Localization of Fibricola Cratera (Trematoda: Diplostomatidae) Metacercariae in Rana Pipiens Thomas Wayne Cook Iowa State University

Total Page:16

File Type:pdf, Size:1020Kb

Localization of Fibricola Cratera (Trematoda: Diplostomatidae) Metacercariae in Rana Pipiens Thomas Wayne Cook Iowa State University Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1977 Localization of Fibricola cratera (Trematoda: Diplostomatidae) metacercariae in Rana pipiens Thomas Wayne Cook Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Zoology Commons Recommended Citation Cook, Thomas Wayne, "Localization of Fibricola cratera (Trematoda: Diplostomatidae) metacercariae in Rana pipiens " (1977). Retrospective Theses and Dissertations. 7600. https://lib.dr.iastate.edu/rtd/7600 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. INFORMATION TO USERS This material was produced from a microfilm copy of the original document. While the most advanced technological means to photograph and reproduce this document have been used, the quality is heavily dependent upon the quality of the original submitted. The following explanation of techniques is provided to help you understand markings or patterns which may appear on this reproduction. 1.The sign or "target" for pages apparently lacking from the document photographed is "Missing Page(s)". If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting thru an image and duplicating adjacent pages to insure you complete continuity. 2. When an image on the film is obliterated with a large round black mark, it is an indication that the photographer suspected that the copy may have moved during exposure and thus cause a blurred image. You will find a good image of the page in the adjacent frame. 3. When a map, drawing or chart, etc., was part of the material being photographed the photographer followed a definite method in "sectioning" the material. It is customary to begin photoing at the upper ieft hand corner of a iargs shast and to continus photoing from left to right in equal sections with a small overlap. If necessary, sectioning is continued again — beginning below the first row and continuing on until complete. 4. The majority of users indicate that the textual content is of greatest value, however, a somewhat higher quality reproduction could be made from "photographs" if essential to the understanding of the dissertation. Silver prints of "photographs" may be ordered at additionai charge by writing the Order Department, giving the catalog number, title, author and specific pages you wish reproduced. 5. PLEASE NOTE: Some pages may have indistinct print. Filmed as received. University Microfilms International 300 North Zeeb Road Ann Arbor. Michigan 48106 USA St. John's Road, Tyler's Green High Wycombe, Bucks, England HP10 8HR 77-29,829 COOK, Thomas Wayne, 1947- LOCALIZATION OF FIBRICOLA CRATERA (TREMATODA: DIPLOSTOMATIDAE) METACERCARIAE IN RANA PIPIENS. Iowa State University, Ph.D., 1977 Zoology Xerox UniVOrSity Microfilms, Ann Arbor, Michigan 48106 Localization of Fibricola cratera (Trematoda; Diplostomatidae) metacercariae in Rana pipiens by Thomas Wayne Cook A Dissertation Submitted to the Graduate Faculty in Partial Fulfillment of The Requirements for the Degree of DOCTOR OF PHILOSOPHY Department; Zoology Major; Zoology (Parasitology) Approved: Signature was redacted for privacy. Signature was redacted for privacy. For the Major Department Signature was redacted for privacy. Iowa State University Ames, Iowa 1977 ii TABLE OF CONTENTS Page INTRODUCTION 1 LITERATURE REVIEW 3 MATERIALS AND METHODS 27 RESULTS AND DISCUSSION 36 SUMMARY AND CONCLUSIONS 80 LITERATURE CITED 83 ACKNOWLEDGEMENTS 96 PLATES 97 1 INTRODUCTION A well-known attribute of