SAGA of a SPONGIVORE: the Ecology and Conservation of the Hawksbill Turtle
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Field Guide to the Nonindigenous Marine Fishes of Florida
Field Guide to the Nonindigenous Marine Fishes of Florida Schofield, P. J., J. A. Morris, Jr. and L. Akins Mention of trade names or commercial products does not constitute endorsement or recommendation for their use by the United States goverment. Pamela J. Schofield, Ph.D. U.S. Geological Survey Florida Integrated Science Center 7920 NW 71st Street Gainesville, FL 32653 [email protected] James A. Morris, Jr., Ph.D. National Oceanic and Atmospheric Administration National Ocean Service National Centers for Coastal Ocean Science Center for Coastal Fisheries and Habitat Research 101 Pivers Island Road Beaufort, NC 28516 [email protected] Lad Akins Reef Environmental Education Foundation (REEF) 98300 Overseas Highway Key Largo, FL 33037 [email protected] Suggested Citation: Schofield, P. J., J. A. Morris, Jr. and L. Akins. 2009. Field Guide to Nonindigenous Marine Fishes of Florida. NOAA Technical Memorandum NOS NCCOS 92. Field Guide to Nonindigenous Marine Fishes of Florida Pamela J. Schofield, Ph.D. James A. Morris, Jr., Ph.D. Lad Akins NOAA, National Ocean Service National Centers for Coastal Ocean Science NOAA Technical Memorandum NOS NCCOS 92. September 2009 United States Department of National Oceanic and National Ocean Service Commerce Atmospheric Administration Gary F. Locke Jane Lubchenco John H. Dunnigan Secretary Administrator Assistant Administrator Table of Contents Introduction ................................................................................................ i Methods .....................................................................................................ii -
Jarvis Island NWR Final
Jarvis Island National Wildlife Refuge Comprehensive Conservation Plan FINDING OF NO SIGNIFICANT IMPACT Jarvis Island National Wildlife Refuge Comprehensive Conservation Plan Unincorporated U.S. Territory, Central Pacific Ocean The U.S. Fish and Wildlife Service (Service) has completed the Comprehensive Conservation Plan (CCP) and Environmental Assessment (EA) for Jarvis Island National Wildlife Refuge (Refuge). The CCP will guide management of the Refuge for the next 15 years. The CCP and EA describe the Service’s preferred alternative for managing the Refuge and its effects on the human environment. Decision Following comprehensive review and analysis, the Service selected Alternative B in the draft EA for implementation because it is the alternative that best meets the following criteria: Achieves the mission of the National Wildlife Refuge System. Achieves the purposes of the Refuge. Will be able to achieve the vision and goals for the Refuge. Maintains and restores the ecological integrity of the habitats and plant and animal populations at the Refuge. Addresses the important issues identified during the scoping process. Addresses the legal mandates of the Service and the Refuge. Is consistent with the scientific principles of sound wildlife management. Can be implemented within the projected fiscal and logistical management constraints associated with the Refuge’s remote location. As described in detail in the CCP and EA, implementing the selected alternative will have no significant impacts on any of the natural or cultural resources identified in the CCP and EA. Public Review The planning process incorporated a variety of public involvement techniques in developing and reviewing the CCP. This included three planning updates, meetings with partners, and public review and comment on the planning documents. -
Blue Water Spawning by Moorish Idols and Orangespine Surgeonfish in Palau: Is It a “Suicide Mission”?
