Report on the Deliberation Results December 6, 2010 Evaluation and Licensing Division, Pharmaceutical and Food Safety Bureau

Total Page:16

File Type:pdf, Size:1020Kb

Report on the Deliberation Results December 6, 2010 Evaluation and Licensing Division, Pharmaceutical and Food Safety Bureau Report on the Deliberation Results December 6, 2010 Evaluation and Licensing Division, Pharmaceutical and Food Safety Bureau Ministry of Health, Labour and Welfare [Brand name] Stelara Subcutaneous Injection 45 mg Syringe [Non-proprietary name] Ustekinumab (Genetical Recombination) (JAN*) [Applicant] Janssen Pharmaceutical K.K. [Date of application] January 21, 2010 [Results of deliberation] In the meeting held on November 29, 2010, the Second Committee on New Drugs concluded that the product may be approved and that this result should be presented to the Pharmaceutical Affairs Department of the Pharmaceutical Affairs and Food Sanitation Council. The product is classified as a biological product, the re-examination period is 8 years, and the drug substance and the drug product are both classified as powerful drugs. The conditions for approval should be modified as follows. After modification [Conditions for approval] The applicant is required to: 1. Conduct a post-marketing drug use-results survey, which covers all the patients treated with the product, until data from a certain number of patients will be accumulated, in order to collect data on the safety and efficacy of the product as soon as possible and to take necessary measures to ensure proper use of the product. 2. Conduct a large-scale post-marketing surveillance study to fully evaluate the safety of the product and to investigate the efficacy and long-term safety of the product, including the occurrence of infections, etc. Before modification [Conditions for approval] The applicant is required to: 1. Conduct a post-marketing drug use-results survey, which covers all the patients treated with the product, until data from a certain number of patients will be accumulated, in order to collect data on the safety and efficacy of the product as soon as possible and to take necessary measures to ensure proper use of the product. 2. Conduct a large-scale post-marketing surveillance study to fully evaluate the safety of the product and to investigate the efficacy and long-term safety of the product and the occurrence of infections etc. (The underlined parts are the changes.) This English version of the Japanese review report is intended to be a reference material to provide convenience for users. In the event of inconsistency between the Japanese original and this English translation, the former shall prevail. The PMDA will not be responsible for any consequence resulting from the use of this English version *Japanese Accepted Name (modified INN) This English version of the Japanese review report is intended to be a reference material to provide convenience for users. In the event of inconsistency between the Japanese original and this English translation, the former shall prevail. The PMDA will not be responsible for any consequence resulting from the use of this English version Review Report November 10, 2010 Pharmaceuticals and Medical Devices Agency The results of a regulatory review conducted by the Pharmaceuticals and Medical Devices Agency on the following pharmaceutical product submitted for registration are as follows. [Brand name] Stelara Subcutaneous Injection 45 mg Syringe [Non-proprietary name] Ustekinumab (Genetical Recombination) [Name of applicant] Janssen Pharmaceutical K.K. [Date of application] January 21, 2010 [Dosage form/Strength] A solution for injection in a prefilled syringe. Each prefilled syringe (0.5 mL) contains 45 mg of Ustekinumab (Genetical Recombination). [Application classification] Prescription drug (1) Drug with a new active ingredient [Chemical structure] See Figure 