parasitism is that parasites localize in their inter­ mediate or definitive hosts. This so-called "site-finding behavior" involves entry into the proper host (i.e. host selection) and, once in the intermediate or defini­ tive host, localizing in a suitable microhabitat for establishment and survival. Research into parasite localization is a relatively new area of investigation for parasitologists. Only recently have the complexities of parasitic behavior be­ gun to be examined experimentally. This dissertation is an invest%ation of the larval localization of the d%enetic trematode Fibricola cratera (Barker and Noll, 1915) Dubois, 1932, a common duodenal parasite of raccoons (Procyon lotor) whose metacercariae (diplostomula) occur in tadpoles and frogs. Although Hoffman (1955) and Turner (1958) briefly demonstrated and de­ scribed all stages in the life-cycle of this parasite, certain questions relative to the localization of the metacercariae remain to be answered. Hoffman's (1955) description of the infection of tadpole embryos was vague; no mention in his report is made of numbers of cercariae used in experimental infections of tadpoles nor of the exact age of the tadpoles. lue phenomenon of metacercarial migration of ^ cratera has never been studied in any detail. Although migration of metacercariae during frog metamor­ phosis has been known for 35 years, no published data are available on the significance of frog metamorphosis on the life-cycle of F. cratera. Furthermore, 2 no descriptive account of the progress and route of m^rating metacercariae from the peritoneal cavity to the hind leg musculature appears in the literature. These aspects of the life-cycle have been investigated in detail and are presented in this dissertation. 3 LITERATURE REVIEW Historical Review The genus Fibricola was established by Dubois (1932). The type species cratera was assigned to a diplostomatid trematode described by Barker (1915) as Hemistomum craterum (Barker and Noll, 1915) recovered from a muskrat (Ondatra zibethicus) intestine. Since 1915,cratera has been reported in al least 15 species of hosts from 14 states and two provinces in Canada. This in­ formation is summarized in Table 1. According to Dubois (1963, 1970), two species of the genus Fibricola occur in the United States namely; Fibricola cratera (Barker and Noll, 1915) Dubois, 1932, and F. lucida (La Rue and Bosma, 1927) Dubois and Rausch, 1950. Five ad­ ditional species of Fibricola presently accepted by Dubois (1963, 1970) include: F. caballeroi Zerecero, 1943 from Rattus norvégiens, F. intermedins (Pearson, 1959) Sudarikov, 1960, from Rattus as similis and Hydromys chrysogaster, F. minor Dubois, 1936 from Hydromys chrysogastér, F. sarcophilus Sandars, 1957 from Sarcophilus harrisi, and F. sudarikovi Sadovskaja, 1952 from Ondatra zibethicus, Apodemus agrarius and Cricetulus triton nestor. Fibricola is placed in the order Strigeatida La Rue. 1926 and within the superfamily Strigeoidea Rallliet, 1919. Fibricola, a typical strigeoid with a dis­ tinct fore- and hindbody, possesses a tribocytic (holdfast) organ in addition to oral and ventral suckers. Table 1. Definitive hoats of Fibricola ctatera reported In the literature Host Locality Author(s) Blarina brevlcauda Minnesota Cuckler, 1940 Chickens^ Florida Leigh, 1954 Iowa Ulmer, 1955 Didelphis vlrginiana Georgia Byrd et al., 1942 Tennessee Michigan Chandler and Rausch, 1946 Eudocimus albus Louisiana Lumsden, 1961 Mephitis mephitis Wyoming Dubois and Rausch, 1950 Mephitis nigra Michigan Chandler and Rausch, 1946 Mesocrlcetus auratus Florida Leigh, 1954 Mustt.la vison Ontario, Canada Law and Kennedy, 1932 Texas Read, 1948 Louisiana Lumsden and Zischke, 1961 Ondatra zlbethicus Nebraska