aqua, International Journal of Ichthyology Blue Water Spawning by Moorish Idols and Orangespine Surgeonfish in Palau: Is it a “Suicide Mission”? Mandy T. Etpison1 and Patrick L. Colin2 1) Etpison Museum, PO Box 7049, Koror, Palau 96940. Email: [email protected] 2) Coral Reef Research Foundation, PO Box 1765, Koror, Palau 96940. Email: [email protected] Received: 13 December 2017 – Accepted: 05 March 2018 Keywords am Morgen zu den Laichplätzen, schlossen sich zu Gruppen Predation, aggregation, feeding frenzy, gray reef shark, zusammen und bewegten sich über der Rifffläche auf und lunar periodicity. ab und zogen dabei die Aufmerksamkeit von Beutegreifern auf sich. Um die Mittagszeit steigen sie vom Riff auf und Abstract begeben sich ins freie Wasser jenseits vom Riff. Graue Spawning aggregations of the moorish idol (MI) and or- Riffhaie folgen ihnen, greifen sie an der Oberfläche an und angespine surgeonfish (OSS) were found on the western verzehren viele von ihnen in einem Fressrausch. Ein hoher barrier reef of Palau. MI aggregated around the first quar- Prozentsatz der aufsteigenden erwachsenen HF wird von ter moon from Dec. to Mar., with largest groups in Jan. den Haien gefressen, nur wenige können in die sichere Zone and Feb. Fish arrived near the sites in the morning, des Riffs zurückkehren. KD versammeln sich in denselben grouped together and moved up and down the reef face up Monaten, aber in der Zeit des letzten Mondviertels – wobei in late morning attracting the attention of predators. At es hierüber weniger Berichte gibt. Die Beobachtungen bei mid-day they ascend from the reef out into open water beiden Fischarten, dass sie weit nach oben steigen und sich away from the reef. -
Larvae of the Moorish Idol, Zanclus Cornutus, Including a Comparison with Other Larval Acanthuroids
BULLETIN OF MARINE SCIENCE. 40(3): 494-511. 1987 CORAL REEF PAPER LARVAE OF THE MOORISH IDOL, ZANCLUS CORNUTUS, INCLUDING A COMPARISON WITH OTHER LARVAL ACANTHUROIDS G. David Johnson and Betsy B. Washington ABSTRACT The larvae of Zane/us carnutus are described and illustrated based on one postflexion and several preflexion specimens. In addition to general morphology and pigmentation, bony ornamentation ofthe head bones and other osteological features are described in detail. Head bones and the associated ornamentation are illustrated for larval Zane/us, Siganus. Luvarus and Nasa. These and other aspects of the morphology of larval acanthuroids are compared and discussed within the context of a phylogenetic hypothesis proposed in other current work. Larval characters corroborate the monophyly of the Acanthuroidei and the phyletic sequence, Siganidae, Luvaridae, Zanc1idae, Acanthuridae. The Acanthuridae is represented by three distinct larval forms. The moorish idol, Zane/us cornutus (Linnaeus), Family Zanclidae, occurs in tropical waters of the Indo-Pacific and eastern Pacific. Like the closely related Acanthuridae, adult Zane/us are reef-associated fishes, but the young are spe- cialized for a relatively prolonged pelagic existence. The specialized pelagic pre- juvenile is termed the "acronurus" stage, and, at least in acanthurids, may reach a length of 60 mm or more before settling (Leis and Rennis, 1983). Strasburg (1962) briefly described 13.4 and 16.0-mm SL specimens ofthe monotypic Zan- e/us and illustrated the larger specimens. Eggs, preflexion larvae and small post- flexion larvae of Zane/us have not been described (Leis and Richards, 1984). The primary purposes of this paper are to describe a 9.S-mm SL postflexion larva of Zane/us and to compare its morphology to that of postflexion larvae of other acanthuroids in a phylogenetic context. -
Housereef Marineguide
JUVENILE YELLOW BOXFISH (Ostracion cubicus) PHUKET MARRIOTT RESORT & SPA, MERLIN BEACH H O U S E R E E F M A R I N E G U I D E 1 BRAIN CORAL (Platygyra) PHUKET MARRIOTT RESORT & SPA, MERLIN BEACH MARINE GUIDE Over the past three years, Marriott and the IUCN have been working together nationwide on the Mangroves for the Future Project. As part of the new 5-year environmental strategy, we have incorporated coral reef ecosystems as part of an integrated coastal management plan. Mangrove forests and coral reefs are the most productive ecosystems in the marine environment, and thus must be kept healthy in order for marine systems to flourish. An identication