Kanyakumari Disrict [I.E A survey of the quality of salt cured fish produced in the Kanyakumari Disrict [i.e. District], Madras State Item Type article Authors Srinivasan, R.; Joseph, K.C. Download date 29/09/2021 08:17:36 Link to Item http://hdl.handle.net/1834/32040 A SURVEY OF THE QUALITY OF SALT CURED FISH PRODUCED IN THE KANYAKUMARI DISRICT, MADRAS STATE R. SRINIVASAN AND K. C. JOSEPH Fisheries Technological Station, Madras State. A survey of the quality of salt cured fish in Kanyakumari District, Madras State was done during the years 1963 and 1964 to obtain necessary basic information to formulate quality standards for these products which are gaining importance in the export trade. 155 trade samples of sun-dried, dry-salted, wet-cured and pit-cured fishery products were examined for their chemical quality and organoleptic characteristics. 26.5% of the sun-dried products, 25% of the wet­ cured fish, 55.21% of the dried salted products and none of the pit­ cured samples were found to be good in quality. The sun dried pro~ ducts were generally found to have heavy admixture of sand and were inadequately dried. The chief defects in the salt cured fish products were found to be the use of spoiled fish, imperfect cleaning and washing, use of impure salt, inadequate salting, curing and drying, and unhygienic conditions in all stages. Quality standards must be formulated for each variety of salt cured fish product and adequate measures taken to rectify the defects and enforce the quality standards. INTRODUCTION catches of 125 tonnes I km. of Coast in Madras State in 1957 (Barlind, 1958). Kanyakumari District is one of the About 13,040 tonnes of fish are annually seven coastal ctistricts of Madras State and landed in this district and the different has a coast-line of 65 km. extending from types of fish landed and their seasons are Leepuram, 2 km. to the east of Cape described in detail by Chacko and George Comorin to Noorodithuru in theWest (1958). About 80% of the catches are s:1lt Coast on the border of Kerala State. cured and a good portion of the cured It provides the short but rich fish products is exported to Ceylon and other landing West Coast for Madras State. South East Asian countries through It had the highest fishing population of Tuticorin port. Since the salt cured fish 22,969 and the highest average fish is gaining in importance in the export trade 103 of the country and the Government are the solar heat. During drying the fishes initiating measures for the quality control are turned occasionally, every two to three of all the marine products including dried hours, to ensure quick and uniform and salt cured fish, it was felt that a survey drying. After the first day's drying, the of the quality of the cured fish products partially dried fishes are gathered and in the trade would be helpful and provide heaped inside a godown or kept heaped in the necessary basic information required. the drying ground itself with a covering of Since a good portion of the dried salt palmyrah leaf mats. For the second day's cured fish in the export trade originated drying the fishes are spread in a thicker from Kanyakumari District, the survey was layer than on the first day. In Cape conducted by the authors in Kanyakumari Comorin area this is usually done on coir District during the years 1963 and 1964 mats. Generally the duration of drying is and the results of this survey are presented for two days. But when drying cannot be in this paper. completed owing to cloudy skies or driz~ zling, the final drying is completed on the FISH CURING PRACTICES third or fourth day. The methods of fish curing followed 2) Dry salting The method of dry in)he 1West Coast of the country have been described in general by Nicholson (1930), salting practised on this coast for a large Venkataraman and Vasavan (1958) and variety of fishes is the same in alJ the fish Krishna Pillai et. a/ (1956). villages; Trichiurus, Caranx, Lactarius, Dussumieria, Sharks, Serranus, Cvbium, The different methods of fish curing Arius, Lethrinus, Sphyraena, Leiognathus practised in Cape Comorin in particular Sp., Batistes, Chorinemus, Lutjanus, for the different varieties and sizes of fish Chiro=entrus, Histiophorus, Mackeral, have also been described in detail by Joseph Tuna etc., are the varieties most commonly and Srinivasan (under publication). So dry salted in the district. Large sized detailed clescriptions of the different types fishes are descaled and cut and split open of curing followed for different species of along the dorsal side with a sharp and fishes have been omitted inlll[this paper. pointed knife