Barker, 1915 Minnesota Cuckler, 1940 Illinois Gilford, 1954 Ohio Beckett and Galllcbhlo, 1967 Utah Grundmann and Tsal, 1967 '^Experimental host. Table 1. (Continued) Host Locality Author(s) Procyon lotor Quebec, Canada Miller, 1940 Iowa Morgan and Waller, 1940 Texas Chandler, 1942 Michigan Chandler and Rausch, 1946 Iowa Hoffman, 1955 Georgia Babero and Shepperson, 1958 Georgia Sawyer, 1958 Iowa IXirner, 1958 Louisiana Lumsden and Zischke, 1961 Cape Island, B.C. Harkema and Miller, 1962 North Carolina Harkema and Miller, 1964 Soutli Carolina Harkema and Miller, 1964 Florida Harkema and Miller, 1964 Iowa Present Study Rattus norvegicus Wisconsin Schiller and Morgan, 1949 Michigan DeGlustl, 1957 Florida Leigh, 1954 Iowa® Ulmer, 1954 Iowa® Hoffman, 1955 Iowa® Turner, 1958 Sclurus hudsonicus Michigan Chandler and Rausch, 1946 Tamlasciurus hudsonicus Several North Central States Rausch and Tiner, 1948 Table 1. (Continued) Host Locality Author(s) Taxldea taxus Iowa Wittrock and Ulmer, 1974 a White mice Florida Leigh, 1954 lowa^ Ulmer, 1955 lowa^ Turner, 1958 7 Dubois (1953, 1963, 1970) placed Fibricola within the subfamily Alariinae (Family Diplostomatidae) because it is parasitic in mammals and its vitelline folli­ cles are limited chiefly to the forebody. Members of a second subfamily, Diplo- stomatinae, are parasites of birds and have vitelline follicles limited chiefly to the hindbody. Dubois (1963, 1970) separated Fibricola from other genera in the Alariinae because of the following characteristics: spoon-shaped forebody (much longer than hindbody from which it is distinctly separated by a transverse constric­ tion), asymmetrical anterior testis, the absence of pseudosuckers and auricles, presence of a circular or elliptical tribocytic organ, and a normally developed ventral sucker. Early observations of the Fibricola cratera life cycle were reported by Cuckler (1940 and 1949),
Recommended publications
  • Binder 021, Bucephalidae [Trematoda Taxon Notebooks]
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Trematoda Taxon Notebooks Parasitology, Harold W. Manter Laboratory of February 2021 Binder 021, Bucephalidae [Trematoda Taxon Notebooks] Harold W. Manter Laboratory of Parasitology Follow this and additional works at: https://digitalcommons.unl.edu/trematoda Part of the Biodiversity Commons, Parasitic Diseases Commons, and the Parasitology Commons Harold W. Manter Laboratory of Parasitology, "Binder 021, Bucephalidae [Trematoda Taxon Notebooks]" (2021). Trematoda Taxon Notebooks. 21. https://digitalcommons.unl.edu/trematoda/21 This Portfolio is brought to you for free and open access by the Parasitology, Harold W. Manter Laboratory of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Trematoda Taxon Notebooks by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Family BUCEPHALIDAE POCHE, 1907 1. Bucephalus varicus Manter, 1940 Host. Caranx hippos (Linn.): Common jack; family Carangidae Incidence of Infection. In 1 of 1 host Location. Mainly close to pyloric junction and a few scattered speci­ mens along length of entire intestine Locality. Bayboro Harbor, Tampa Bay, (new locality record) Florida Discussion. Manter (1940) pictured variation of tentacles and displa- ---- -- cement of organs in preserved B. varicus from the Tropical American Pacific and Tortugas, Florida. We have studied live B. varicus under slight coverslip pressure and can confirm the variations observed by Manter ( 1940) . B. varicus has been reported from no less than eleven different carangid species from Okinawa, the Red Sea, Tortugas, Florida, and the Tropical American Pacific. The only other record of B. varicus from Caranx hippos is by Bravo and Sogandares (1957) from the Pacific Coast of Mexico.