guide to the marine life on the hotel reef All photos by Sirachai Arunrungstichai at the Marriott Merlin Beach reef 2 GREENBLOTCH PARROTFISH (Scarus quoyi) TABLE OF CONTENTS: PART 1 : IDENTIFICATION Fish..................................................4 PHUKET MARRIOTT RESORT & SPA, Coral..............................................18 MERLIN BEACH Bottom Dwellers.........................21 HOUSE REEF PART 2: CONSERVATION Conservation..........................25 MARINE GUIDE 3 GOLDBAND FUSILIER (Pterocaesio chrysozona) PART 1 IDENTIFICATION PHUKET MARRIOTT RESORT & SPA, MERLIN BEACH HOUSE REEF MARINE GUIDE 4 FALSE CLOWN ANEMONEFISH ( Amphiprion ocellaris) DAMSELFISHES (POMACE NTRIDAE) One of the most common groups of fish on a reef, with over 320 species worldwide. The most recognized fish within this family is the well - known Clownfish or Anemonefish. Damselfishes range in size from a few -
Cerritos Library Aquarium - Current Fish Residents
Cerritos Library Aquarium - Current Fish Residents Blue Tang (Paracanthurus hepatus) Location: Indo-Pacific, seen in reefs of the Philippines, Indonesia, Japan, the Great Barrier Reef of Australia, New Caledonia, Samoa, East Africa, and Sri Lanka Length: Up to 12 inches Food: Omnivores, feed on plankton and algae Characteristics: Live in pairs, or in small groups. Belong to group of fish called surgeonfish due to sharp spines on caudal peduncle (near tailfin). Spines are used only as a method of protection against aggressors Naso Tang (Naso lituratus) Other Names: Orangespine Unicornfish, Lipstick Tang, Tricolor Tang Location: Indo-Pacific reefs Length: Up to 2 feet Food: Primarily herbivores, mostly feed on algae with some plankton Characteristics: Like other surgeonfish, have a scalpel- like spine at the base of the tail for protection against aggressors. Mata tang (Acanthurus mata) Other Names: Elongate Surgeonfish, Pale Surgeonfish Location: Central Pacific, Eastern Asia Length: Up to 20 inches Food: Primarily herbivorous; diet includes algae, seaweed; occasionally carnivorous Characteristics: Like other surgeonfish, have a scalpel- like spine at the base of the tail for protection against aggressors. Yellow Tang (Zebrasoma flavescens) Other Names: Yellow Sailfin Tang, Lemon Surgeonfish, Yellow Surgeonfish Location: Hawaiian islands Length: Up to 8 inches Food: Primarily herbivorous; diet includes algae, seaweed Characteristics: Males have a patch of raised scales that resemble tiny white, fuzzy spikes to the rear of the spine; females do not Mustard tang (Acanthurus guttatus) Other Names: White spotted Surgeonfish Location: Shallow waters on reefs in the Indo-Pacific Length: Up to 12 inches Food: Primarily herbivorous; diet includes algae, seaweed Characteristics: Rarely seen; hide under shallow reefs to protect themselves from predators. -
Finding Nemo Study Guide
a study guide - teachers’ notes A Film Education Study Guide ©Disney/Pixar Text adapted from a resource produced by © The Great Barrier Reef Marine Park Authority © Disney/Pixar Contents Introduction Introduction Teachers’ Notes and Student Activities are clearly labelled Synopsis throughout this study guide and may be printed off and photocopied for classroom use. Part 1: Teachers’ Notes and Pre-viewing Activities Part 1 comprises ‘pre-viewing activities’, for students to 1.1 The Great Barrier Reef use before seeing the film. The questions in Part 1 could be used to investigate the setting, characters and 1.2 Geography resolutions of the film. Post-viewing activities in Part 2 1.3 Features of the Great Barrier Reef enable students to further explore the social world of the 1.4 Reef life film’s characters, and issues of ‘identity’ and ‘difference’. 1.5 Animals on the Great Barrier Reef 1.6 Animals in Finding Nemo This study guide uses themes and issues from the film 1.7 Finding Nemo as a basis for further study in the Reef fish following key learning areas: Literacy Part 2: Post-viewing Activities 2.1 After you have seen Finding Nemo Science 2.2 Exploring the identities of others Personal, Social and Health Education in Nemo’s social sphere 2.3 Film Talk Art 2.4 Feature Article Design and Technology 2.5 Getting inside their heads Geography 2.6 Using press clippings 2.7 Lasting impressions Useful resources: Public Information Unit, Great Barrier Reef Marine Park Authority, PO Box 1379, Townsville, QLD 4810 Ph: (07) 4750 0700 Fax: (07) -