inserted just behind the head However the fish curing practices have and moved back to a point very near to the been recounted briefly for ready reference, caudal fin, so that the fish is split open, highlighting"'the variations ~in the methods the knife bracing the backbone which will practised. These methods may~be broadly be retained on the right half of the split classified as follows: fish. The entrails and gills are removed. Longitudinal cuts are made beginning from 1) Sun drying, near the tail so that the split fish is cut 2) Dry salting, and into strips 3 ems. to 5 ems. wide, but 3) Wet salting. without severing their connection at the tail end. These are then washed and 1. Sun drying: This method is salted. The salt: fish proportion varies employed for fishes such as white baits from 1 : 4 to 1 : 6 by weight, depending ( Anchoviella Sp.), Silver belly (Leiognathus upon the size of the fish and are then put Sp.), Round Scad (Decapterus Sp.) and into curing tubs. Cement cisterns, wooden small sized specimens of other varieties tubs and earthenware pots are in use for also. Drying is done by spreading the fish this purpose, wherein th0 salted fish catches on the beach sand or other open remains overnight. The self-brine formed grounds where the fishes get dried by during the interval is allowed to accumu~ 104 late in the curing tubs. The next day the leaf mats, the top is covered by mat. This fishes are washed in the self-brine and is now covered with a layer of soil of dried in the sun for two to three days. about one foot thickness. The covered The period under cure will vary from 12 pits are either weighted with large boulders to 24 hours depending upon the time of of stones or tread upon by the fishermen. landing the catches. Morning catches The self-brine formed in the salted fish remain under cure for the maximum placed in pits in this fashion is obsorbed period, until the next morning when they by the surrounding soil which is invariably are removed for drying. The drying is loose and sandy on the coastal areas where done on coir mats, palm leaf mats, or on this type of curing is in vogue. On the the ground itself. second day the fishes are subjected to a re-salting (Salt . Fish = 1 : 8) and restack­ For medium sized fish only the dorsal ing in the tub, pit, or heap as the case may slit is made and entrails removed, but they be. After three days thus under cure the are neither split open nor are their heads fishes are removed and packed in palmyrah cut off. For the smaller sized specimens leaf mats with a further sprinkling of salt no cutting is done; they are merely salted before being despatched to the market. and the rest of the curing is done as Lactarius Serranus, and Dussumieria are described above. the varieties found pit cured during the present survey. 3. Wet salting:- Curing by this method is practised for almost all varieties Quality of the cured fish products: of marine food fishes irrespective of size. Methods of Assay: Representative Serranus, Lethrinus, Lutjanus, Caranx, sam pies of cured fish were collected from Chorinemus, Arius, Trichiurus and Sharks the various fish curing yards, dried fish are the common fish cured by this method markets and shandies and from the in Kanyakumari District. Scales, where godowns of the dried fish merchants both present, are not removed unlike in the case in the Kanyakumari District and at of dry salting. A deep incision is made Tuticorin during the years I 963 and 1964. along the dorsal side with a sharp knife These were analysed chemically and orga­ inserted behind the back of the head being noleptically as per standard methods of moved to a point a few em. behind analysis already described by Joseph the rear end of the dorsal fin and the (1963). The chemical factors determined entrails are removed. The fishes are then were the percentages of moisture, sodium washed and salt packed inside the slit. chloride, total ash, acid insolubles, total The ratio of salt: fish at this stage will be volatile basic nitrogen and trimethylamine about 1 : 4 by weight. The salted fish is nitrogen, all on the original moisture basis. now either placed in tubs or pits or simply The quality of the products was also heaped on the floor to remain for two to organoleptically adjudged on the basis of three days with more salt being sprinkled their appearance, texture, flavour, odour, over each layer of fish while packing. In fungal attack and insect infestation, if any, the ca~e of fish cured in tubs or heaps on and classified accordingly as good, fair, the floor, the selfbrine formed during this poor and unfit for human consumption.