    [Show full text]
  • Life Cycle of Renylaima Capensis, a Brachylaimid
    Sirgel et al. Parasites & Vectors 2012, 5:169 http://www.parasitesandvectors.com/content/5/1/169 RESEARCH Open Access Life cycle of Renylaima capensis, a brachylaimid trematode of shrews and slugs in South Africa: two-host and three-host transmission modalities suggested by epizootiology and DNA sequencing Wilhelm F Sirgel1, Patricio Artigas2, M Dolores Bargues2 and Santiago Mas-Coma2* Abstract Background: The life cycle of the brachylaimid trematode species Renylaima capensis, infecting the urinary system of the shrew Myosorex varius (Mammalia: Soricidae: Crocidosoricinae) in the Hottentots Holland Nature Reserve, South Africa, has been elucidated by a study of its larval stages, epizootiological data in local snails and mammals during a 34-year period, and its verification with mtDNA sequencing. Methods: Parasites obtained from dissected animals were mounted in microscope slides for the parasitological study and measured according to standardized methods. The mitochondrial DNA cox1 gene was sequenced by the dideoxy chain-termination method. Results: The slugs Ariostralis nebulosa and Ariopelta capensis (Gastropoda: Arionidae) act as specific first and second intermediate hosts, respectively. Branched sporocysts massively develop in A. nebulosa. Intrasporocystic mature cercariae show differentiated gonads, male terminal duct, ventral genital pore, and usually no tail, opposite to Brachylaimidae in which mature cercariae show a germinal primordium and small tail. Unencysted metacercariae, usually brevicaudate, infect the kidney of A. capensis and differ from mature cercariae by only a slightly greater size. The final microhabitats are the kidneys and ureters of the shrews, kidney pelvis and calyces in light infections and also kidney medulla and cortex in heavy infections. Sporocysts, cercariae, metacercariae and adults proved to belong to R.
    [Show full text]
  • Striped Whitelip Webbhelix Multilineata
    COSEWIC Assessment and Status Report on the Striped Whitelip Webbhelix multilineata in Canada ENDANGERED 2018 COSEWIC status reports are working documents used in assigning the status of wildlife species suspected of being at risk. This report may be cited as follows: COSEWIC. 2018. COSEWIC assessment and status report on the Striped Whitelip Webbhelix multilineata in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. x + 62 pp. (http://www.registrelep-sararegistry.gc.ca/default.asp?lang=en&n=24F7211B-1). Production note: COSEWIC would like to acknowledge Annegret Nicolai for writing the status report on the Striped Whitelip. This report was prepared under contract with Environment and Climate Change Canada and was overseen by Dwayne Lepitzki, Co-chair of the COSEWIC Molluscs Specialist Subcommittee. For additional copies contact: COSEWIC Secretariat c/o Canadian Wildlife Service Environment and Climate Change Canada Ottawa, ON K1A 0H3 Tel.: 819-938-4125 Fax: 819-938-3984 E-mail: [email protected] http://www.cosewic.gc.ca Également disponible en français sous le titre Ếvaluation et Rapport de situation du COSEPAC sur le Polyspire rayé (Webbhelix multilineata) au Canada. Cover illustration/photo: Striped Whitelip — Robert Forsyth, August 2016, Pelee Island, Ontario. Her Majesty the Queen in Right of Canada, 2018. Catalogue No. CW69-14/767-2018E-PDF ISBN 978-0-660-27878-0 COSEWIC Assessment Summary Assessment Summary – April 2018 Common name Striped Whitelip Scientific name Webbhelix multilineata Status Endangered Reason for designation This large terrestrial snail is present on Pelee Island in Lake Erie and at three sites on the mainland of southwestern Ontario: Point Pelee National Park, Walpole Island, and Bickford Oak Woods Conservation Reserve.