Philippine Coral Reef Educator Guide
Philippine Coral Reef Educator Guide Grade 6 –Grade 12 What’s Inside: A. Exhibit Overview B. Exhibit Map c. Key Concepts d. Vocabulary E. museum connections f. Resources A. exhibit overview Coral reefs are the sparkling jewels of tropical marine habitats. Welcome to the Philippine Coral Reef Exhibit, which represents one of our planet’s most diverse and fragile marine ecosystems. This exhibit is home to a broad range of aquatic life found in the coral reefs and mangrove lagoons of the Philippine Islands. This includes animals such as Use this guide to: delicate soft and hard corals, blacktip reef sharks, stingrays, and more than » Plan your field trip to the 2,000 colorful reef fish representing more than 100 species. In this exhibit, California Academy of students can explore the amazing array of life that exists in the warm, Sciences’ Philippine Coral Reef exhibit. shallow waters off the Philippine coasts. » Learn about exhibit This exhibit can be seen on two levels. On Level 1, students can walk on themes, key concepts and behind–the–scenes a path above a shallow, sandy mangrove lagoon—a calm, protected area information to enhance inhabited by sharks, rays, and schools of fishes. Where the lagoon drops and guide your students’ off to the deep reef, hundreds of brightly colored fishes are visible near experience. the surface, enticing students to view the immersive spectacle one floor » Link to exhibit–related activities you can below. As you enter the aquarium on the Lower Level, you will see the download. main Philippine Coral Reef tank. At a depth of 25 feet and holding 212,000 » Connect your field trip gallons of water, the Philippine Coral Reef tank is one of the deepest to the classroom. -
ZANCLIDAE Zanclus Cornutus Linnaeus, 1758
click for previous page Perciformes: Acanthuroidei: Zanclidae 3651 ZANCLIDAE Moorish idol by J.E. Randall A single species in this family. Zanclus cornutus Linnaeus, 1758 Frequent synonyms / misidentifications: Zanclus canescens (Linnaeus, 1758) / None. FAO names: En - Moorish idol. Diagnostic characters: Body very deep, its depth 1 to 1.4 times in standard length, and very compressed; adults with a sharp bony projection in front of each eye (larger in males); snout narrow and strongly protruding; no spines or enlarged setae poste- riorly on side of body. Mouth small; teeth slender, slightly incurved, and uniserial. First gill arch with 1 gill raker on upper limb, 10 rakers on lower limb. Dorsal fin with VI or VII (usually VII) spines and 39 to 43 soft rays; third dorsal-fin spine extremely long and fila- mentous, usually longer than standard length; anal fin with III spines and 32 to 36 soft rays; caudal fin emarginate; pectoral-fin rays 18 or 19; pelvic fins with I spine and 5 soft rays. Scales very small, each with a vertical row of erect ctenii which curve posteriorly, giving the skin a texture of fine sandpaper. Colour: white anteri- orly, yellow posteriorly, with 2 broad black bars, the first nearly enclosing eye in its anterior part and broadening ventrally to include chest, pelvic fins, and half of abdomen; second black bar on posterior half of body, edged posteriorly with white and black lines, and extending into both dorsal and anal fins; a black-edged orange saddle-like marking on snout; chin black; caudal fin largely black; dorsal fin white except for intrusion of upper part of second black bar and a yellow zone posterior to it. -
New Hosts for Lymphocystis
Gulf and Caribbean Research Volume 6 Issue 2 January 1978 New Hosts for Lymphocystis Adrian W. Lawler Gulf Coast Research Laboratory John T. Ogle Gulf Coast Research Laboratory Chad Donnes Follow this and additional works at: https://aquila.usm.edu/gcr Part of the Marine Biology Commons Recommended Citation Lawler, A. W., J. T. Ogle and C. Donnes. 