Recommended publications
  • Fermented and Ripened Fish Products in the Northern European Countries
    Accepted Manuscript Fermented and ripened fish products in the Northern European countries Torstein Skåra, Lars Axelsson, Gudmundur Stefánsson, Bo Ekstrand, Helge Hagen PII: S2352-6181(15)00005-0 DOI: 10.1016/j.jef.2015.02.004 Reference: JEF 12 To appear in: Journal of Ethnic Foods Received Date: 16 January 2015 Revised Date: 23 January 2015 Accepted Date: 2 February 2015 Please cite this article as: Skåra T, Axelsson L, Stefánsson G, Ekstrand B, Hagen H, Fermented and ripened fish products in the Northern European countries, Journal of Ethnic Foods (2015), doi: 10.1016/ j.jef.2015.02.004. This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. ACCEPTED MANUSCRIPT 1 Fermented and ripened fish products in the Northern European countries 2 Torstein Skåra 1* , Lars Axelsson 2, Gudmundur Stefánsson 3, Bo Ekstrand 4 and Helge Hagen 5 3 1 Nofima - Norwegian Institute of Food, Fisheries, and Aquaculture Research, Postboks 8034, 4 NO-4068 Stavanger, Norway 5 2 Nofima - Norwegian Institute of Food, Fisheries, and Aquaculture Research, P.O.Box 210, 6 NO-1431 Ås, Norway 7 3 Matis, Vinlandsleid 12, 113 Reykjavik, Iceland 8 4 Bioconsult AB, Stora Vägen 49, SE-523 61 Gällstad, Sweden 5 MANUSCRIPT 9 Dælivegen 118, NO-2385 Brumunddal, Norway 10 *Author for correspondence: Tel: +47-51844600; Fax: +47-51844651 11 E-mail.
    [Show full text]
  • A Report on the Sodium Levels of Salted Dry Fish in Chennai And
    The Pharma Innovation Journal 2018; 7(11): 01-04 ISSN (E): 2277- 7695 ISSN (P): 2349-8242 NAAS Rating: 5.03 A report on the sodium levels of salted dry fish in TPI 2018; 7(11): 01-04 © 2018 TPI Chennai and recommendations to comply regulation www.thepharmajournal.com Received: 01-09-2018 Accepted: 02-10-2018 A Devi Dharshini, M Latha Mala Priyadharshini, D Baskaran and A Devi Dharshini G Dhinakar Raj College of Food and Dairy Technology, TANUVAS, Abstract Koduveli, Chennai, Tamil Nadu, Regulating the intake of sodium is in need of the hour pertaining to the established health effects of high India sodium consumption. Labeled food products from organized food sectors provide information on sodium M Latha Mala Priyadharshini levels, while in unorganized sector the sodium content of some of the heavily salted food products such Assistant Professor, Vaccine as dry fish goes unnoticed. This report is presented based on the studies from 12 commercial dry fish Research Centre – Bacterial samples collected form Chennai, one of the major sea food export coastal region of India. The samples Vaccine, Centre for Animal were tested for NaCl, sodium and moisture content. The NaCl content was found to be well above 15% in Health Studies, Madhavaram 7 samples, between 10-15% in 2 samples and below 10% in 3 samples. Consequently 9 samples had Milk Colony, Madhavaram, sodium content above 2000 mG/100G and it was evident that NaCl content of more than half the samples Chennai, Tamil Nadu, India was not in compliance with the FSSAI regulations of 10-15% NaCl content by weight of salted dry fish.