    [Show full text]
  • Synopsis of the Parasites of Fishes of Canada
    1 ci Bulletin of the Fisheries Research Board of Canada DFO - Library / MPO - Bibliothèque 12039476 Synopsis of the Parasites of Fishes of Canada BULLETIN 199 Ottawa 1979 '.^Y. Government of Canada Gouvernement du Canada * F sher es and Oceans Pëches et Océans Synopsis of thc Parasites orr Fishes of Canade Bulletins are designed to interpret current knowledge in scientific fields per- tinent to Canadian fisheries and aquatic environments. Recent numbers in this series are listed at the back of this Bulletin. The Journal of the Fisheries Research Board of Canada is published in annual volumes of monthly issues and Miscellaneous Special Publications are issued periodically. These series are available from authorized bookstore agents, other bookstores, or you may send your prepaid order to the Canadian Government Publishing Centre, Supply and Services Canada, Hull, Que. K I A 0S9. Make cheques or money orders payable in Canadian funds to the Receiver General for Canada. Editor and Director J. C. STEVENSON, PH.D. of Scientific Information Deputy Editor J. WATSON, PH.D. D. G. Co«, PH.D. Assistant Editors LORRAINE C. SMITH, PH.D. J. CAMP G. J. NEVILLE Production-Documentation MONA SMITH MICKEY LEWIS Department of Fisheries and Oceans Scientific Information and Publications Branch Ottawa, Canada K1A 0E6 BULLETIN 199 Synopsis of the Parasites of Fishes of Canada L. Margolis • J. R. Arthur Department of Fisheries and Oceans Resource Services Branch Pacific Biological Station Nanaimo, B.C. V9R 5K6 DEPARTMENT OF FISHERIES AND OCEANS Ottawa 1979 0Minister of Supply and Services Canada 1979 Available from authorized bookstore agents, other bookstores, or you may send your prepaid order to the Canadian Government Publishing Centre, Supply and Services Canada, Hull, Que.
    [Show full text]
  • Pathogens and Parasites of the Mussels Mytilus Galloprovincialis and Perna Canaliculus: Assessment of the Threats Faced by New Zealand Aquaculture
    Pathogens and Parasites of the Mussels Mytilus galloprovincialis and Perna canaliculus: Assessment of the Threats Faced by New Zealand Aquaculture Cawthron Report No. 1334 December 2007 EXECUTIVE SUMMARY The literature on pathogens and parasites of the mytilid genera Mytilus and Perna was surveyed with particular focus on M. galloprovincialis and P. canaliculus. Likely pathological threats posed to New Zealand mussel aquaculture were identified and recommendations were discussed under the following topics. Epidemiological differences between New Zealand Mytilus and Perna There is a paucity of data for this comparison. Comparability or otherwise would inform predictions as to the threat posed by overseas Mytilus parasites to New Zealand Perna and vice versa. Samples of P. canaliculus and M. galloprovincialis should be surveyed to establish any significant difference in parasite loads or pathology. Invasive dynamics and possible development of pathological threat The greatest potential threat to New Zealand Perna canaliculus aquaculture appears to be posed by parasites introduced by invading Mytilus species. These common ship-borne fouling organisms are a likely source of overseas pathogens, the most important of which are probably Marteilia spp. and disseminated haemic neoplasia. Hybridisation of invasive and local mussels presents a further potential pathology hazard by production of a more susceptible reservoir host thus giving the potential for production of more infected hosts and greater water load of transmission stages. Such an increase in transmission stages might be a cause of concern for Perna canaliculus whose susceptibility is currently unknown. Studies on Marteilia and haemic neoplasia are required to address the following questions: Is Perna canaliculus susceptible to either of these pathogens? What are the current prevalences of these pathogens in local mytilids? What species of mussels are entering New Zealand waters? Do they include Mytilus spp.
    [Show full text]
  • Diplomarbeit
    DIPLOMARBEIT Titel der Diplomarbeit „Microscopic and molecular analyses on digenean trematodes in red deer (Cervus elaphus)“ Verfasserin Kerstin Liesinger angestrebter akademischer Grad Magistra der Naturwissenschaften (Mag.rer.nat.) Wien, 2011 Studienkennzahl lt. Studienblatt: A 442 Studienrichtung lt. Studienblatt: Diplomstudium Anthropologie Betreuerin / Betreuer: Univ.-Doz. Mag. Dr. Julia Walochnik Contents 1 ABBREVIATIONS ......................................................................................................................... 7 2 INTRODUCTION ........................................................................................................................... 9 2.1 History ..................................................................................................................................... 9 2.1.1 History of helminths ........................................................................................................ 9 2.1.2 History of trematodes .................................................................................................... 11 2.1.2.1 Fasciolidae ................................................................................................................. 12 2.1.2.2 Paramphistomidae ..................................................................................................... 13 2.1.2.3 Dicrocoeliidae ........................................................................................................... 14 2.1.3 Nomenclature ...............................................................................................................