1 and Figure 2 below. Molecular formula: H-chain C2207H3410N582O671S17 L-chain C1034H1596N274O337S6 Molecular weight: 148,079 to 149,690 Chemical name: Ustekinumab is a recombinant human IgG1 monoclonal antibody against the p40 subunit of human interleukin-12 and interleukin-23. Ustekinumab is produced in mouse myeloma (Sp2/0) cells. Ustekinumab is a glycoprotein (molecular weight, 148,079-149,690) composed of 2 H-chain (1-chain) molecules consisting of 449 amino acid residues each and 2 L-chain (-chain) molecules consisting of 214 amino acid residues each. [Items warranting special mention] None [Reviewing office] Office of New Drug IV This English version of the Japanese review report is intended to be a reference material to provide convenience for users. In the event of inconsistency between the Japanese original and this English translation, the former shall prevail. The PMDA will not be responsible for any consequence resulting from the use of this English version Heavy Chain EVQLVQSGAE VKKPGESLKI SCKGSGYSFT TYWLGWVRQM PGKGLDWIGI MSPVDSDIRY 60 22-96 SPSFQGQVTM SVDKSITTAY LQWNSLKASD TAMYYCARRR PGQGYFDFWG QGTLVTVSSS 120 STKGPSVFPL APSSKSTSGG TAALGCLVKD YFPEPVTVSW NSGALTSGVH TFPAVLQSSG 180 146-202 222 228 231 LYSLSSVVTV PSSSLGTQTY ICNVNHKPSN TKVDKRVEPK SCDKTHTCPP CPAPELLGGP 240 LC HC HC N-Glycan SVFLFPPKPK DTLMISRTPE VTCVVVDVSH EDPEVKFNWY VDGVEVHNAK TKPREEQYNS300 263-323 TYRVVSVLTV LHQDWLNGKE YKCKVSNKAL PAPIEKTISK AKGQPREPQV YTLPPSRDEL 360 TKNQVSLTCL VKGFYPSDIA VEWESNGQPE NNYKTTPPVL DSDGSFFLYS KLTVDKSRWQ 420 369-427 QGNVFSCSVM HEALHNHYTQ KSLSLSPGK 449 Light Chain DIQMTQSPSS LSASVGDRVT ITCRASQGIS SWLAWYQQKP EKAPKSLIYA ASSLQSGVPS 60 23-88 RFSGSGSGTD FTLTISSLQP EDFATYYCQQ YNIYPYTFGQ GTKLEIKRTV AAPSVFIFPP 120 SDEQLKSGTA SVVCLLNNFY PREAKVQWKV DNALQSGNSQ ESVTEQDSKD STYSLSSTLT 180 134-194 LSKADYEKHK VYACEVTHQG LSSPVTKSFN RGEC 214 HC Figure 1. Heavy and light chains of ustekinumab Amino acid sequences of the heavy and light chains of ustekinumab are indicated in the single-letter code. Complementarity-determining regions are underlined. H-chain K449: partial processing Figure 2. Carbohydrate structure 4 Review Results November 10, 2010 [Brand name] Stelara Subcutaneous Injection 45 mg Syringe [Non-proprietary name] Ustekinumab (Genetical Recombination) [Name of applicant] Janssen Pharmaceutical K.K. [Date of application] January 21, 2010 [Results of review] Based on the submitted data, the efficacy of the product in the treatment of psoriasis vulgaris and psoriatic arthritis in patients who have had an inadequate response to conventional therapy has been demonstrated and its safety is acceptable in view of its observed benefits. Serious adverse drug reactions such as infections may occur following administration of the product. Therefore, prior to the use of the product, the patient’s symptoms etc. should be monitored closely and the risks and benefits of the product should be weighed carefully. The risks of the product should be fully explained to the patient as well. It is necessary to closely monitor the course of the disease also after the initiation of treatment. After the market launch, a post-marketing surveillance study focusing on the occurrence of serious infections etc., covering all the patients treated with the product, and a long-term survey to follow the patients for the development of infections and malignancy etc. need to be conducted. As a result of its review, the Pharmaceuticals and Medical Devices Agency has concluded that the product may be approved for the indication and the dosage and administration as shown below, with the following conditions. [Indication] Treatment of the following diseases in patients who have had an inadequate response to conventional therapy: Psoriasis vulgaris and psoriatic arthritis [Dosage and administration] The usual initial adult dosage is 45 mg of Ustekinumab (Genetical Recombination) administered