    [Show full text]
  • Cutting. We Started a Research Program to Investigate the Process of Curing Fish in Traditional Kilns
    THE TORRY KILN ITS DESIGN AND APPLICATION WITH PARTICULAR REFERENCE TO THE COLD SMOKING OF SALMON, HERRING, AND COD Alex M cK . Bannerman, M BE A. I. F . S. T. Independent Consultant Swanland, North Ferriby Yorkshire HU14 3QT En gland 44! 0482-633124 In 1933, I was privileged to join the Torry Research Station in Aberdeen, Scotland. I worked for the director, the late Dr. G. A. Reay, investigating fish proteins, freezing, cold storage, salting, and dehydration of herring and cod, and the analytical techniques to test these processes ~ In 1936 37, I became involved in smoke curing fish, working with Dr. Charles Cutting. We started a research program to investigate the process of curing fish in traditional kilns. Some of these kiln s were 800 ft square and 30 ft high. We measured air flow, temperatures, humidities, and weight loss of fish during smoking. From the data, we built a picture of the irregularities and disadvantages of smoking in these old kilns. However, this also led to improving the process. After several attempts, we developed a simple tunnel design in which fish could be smoked under controlled conditions. The process was more economical, faster, and the product more uniform. This is a bit of history, but it was from this work that we built our expertise and knowledge of fish. A previous speaker suggested that with modern, programmable smoking equipment it is only necessary to push buttons, and "witch doctors" are no longer needed. I would agr ee with this for products such as salami, sausages, and other products manufactured from uniform ingredients in skins of uniform length and thickness ~ However, fish come in all shapes and sizes, with differing fat, protein and water content.
    [Show full text]
  • Effects of Pre-Treatments and Drying Temperatures on Drying Rate and Quality of African Catfish ( Clarias Gariepinus)
    Journal of Biology, Agriculture and Healthcare www.iiste.org ISSN 2224-3208 (Paper) ISSN 2225-093X (Online) Vol 2, No.4, 2012 Effects of Pre-Treatments and Drying Temperatures on Drying Rate and Quality of African Catfish ( Clarias gariepinus) Michael Ayodele OMODARA 1* Adesoji Matthew OLANIYAN 2 1. Nigerian Stored Products Research Institute, Km 3, Asa-dam road, P. M. B. 1489, Ilorin, Nigeria. 2. Department of Agricultural and Biosystems Engineering, University of Ilorin, P.M.B. 1515, Ilorin, Nigeria. * E-mail of the corresponding author: [email protected] Abstract Effects of pre-treatments and drying temperatures on the drying rate and the quality of African Catfish Clarias gariepinus was examined by drying samples of catfish under four different temperatures (40 0C, 45 0C, 50 0C and 55 0C) and four different pre-treatment methods (Salting, Sugaring, Blanching, and Control) using an experimental dryer. Drying of the fish samples for all the pre-treatments at 40 0C to 55 0C occurred in the falling rate period only showing that the predominant mechanism of mass transfer in drying process of catfish is that of internal mass transfer. The drying rate increases with increase in temperature for all the pre-treatment methods and decreases with time. The statistical analysis using a factorial design shows that drying rate was significant at (F; 0.05) but there is no significant difference in the pre-treatment methods as well as the interaction between drying temperature and the pre-treatment. The quality parameters (Protein, crude fat and Ash) measured decreases with increase in the drying temperature for all the samples with the blanched samples having the highest value of % protein of 55.94 at 45 0C.