    [Show full text]
  • Parasitology Volume 60 60
    Advances in Parasitology Volume 60 60 Cover illustration: Echinobothrium elegans from the blue-spotted ribbontail ray (Taeniura lymma) in Australia, a 'classical' hypothesis of tapeworm evolution proposed 2005 by Prof. Emeritus L. Euzet in 1959, and the molecular sequence data that now represent the basis of contemporary phylogenetic investigation. The emergence of molecular systematics at the end of the twentieth century provided a new class of data with which to revisit hypotheses based on interpretations of morphology and life ADVANCES IN history. The result has been a mixture of corroboration, upheaval and considerable insight into the correspondence between genetic divergence and taxonomic circumscription. PARASITOLOGY ADVANCES IN ADVANCES Complete list of Contents: Sulfur-Containing Amino Acid Metabolism in Parasitic Protozoa T. Nozaki, V. Ali and M. Tokoro The Use and Implications of Ribosomal DNA Sequencing for the Discrimination of Digenean Species M. J. Nolan and T. H. Cribb Advances and Trends in the Molecular Systematics of the Parasitic Platyhelminthes P P. D. Olson and V. V. Tkach ARASITOLOGY Wolbachia Bacterial Endosymbionts of Filarial Nematodes M. J. Taylor, C. Bandi and A. Hoerauf The Biology of Avian Eimeria with an Emphasis on Their Control by Vaccination M. W. Shirley, A. L. Smith and F. M. Tomley 60 Edited by elsevier.com J.R. BAKER R. MULLER D. ROLLINSON Advances and Trends in the Molecular Systematics of the Parasitic Platyhelminthes Peter D. Olson1 and Vasyl V. Tkach2 1Division of Parasitology, Department of Zoology, The Natural History Museum, Cromwell Road, London SW7 5BD, UK 2Department of Biology, University of North Dakota, Grand Forks, North Dakota, 58202-9019, USA Abstract ...................................166 1.
    [Show full text]
  • Redalyc.Parasites As Secret Files of the Trophic Interactions of Hosts: The
    Revista Mexicana de Biodiversidad ISSN: 1870-3453 [email protected] Universidad Nacional Autónoma de México México Calegaro-Marques, Cláudia; Amato, Suzana B. Parasites as secret files of the trophic interactions of hosts: the case of the rufous-bellied thrush Revista Mexicana de Biodiversidad, vol. 81, núm. 3, 2010, pp. 801-811 Universidad Nacional Autónoma de México Distrito Federal, México Available in: http://www.redalyc.org/articulo.oa?id=42518439020 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Revista Mexicana de Biodiversidad 81: 801 - 811, 2010 Parasites as secret files of the trophic interactions of hosts: the case of the rufous- bellied thrush Los parásitos como archivos secretos en las interacciones tróficas con sus hospederos: el caso del Zorzal Colorado Cláudia Calegaro-Marques1* and Suzana B. Amato2 1Departamento de Zoologia, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves, 9500, Pd. 43435, Sala 202, Porto Alegre, RS, Brazil. 2Laboratório de Helmintologia, Departamento de Zoologia, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves, 9500, Pd. 43435, Sala 209, Porto Alegre, RS, Brazil *Correspondent: [email protected] Abstract. Helminths with heteroxenous cycles provide clues for the trophic relationships of definitive hosts, representing important sources of information for assessing niche overlap between males and females of non-dimorphic species. We necropsied 151 rufous-bellied thrushes (Turdus rufiventris) captured in a metropolitan region in southern Brazil to analyze whether the structure of parasite communities is influenced by host sex or age.