subcutaneously, followed 4 weeks later by a 45 mg dose, and then every 12 weeks thereafter. If the effect is insufficient, a dose of 90 mg may be used. [Conditions for approval] The applicant is required to: (1) Conduct a post-marketing drug use-results survey, which covers all the patients treated with the 5 product, until data from a certain number of patients will be accumulated, in order to collect data on the safety and efficacy of the product as soon as possible and to take necessary measures to ensure proper use of the product. (2) Conduct a large-scale post-marketing surveillance study to fully evaluate the safety of the product and to investigate the long-term safety of the product and the occurrence of infections etc. 6 Review Report (1) October 12, 2010 I. Product Submitted for Registration [Brand name] Stelara Subcutaneous Injection 45 mg Syringe [Non-proprietary name] Ustekinumab (Genetical Recombination) [Name of applicant] Janssen Pharmaceutical K.K. [Date of application] January 21, 2010 [Dosage form/Strength] A solution for injection in a prefilled syringe. Each prefilled syringe (0.5 mL) contains 45 mg of Ustekinumab (Genetical Recombination). [Proposed indication] Moderate to severe psoriasis vulgaris Psoriatic arthritis with moderate to severe plaque psoriasis [Proposed dosage and administration] The usual initial adult dosage is 45 mg of Ustekinumab (Genetical Recombination) administered subcutaneously, followed 4 weeks later by a 45 mg dose, and then every 12 weeks thereafter. A dose of 90 mg may be administered in patients weighing >100 kg. II. Summary of the Submitted Data and Outline of Review by the Pharmaceuticals and Medical Devices Agency A summary of the submitted data and the outline of a review by the Pharmaceuticals and Medical Devices Agency (PMDA) are as shown below. 1. Origin or history of discovery and usage conditions in foreign countries etc. The active substance Ustekinumab (Genetical Recombination) (ustekinumab) is a human immunoglobulin G (IgG) 1κ monoclonal antibody (mAb) against human
Recommended publications
  • Pharmacologic Considerations in the Disposition of Antibodies and Antibody-Drug Conjugates in Preclinical Models and in Patients
    antibodies Review Pharmacologic Considerations in the Disposition of Antibodies and Antibody-Drug Conjugates in Preclinical Models and in Patients Andrew T. Lucas 1,2,3,*, Ryan Robinson 3, Allison N. Schorzman 2, Joseph A. Piscitelli 1, Juan F. Razo 1 and William C. Zamboni 1,2,3 1 University of North Carolina (UNC), Eshelman School of Pharmacy, Chapel Hill, NC 27599, USA; [email protected] (J.A.P.); [email protected] (J.F.R.); [email protected] (W.C.Z.) 2 Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; [email protected] 3 Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; [email protected] * Correspondence: [email protected]; Tel.: +1-919-966-5242; Fax: +1-919-966-5863 Received: 30 November 2018; Accepted: 22 December 2018; Published: 1 January 2019 Abstract: The rapid advancement in the development of therapeutic proteins, including monoclonal antibodies (mAbs) and antibody-drug conjugates (ADCs), has created a novel mechanism to selectively deliver highly potent cytotoxic agents in the treatment of cancer. These agents provide numerous benefits compared to traditional small molecule drugs, though their clinical use still requires optimization. The pharmacology of mAbs/ADCs is complex and because ADCs are comprised of multiple components, individual agent characteristics and patient variables can affect their disposition. To further improve the clinical use and rational development of these agents, it is imperative to comprehend the complex mechanisms employed by antibody-based agents in traversing numerous biological barriers and how agent/patient factors affect tumor delivery, toxicities, efficacy, and ultimately, biodistribution.