    [Show full text]
  • Processing Parameters Needed to Control Pathogens in Cold-Smoked Fish
    Processing Parameters Needed to Control Pathogens in Cold-Smoked Fish A Report of the Institute of Food Technologists for the Food and Drug Administration of the U.S. Department of Health and Human Services submitted March 29, 2001 IFT/FDA Contract No. 223-98-2333 Task Order 2 Processing Parameters Needed to Control Pathogens in Cold-smoked Fish Table of Contents Preface ........................................................................ S-1058 7. Conclusions ....................................................................... S-1079 8. Research needs ................................................................. S-1079 Science Advisory Board .......................................... S-1058 References ............................................................................. S-1080 Scientific and Technical Panel ............................... S-1058 Chapter III. Potential Hazards in Cold-Smoked Fish: Clostridium botulinum type E Reviewers .................................................................. S-1058 Scope ...................................................................................... S-1082 1. Introduction ....................................................................... S-1082 Additional Acknowledgments ............................... S-1058 2. Prevalence in water, raw fish, and smoked fish .............. S-1083 3. Growth in refrigerated smoked fish ................................. S-1083 Background ...............................................................S-1059 4. Effect of processing
    [Show full text]
  • Quality Characteristics of Cured Fish of Commerce J
    Quality Characteristics of Cured Fish of Commerce J N. KAWMANlt, K. GOPAKUMARx* and T. S. UNMKRISHNAY NAIR Research Centre of Central Imriiute of Fisheries Technology, Colicut - 673 005 A survey was conducted at the fish curing yards at Shakthikulangara (Quilon), fish market at Viinjam, fish curing yards, fish market as well as dry fish godowns in and around Tuticorin. A total of 23 samples of different varieties of fishes collected from the markets and curing yards and 8 samples of anchovies collected from different godowns at Tuticorin were analysed to evaluate the quality and extent of fungal and insect infestation. Samples were analysed for prodmate composition and estimated their water activity. About 70% of the 23 samples of diierent varieties of kh were found to be unfit for consumption and 12.5 % of the samples of anchovies were found to be infested with beetle, after 3 weeks of storage after collection from these centres. In India, the cured fish products have good coasts. But none of the above works men- internal market and they are also being tion the estimation of water activity of the exported in sizeable quantities to countries product and its relation to spoilage. Hence like Sri Lanka, Hong Kong, Singapore etc. an experiment was carried out to study the The export of dried fish products have curing methods adopted at various centres increased from 3.32% in 1982-83 to 7.00% and to evaluate the quality of dried salted in 1983-84 quantitywise and from 0.58 fish, stress being given to relate the water to 1.44% valuewise, of the total marine activity of the samples to their spoilage.
    [Show full text]
  • Biochemical, Microbiological, and Sensory Properties of Dried Silver Carp (Hypophthalmichthys Molitrix) Influenced by Various Drying Methods
    fishes Article Biochemical, Microbiological, and Sensory Properties of Dried Silver Carp (Hypophthalmichthys molitrix) Influenced by Various Drying Methods Md. Golam Rasul 1 ID , Bhaskar Chandra Majumdar 1 ID , Faria Afrin 1, Mohammad Abu Jafor Bapary 2 ID and A.K.M. Azad Shah 1,* ID 1 Department of Fisheries Technology, Faculty of Fisheries, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh; [email protected] (M.G.R.); [email protected] (B.C.M.); [email protected] (F.A.) 2 Department of Fisheries Technology and Quality Control, Sylhet Agricultural University, Sylhet 3100, Bangladesh; [email protected] * Correspondence: [email protected]; Tel.: +880-29205331 Received: 3 May 2018; Accepted: 20 June 2018; Published: 25 June 2018 Abstract: An experiment was performed to evaluate the effects of different drying methods with different pre-treatments on the physico-chemical, microbiological, and sensory properties of the silver carp, Hypophthalmichthys molitrix. In order to achieve this objective, the collected fresh fish were dried using traditional (without any pre-treatment), improved (fish soaked in a 5% salt solution for 10 min and then treated with chili powder (0.3%) and turmeric powder (0.3%)), and solar tunnel (fish soaked in a 5% salt solution for 10 min) drying methods. The results showed that the dried fish produced by the solar tunnel drying method were rehydrated more rapidly than the products produced by the traditional and improved drying methods. The moisture content of the dried H. molitrix was varied from 18.24 to 25.43% on a fresh matter basis. There was no significant (p > 0.05) difference found regarding the protein, lipid, and ash content among the different drying methods on a dry matter basis.