    [Show full text]
  • (Platyhelminthes: Trematoda) Infection in Frogs from Turkey. Introduction
    69 Uludag Univ. J. Fac. Vet. Med. 27 (2008), 1-2: 69-71 First Report of Ribeiroia (Platyhelminthes: Trematoda) Infection in Frogs From Turkey. Şevki Z. CO ŞKUN * Mustafa N. MUZ ** Geli ş Tarihi: 25.02.2009 Kabul Tarihi: 09.03.2009 Abstract: Frog meat is one of the most desired dishes in some famous world restaurants. Turkey exports mil- lions of frogs collected from the nature in each year. Knowledge on the parasitic fauna of the frogs is very li- mited. The frogs (Rana ridibunda Pallas, 1771.) collected from central Anatolia (Ankara province and its vicini- ty) for exporting to EU countries were examined for tissue parasites. At inspection, yellow colored cystic structures with a diameter of 0.40 - 0.55 mm were observed among muscles. Number of the cysts in examined 33 frogs varied from 12 to 61. In the microscopic examination of the cysts, metacercariae of the genus Ribeiroia (Trematoda: Psilostomidae) were identified for the first time in Turkey. In North America, Ribeiroia is known to cause limb deformities in amphibians, and, since the infection has been included in the list of emerging diseases, these observations have evoked concern within the scientific and busi- ness communities. Key Words: Ribeiroia, Frog, Turkey. Türkiye’de Kurba ğalarda ilk Ribeiroia (Platyhelminthes: Trematoda) Enfeksiyonu Özet: Kurba ğa eti dünyaca me şhur bazı restorantlarda en çok tercih edilen menülerden birisidir. Türkiye her yıl do ğadan toplanan milyonlarca kurba ğayı ihraç etmektedir. Kurba ğaların parazitik faunası hakkındaki bilgileri- miz sınırlıdır. Avrupa Birli ği ülkelerine ihraç etmek üzere Orta Anadolu’dan (Ankara ve çevresi) toplanan kur- ba ğalar (Rana ridibunda Pallas, 1771.) doku parazitleri açısından muayene edilmi ştir.
    [Show full text]
  • Platyhelminthes, Trematoda
    Journal of Helminthology Testing the higher-level phylogenetic classification of Digenea (Platyhelminthes, cambridge.org/jhl Trematoda) based on nuclear rDNA sequences before entering the age of the ‘next-generation’ Review Article Tree of Life †Both authors contributed equally to this work. G. Pérez-Ponce de León1,† and D.I. Hernández-Mena1,2,† Cite this article: Pérez-Ponce de León G, Hernández-Mena DI (2019). Testing the higher- 1Departamento de Zoología, Instituto de Biología, Universidad Nacional Autónoma de México, Avenida level phylogenetic classification of Digenea Universidad 3000, Ciudad Universitaria, C.P. 04510, México, D.F., Mexico and 2Posgrado en Ciencias Biológicas, (Platyhelminthes, Trematoda) based on Universidad Nacional Autónoma de México, México, D.F., Mexico nuclear rDNA sequences before entering the age of the ‘next-generation’ Tree of Life. Journal of Helminthology 93,260–276. https:// Abstract doi.org/10.1017/S0022149X19000191 Digenea Carus, 1863 represent a highly diverse group of parasitic platyhelminths that infect all Received: 29 November 2018 major vertebrate groups as definitive hosts. Morphology is the cornerstone of digenean sys- Accepted: 29 January 2019 tematics, but molecular markers have been instrumental in searching for a stable classification system of the subclass and in establishing more accurate species limits. The first comprehen- keywords: Taxonomy; Digenea; Trematoda; rDNA; NGS; sive molecular phylogenetic tree of Digenea published in 2003 used two nuclear rRNA genes phylogeny (ssrDNA = 18S rDNA and lsrDNA = 28S rDNA) and was based on 163 taxa representing 77 nominal families, resulting in a widely accepted phylogenetic classification. The genetic library Author for correspondence: for the 28S rRNA gene has increased steadily over the last 15 years because this marker pos- G.