1978. New Hosts for Lymphocystis. Gulf Research Reports 6 (2): 183-184. Retrieved from https://aquila.usm.edu/gcr/vol6/iss2/11 DOI: https://doi.org/10.18785/grr.0602.11 This Short Communication is brought to you for free and open access by The Aquila Digital Community. It has been accepted for inclusion in Gulf and Caribbean Research by an authorized editor of The Aquila Digital Community. For more information, please contact [email protected]. GulfResearch Reports, Vol. 6, No. 2, 183-184, 1978 NEW HOSTS FOR LYMPHOCYSTIS ADRIAN R. LAWLER, JOHN T. OGLE AND CHAD DONNES Parasitology and Oyster Biology Sections, Gulf Coast Rcsearch Laboratory, Ocean Springs, Mississippi 39564, and Silent World, Gretna, Louisiana 70053 ABSTRACT Lymphocystis disease is reported for thc first time from the Koran angelfish, Pomacanrhus semicirculafus; the Moorish idol, Zanclus canescens; the foureye buttcrflyfish, Cbaetodon capisfratus; and the orbiculate bat fish, Platax orbicularis. Also, lymphocystis is reported the second time from the queen angelfish, Holacanrbus ciliaris. All hosts are commercially important exotic aquarium fishcs. INTRODUCTION small nodules on all fins. The fish had been imported from Lymphocystis is an infectious viral disease of teleosts the Philippines through California, and were heavily infected that causes hypertrophy of connective tissue cells and usu- when received. -
Marine Ecology Progress Series 605:195
The following supplement accompanies the article The effects of shoreline armouring on estuarine fish are contingent upon the broader urbanisation context Thomas W. Brook, Ben L. Gilby*, Andrew D. Olds, Rod M. Connolly, Christopher J. Henderson, Thomas A. Schlacher *Corresponding author: [email protected] Marine Ecology Progress Series 605: 195–206 (2018) Table S1. List of species identified during remote underwater video station surveys, and the habitat association and functional groups to which they were assigned. Missing values in groupings columns denote species that fell into categories that were not analysed in this study. Species without categories for different groupings were from groupings that were not analysed in this study. Species Harvested species Habitat association group Functional group Bengal sergeant Abudefduf bengalensis Structure Scissortail sergeant Abudefduf sexfasciatus Structure Indo-Pacific sergeant Abudefduf vaigiensis Structure Yellowfin bream Acanthopagrus australis Harvested Mangrove Eyestripe surgeonfish Acanthurus dussumeri Structure Estuary perchlet Ambassis marianus Mangroves Zooplanktivore Narrow-lined pufferfish Arothron manilensis Structure Whitespotted pufferfish Arothron meleagris Mangroves Brassy trevally Caranx papuensis Harvested Structure Piscivore Bigeye trevally Caranx sexfasciatus Harvested Structure Piscivore Threadfin butterflyfish Chaetodon Auriga Structure Dusky butterflyfish Chaetodon flavirostris Structure Raccoon butterflyfish Chaetodon lunula Structure Vagabond butterflyfish Chaetodon -
Acoustic Behaviors in Hawaiian Coral Reef Fish Communities
Vol. 511: 1–16, 2014 MARINE ECOLOGY PROGRESS SERIES Published September 24 doi: 10.3354/meps10930 Mar Ecol Prog Ser FREEREE FEATURE ARTICLE ACCESSCCESS Acoustic behaviors in Hawaiian coral reef fish communities Timothy C. Tricas1,2,*, Kelly S. Boyle1,2,3 1Department of Biology (formerly Zoology), 2538 The Mall, Edmondson Hall, University of Hawai’i at Manoa, Honolulu, HI 96822, USA 2Hawai’i Institute of Marine Biology, 46-007 Lilipuna Rd., Kane‘ohe, HI 96744, USA 3Present address: Département d’Ecologie et de Gestion de la Biodiversité, Muséum National d’Histoire Naturelle, 57 rue Cuvier, Case postale 55, 75231, Paris Cedex 5, France ABSTRACT: Coral reef fish communities often include hundreds of sympatric species which are of great inter- est to reef conservation and fisheries managers. Long- term acoustic monitoring of fish sounds can be used to infer periodic reproductive activity and changes in pop- ulation abundance. However, limited records of sound production by coral reef species have precluded the ap- plication of acoustic monitoring at the population or community levels. We used rebreather and digital acoustic/video techniques to produce a sound library for fishes on coral reefs of west Hawai’i Island, HI, USA. We documented 85 sounds produced by 45 (47%) of the 96 resident species that were associated with agonistic interactions and resource defense, reproduction, nest defense, feeding, and vigilance behaviors. Most non- feeding sounds consisted of single or trains of pulse Rebreather divers record sounds produced by coral reef fish events <100 ms long that were distributed across a during resource defense, reproduction, predator avoidance spectrum of <100 to 1000 Hz with the majority of peak and feeding for acoustic monitoring of population activities.