    [Show full text]
  • Curing and Canning of Fishery Products: a History
    its origin to the fish curing industry. The early colonists in New England and the Maritime Provinces would not Curing and Canning of have been able to survive without the salt cod and smoked herring they could Fishery Products: A History prepare, for soil was poor and the cli­ mate uncertain. While fish meant food to the early colonists, cured fish soon N. D. JARVIS became their capital resource and their stock in trade for the purchase of sup­ plies. Their most abundant fish, Atlan­ Introduction way. The smoked herring of England tic cod, could be manufactured into a was traded throughout central Europe. durable protein food product, withstand­ Fish curing comprises all methods of Even in the sixteenth century, when ing the primitive shipping and storage preservation except refrigeration and can­ England was fighting Spain, her trade conditions of the day, and was compar­ ning. It includes 1) the drying, smok­ in dried fish with Spain was continued. atively low in price. Other cured fish ing, salting, and pickling of fish, 2) vari­ It has been reported that England gained such as smoked halibut and herring, ous combinations of these methods, and more wealth from cured fish products pickled sturgeon, and salt salmon were 3) miscellaneous methods such as the in the sixteenth century than Spain ob­ soon being shipped abroad. Out of this use of vinegar and fermentation pro­ tained in gold from the Americas. grew the "triangular trade": Salt fish to cesses or ripening. Despite the importance of fish curing Europe, manufactured goods from The drying and smoking of fish are since prehistoric times, information on Europe to the West Indies, and sugar, ancient processes.
    [Show full text]
  • Salting Fish
    Salting Fish Salt can be an important method of preserving smoked fish and controlling bacteria that are capable of causing food borne illness. However, the use of salt in fish to impart desirable flavours often varies according to taste preferences and generally over the years has changed to a lighter salting. The use of heat or smoke during processing, and subsequent storage at refrigerated temperatures are not always effective by themselves in the control of micro-organisms. Why is Salt Content Important? The combination of refrigeration temperatures and prescribed salt levels offer a high degree of assurance that bacterial growth will be retarded. High salt concentrations result in the osmotic transfer of water out of, and salt transfer into, the fish. The removal of water appears to limit bacterial growth and enzyme activity. Due to the concern for botulism, smoked fish that is cryovacked or wrapped to exclude air must be frozen Note: The following formula can be used to compute unless certain conditions are met. For room temperature percent moisture: storage, the product should be sterilized (canned or WeightLoss retorted) and be processed after sealing for a %Moisture = X100 temperature and time to destroy all spores of Clostridium WeightofFishAfterDrying botulinum. For refrigerated storage, the product should Water phase salt (WPS) can be monitored on-site with be held in modified atmosphere packaging (this will inexpensive laboratory equipment while water activity reduce the risk of spoilage organisms, but because of the (Aw) measurements require sophisticated laboratory reduced oxygen actually enhances the risk for botulism). procedures. In addition to being less expensive, WPS is a For this reason, the combination of salt, refrigeration and good indicator of preservation and food safety.
    [Show full text]
  • The Processing of Dried Salted Fish
    The Processing of Dried Salted Fish By s. A. BEATTY and H. FOUGERE Fi.heries Research Board of Canada Technological Station, Halifax, N.S. PUBLISHED BY THE FISHERIES RESEARCH BOARD OF CANADA UNDER THE CONTROL OF THE HONOURABLE THE MINISTER OF FISHERIES OTIAWA, 1957 'rice: 50 cents BULLETIN No. 112 The Processing of Dried Salted Fish By S. A. BEATTY and H. FOUGERE Fisheries Research Board of Canada Technological Station, Halifax, N.S. " PUBLISHED BY THE FISHERIES RESEARCH BOARD OF CANADA UNDER THE CONTROL OF THE HONOURABLE THE MINISTER OF FISHERIES � OTTAWA, 1957 W. E. RICKER N. M. CARTER Editors (iv) Bulletins of the Fisheries Research Board of Canada are published from time to time to present popular and scientific information concerning fishes and some other aquatic animals; their environment and the biology of their stocks ; means of capture ; and the handling, processing and utilizing of fish and fisheryprod ucts. In addition, the Board publishes the following: An Annual Report of the work carried on under the direction of the Board. The Journal of the Fisheries Research Board of Canada, containing the results of scientific investigations. Atlantic Progress Reports, consisting of brief articles on investigations at the Atlantic stations of the Board. Pacific Progress Reports, consisting of brief articles on investigations at the Pacific stations of the Board. The price of this Bulletin is 50 cents (Canadian funds, postpaid). Orders should be addressed to the Queen's Printer, Ottawa, Canada. Remittance made payable to the Receiver General of Canada should accompany the order. All publications of the Fisheries Research Board of Canada still in print are available for purchase from the Queen's Printer.