    [Show full text]
  • Brachylaima Aegyptica N. Sp. (Trematoda: Brachylaimidae), From
    e-ISSN:2321-6190 p-ISSN:2347-2294 Research & Reviews: Journal of Zoological Sciences Brachylaima Aegyptica n. sp. (Trematoda: Brachylaimidae), from the Bile Ducts of the Golden Spiny Mouse, Acomys Russatus Wagner, 1840 (Rodentia: Muridae), Egypt Enayat Salem Reda and Eman A El-Shabasy* Department of Zoology, Faculty of Science, Mansoura University, El-Mansoura, Egypt Research Article Received date: 02/03/2016 ABSTRACT Accepted date: 21/04/2016 From family Brachylaimidae, a trematoda species was obtained from Published date: 25/04/2016 the bile ducts of Acomys russatus (Rodentia: Muridae) from Saint Catherine mountain, South Sinai, Egypt. Sven out of nine (77.78%) of examined mice *For Correspondence were infected. Scanning electron microscopy is used to describe the adult stage morphologically and anatomically by light microscopy. A comparison Eman A El-Shabasy, Department of Zoology, is made with other brachylaimid species known to infect rodents. Specific Faculty of Science, Mansoura University, El- characteristics such as lanceolate shape; shoulders unique cephalic cone; Mansoura, Egypt, Tel: 00201091663609 both suckers are conspicuously close to each other; an aspinous tegument; well-developed excretory system; uterus extends to the posterior margin of the E-mail: [email protected] ventral sucker only; vitelline follicles distribution. In addition, Acomys russatus bile ducts are an exceptional microhabitat. Transverse folds, cobblestones, Keywords: Trematodes, Bile ducts, Golden three types of papillae and cytoplasmic ridges were detected by scanning mice, Brachylaimia. electron microscope. No other known Brachylaima species exhibits all of these features. B. aegyptica n. sp. seems to be the second brachylaimid species of this genus found in Egyptian mammals since 1899 when Looss collected B.
    [Show full text]
  • The SSU Rrna Secondary Structures of the Plagiorchiida Species (Digenea), T Its Applications in Systematics and Evolutionary Inferences ⁎ A.N
    Infection, Genetics and Evolution 78 (2020) 104042 Contents lists available at ScienceDirect Infection, Genetics and Evolution journal homepage: www.elsevier.com/locate/meegid Research paper The SSU rRNA secondary structures of the Plagiorchiida species (Digenea), T its applications in systematics and evolutionary inferences ⁎ A.N. Voronova, G.N. Chelomina Federal Scientific Center of the East Asia Terrestrial Biodiversity FEB RAS, 7 Russia, 100-letiya Street, 159, Vladivostok 690022,Russia ARTICLE INFO ABSTRACT Keywords: The small subunit ribosomal RNA (SSU rRNA) is widely used phylogenetic marker in broad groups of organisms Trematoda and its secondary structure increasingly attracts the attention of researchers as supplementary tool in sequence 18S rRNA alignment and advanced phylogenetic studies. Its comparative analysis provides a great contribution to evolu- RNA secondary structure tionary biology, allowing find out how the SSU rRNA secondary structure originated, developed and evolved. Molecular evolution Herein, we provide the first data on the putative SSU rRNA secondary structures of the Plagiorchiida species.The Taxonomy structures were found to be quite conserved across broad range of species studied, well compatible with those of others eukaryotic SSU rRNA and possessed some peculiarities: cross-shaped structure of the ES6b, additional shortened ES6c2 helix, and elongated ES6a helix and h39 + ES9 region. The secondary structures of variable regions ES3 and ES7 appeared to be tissue-specific while ES6 and ES9 were specific at a family level allowing considering them as promising markers for digenean systematics. Their uniqueness more depends on the length than on the nucleotide diversity of primary sequences which evolutionary rates well differ. The findings have important implications for understanding rRNA evolution, developing molecular taxonomy and systematics of Plagiorchiida as well as for constructing new anthelmintic drugs.
    [Show full text]