    [Show full text]
  • Advances in Immunosuppression for Renal Transplantation Antoine Durrbach, Helene Francois, Severine Beaudreuil, Antoine Jacquet and Bernard Charpentier
    REVIEWS Advances in immunosuppression for renal transplantation Antoine Durrbach, Helene Francois, Severine Beaudreuil, Antoine Jacquet and Bernard Charpentier Abstract | The development of immunosuppressants with minimal adverse and nephrotoxic effects is important to improve outcomes, such as acute and chronic antibody-mediated rejection, after organ transplantation. In addition, the application of expanded criteria for donors and transplantation in immunized patients necessitates the development of new therapies. Drug development over the past 10 years has generally been disappointing, but several new promising compounds have been or are being developed to prevent acute and chronic transplant rejection. In this Review, we report on several compounds that have been developed to remove allogenic T cells and/or to inhibit T-cell activation. We also discuss compounds that interfere with antibody-mediated rejection. Durrbach, A. et al. Nat. Rev. Nephrol. 6, 160–167 (2010); published online 2 February 2010; doi:10.1038/nrneph.2009.233 Introduction Renal transplantation has specific features that make or as a result of previous transplantation, has increased it different from transplantation procedures for other over the past decade. In addition, ABO­incompatible organs. For example, outcomes can be affected by grafts are becoming more frequently used. Together, these common states, such as donor and/or recipient age, high factors have led to a rise in the number of ‘immuno logically blood pressure, diabetes mellitus, metabolic disturbances at­risk’ kidney transplantations. Few immunosuppressants (such as high LDL cholesterol) and abnormalities in fluid targeted to B cells have, however, been available to control and electrolyte balance. The kidney is also very sensitive the antibody­mediated response.
    [Show full text]
  • Biologic Armamentarium in Psoriasis
    Vol 9, Issue 1, 2016 ISSN - 0974-2441 Review Article BIOLOGIC ARMAMENTARIUM IN PSORIASIS GANESH PAI1*, NITHIN SASHIDHARAN2 1Medical Director, Derma-Care ‘The Trade Centre’, Mangalore - 575 003, Karnataka, India. 2Consultant Clinical Pharmacologist, Derma-Care ‘The Trade Centre’, Mangalore - 575 003, Karnataka, India. Email: [email protected] Received: 14 July 2015, Revised and Accepted: 24 August 2015 ABSTRACT Psoriasis is an autoimmune disease and further classed as a chronic inflammatory skin condition serving as a global burden. A moderate to severe psoriasis can be treated with conventional therapies. Less efficacy, poor patient compliance, and toxicity issues were the major problems associated with conventional therapies. The introduction of biologic therapy has a great impression on psoriatic treatment duration and enhanced quality of life in psoriasis patients. The new biologic therapies are tailor-made medications with the goal of more specific and effective treatment; less toxicity. The biologic therapy is aimed to target antigen presentation and co-stimulation, T-cell activation, and leukocyte adhesion; and pro-inflammatory cascade. They act as effective and safer substitute to traditional therapy. Secukinumab, certolizumab, itolizumab, golimumab, ustekinumab, adalimumab, infliximab etanercept, alefacept, etc. are the approved biologic with the global market. This review briefs about psoriasis pathogenesis, traditional treatments, and biologic therapies potential. Keywords: Psoriasis, Biologic, Non-biologic treatment. INTRODUCTION migration, potentiation of Th1 type of response, angiogenesis, and epidermal hyperplasia [7]. Psoriasis is an autoimmune disease and further classed as a chronic inflammatory skin condition with prevalence ranging 1-3% in the TNF- is plays vital role in the pathogenesis of psoriasis. It acts by world [1].