    [Show full text]
  • Pickling Fish and Other Aquatic Foods for Home
    and fish, keeping the skin sides of the fish layers pickling solution than the amounts indicated in the adjacent. With the top layer of fish, place the fish preceding paragraph. skin side up. Hold under refrigeration if pos- sible. Do not store above 50˚F. Storage If you follow this basic recipe, you should produce a Brine curing safe, good quality product. However, the fish must Place sides of fish into saturated brine (about be stored under refrigeration (38˚F) to provide an 1 part fine kosher salt to 3½ parts water) and added measure of safety. This will ensure that food completely submerge them with a clean weight poisoning bacteria will not grow. Refrigerated or use a container that has a lid that can be used storage also will retard bacterial spoilage, reduce to keep the fish submerged during the entire problems with enzymatic softening, and reduce brining process. Use about equal volumes of fish discoloration. If refrigeration facilities are limited, and brine. Place the top layer of fish skin side do not pickle more fish than you can consume in a up. Hold under refrigeration if possible. Do not few weeks. store above 50˚F. For Further Reading Pickling Canning Seafood, PNW0194 4. Remove the surface brine by rinsing fish in cold Smoking Fish at Home—Safely, PNW0238 fresh water using a process called “freshen- Home Canning Smoked Fish, PNW0450 ing.” Soaking the fish (not longer than 1 day) Home Freezing of Seafood, PNW0586 in cool, fresh water to reduce salt content may be desirable, but is not necessary.
    [Show full text]
  • Drying of Salted Fish Comparison Between Different Methods and Species
    Drying of salted fish Comparison between different methods and species Gisli Kristjansson Faculty of Industrial Engineering, Mechanical Engineering and Computer Science University of Iceland 2013 Drying of salted fish Comparison between different methods and species Gisli Kristjansson 60 ECTS thesis submitted in partial fulfillment of a Magister Scientiarum degree in industrial engineering Advisors Sigurjon Arason Dr. Olafur Petur Palsson Asbjorn Jonsson External examiner Dr. Kristin Anna Thorarinsdottir Faculty of Industrial Engineering, Mechanical Engineering and Computer Science School of Engineering and Natural Sciences University of Iceland Reykjavik, September 2013 Drying of salted fish – Comparison between different methods and species Drying of salted fish 60 ECTS thesis submitted in partial fulfillment of a Magister Scientiarum degree in Industrial Engineering Copyright © 2013 Gisli Kristjansson All rights reserved Faculty of Industrial Engineering, Mechanical Engineering and Computer Science School of Engineering and Natural Sciences University of Iceland Hjarðarhagi 2-6 107, Reykjavik Iceland Telephone: 525 4000 Bibliographic information: Gisli Kristjansson, 2013, Drying of salted fish – Comparison between different methods and species, Master’s thesis, Faculty of Industrial Engineering, Mechanical Engineering and Computer Science, University of Iceland, pp. 146 Printing: Háskólaprent, Fálkagötu 2, 101 Reykjavík Reykjavik, Iceland, September 2013 Abstract Dried salted fish is a popular seafood product in Southern Europe and South America. Large quantities of the salted fish from Iceland are further processed into dried salted products in Portugal before they are sold to the consumer in Portugal or exported to Brazil. By drying the salted fish in Iceland an added value could be achieved in the country before the fish is exported. In this thesis experiments were performed to gather knowledge of drying of salted fish in Icelandic conventional tunnel dryer.
    [Show full text]