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2017/0209462 A1 Bilotti Et Al
    US 20170209462A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2017/0209462 A1 Bilotti et al. (43) Pub. Date: Jul. 27, 2017 (54) BTK INHIBITOR COMBINATIONS FOR Publication Classification TREATING MULTIPLE MYELOMA (51) Int. Cl. (71) Applicant: Pharmacyclics LLC, Sunnyvale, CA A 6LX 3/573 (2006.01) A69/20 (2006.01) (US) A6IR 9/00 (2006.01) (72) Inventors: Elizabeth Bilotti, Sunnyvale, CA (US); A69/48 (2006.01) Thorsten Graef, Los Altos Hills, CA A 6LX 3/59 (2006.01) (US) A63L/454 (2006.01) (52) U.S. Cl. CPC .......... A61 K3I/573 (2013.01); A61K 3 1/519 (21) Appl. No.: 15/252,385 (2013.01); A61 K3I/454 (2013.01); A61 K 9/0053 (2013.01); A61K 9/48 (2013.01); A61 K (22) Filed: Aug. 31, 2016 9/20 (2013.01) (57) ABSTRACT Disclosed herein are pharmaceutical combinations, dosing Related U.S. Application Data regimen, and methods of administering a combination of a (60) Provisional application No. 62/212.518, filed on Aug. BTK inhibitor (e.g., ibrutinib), an immunomodulatory agent, 31, 2015. and a steroid for the treatment of a hematologic malignancy. US 2017/0209462 A1 Jul. 27, 2017 BTK INHIBITOR COMBINATIONS FOR Subject in need thereof comprising administering pomalido TREATING MULTIPLE MYELOMA mide, ibrutinib, and dexamethasone, wherein pomalido mide, ibrutinib, and dexamethasone are administered con CROSS-REFERENCE TO RELATED currently, simulataneously, and/or co-administered. APPLICATION 0008. In some aspects, provided herein is a method of treating a hematologic malignancy in a subject in need 0001. This application claims the benefit of U.S.
    [Show full text]
  • International Standards for the Treatment of Drug Use Disorders
    "*+,-.*--- -!"#$%&-'",()0"ÿ23 45 "6789!"7(@&A($!7,0B"67$!C#+D"%"*+,9779C&B"!7%EE F33"*+,-.*--- -!"#$%&-'",()0" International standards for the treatment of drug use disorders REVISED EDITION INCORPORATING RESULTS OF FIELD-TESTING International standards for the treatment of drug use disorders: revised edition incorporating results of field-testing ISBN 978-92-4-000219-7 (electronic version) ISBN 978-92-4-000220-3 (print version) © World Health Organization and United Nations Office on Drugs and Crime, 2020 Some rights reserved. This work is available under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 IGO licence (CC BY-NC-SA 3.0 IGO; https://creativecommons. org/licenses/by-nc-sa/3.0/igo). Under the terms of this license, you may copy, redistribute and adapt the work for non-commercial purposes, provided the work is appropriately cited, as indicated below. In any use of this work, there should be no suggestion that WHO or UNODC endorses any specific organization, products or services. The unauthorized use of the WHO or UNODC names or logos is not permitted. If you adapt the work, then you must license your work under the same or equivalent Creative Commons license. If you create a translation of this work, you should add the following disclaimer along with the suggested citation: “This translation was not created by the World Health Organization (WHO) or the United Nations Office on Drugs and Crime (UNODC). Neither WHO nor UNODC are responsible for the content or accuracy of this translation. The original English edition shall be the binding and authentic edition”. Any mediation relating to disputes arising under the license shall be conducted in accordance with the mediation rules of the World Intellectual Property Organization (http://www.
    [Show full text]
  • Review Anti-Cytokine Biologic Treatment Beyond Anti-TNF in Behçet's Disease
    Review Anti-cytokine biologic treatment beyond anti-TNF in Behçet’s disease A. Arida, P.P. Sfikakis First Department of Propedeutic Internal ABSTRACT and thrombotic complications (1-3). Medicine Laikon Hospital, Athens, Unmet therapeutic needs in Behçet’s Treatment varies according to type and University Medical School, Greece. disease have drawn recent attention to severity of disease manifestations. Cor- Aikaterini Arida, MD biological agents targeting cytokines ticosteroids, interferon-alpha and con- Petros P. Sfikakis, MD other than TNF. The anti-IL-17 anti- ventional immunosuppressive drugs, Please address correspondence to: body secukinumab and the anti-IL-2 such as azathioprine, cyclosporine-A, Petros P. Sfikakis, MD, receptor antibody daclizumab were not cyclophosphamide and methotrexate, First Department of Propedeutic superior to placebo for ocular Behçet’s and Internal Medicine, are used either alone or in combination Laikon Hospital, in randomised controlled trials, com- for vital organ involvement. During the Athens University Medical School, prising 118 and 17 patients, respec- last decade there has been increased use Ag Thoma, 17, tively. The anti-IL-1 agents anakinra of anti-TNF monoclonal antibodies in GR-11527 Athens, Greece. and canakinumab and the anti-IL-6 patients with BD who were refractory E-mail: [email protected] agent tocilizumab were given to iso- to conventional treatment or developed Received on June 7, 2014; accepted in lated refractory disease patients, who life-threatening complications (4, 5). revised form on September 17, 2014. were either anti-TNF naïve (n=9) or Anti-TNF treatment has been shown to Clin Exp Rheumatol 2014; 32 (Suppl. 84): experienced (n=18).
    [Show full text]
  • Running Head: PHARMACOLOGICAL TREATMENT for METHAMPHETAMINE
    Running head: PHARMACOLOGICAL TREATMENT FOR METHAMPHETAMINE PHARMACOLOGICAL TREATMENT FOR METHAMPHETAMINE DEPENDENCE By BRINN CULVER A project submitted in partial fulfillment of the requirements for the degree of MASTER OF NURSING WASHINGTON STATE UNIVERSITY Department of Nursing APRIL 2014 PHARMACOLOGICAL TREATMENT FOR METHAMPHETAMINE ii To the Faculty of Washington State University: The members of the Committee appointed to examine the dissertation/thesis of BRINN CULVER find it satisfactory and recommend that it be accepted. Julie DeWitt-Kamada, DNP, ARNP, PMHNP Chair Anne Mason, DNP, ARNP, PMHNP Dawn Rondeau, DNP, ACNP, FNP PHARMACOLOGICAL TREATMENT FOR METHAMPHETAMINE iii PHARMACOLOGICAL TREATMENT FOR METHAMPHETAMINE DEPENDENCE Abstract By Brinn Culver Washington State University April 2014 Chair: Julie DeWitt-Kamada Methamphetamine (MA) is a highly addictive drug whose abuse causes widespread global consequences. The negative impact of MA use on individuals and communities warrants its consideration as a public health concern. MA has a complicated pharmacological action, and chronic use results in neurological dysfunction, including deficits in dopamine. Changes in dopaminergic function make treatment of MA dependence especially challenging, and the mainstay treatment of psychotherapy is insufficient in addressing dopamine deficit. Pharmacological treatments are being explored, but no medication has attained Federal Drug Administration approval, as it requires proof of achieving abstinence. From a harm reduction standpoint, several
    [Show full text]
  • Challenges and Approaches for the Development of Safer Immunomodulatory Biologics
    REVIEWS Challenges and approaches for the development of safer immunomodulatory biologics Jean G. Sathish1*, Swaminathan Sethu1*, Marie-Christine Bielsky2, Lolke de Haan3, Neil S. French1, Karthik Govindappa1, James Green4, Christopher E. M. Griffiths5, Stephen Holgate6, David Jones2, Ian Kimber7, Jonathan Moggs8, Dean J. Naisbitt1, Munir Pirmohamed1, Gabriele Reichmann9, Jennifer Sims10, Meena Subramanyam11, Marque D. Todd12, Jan Willem Van Der Laan13, Richard J. Weaver14 and B. Kevin Park1 Abstract | Immunomodulatory biologics, which render their therapeutic effects by modulating or harnessing immune responses, have proven their therapeutic utility in several complex conditions including cancer and autoimmune diseases. However, unwanted adverse reactions — including serious infections, malignancy, cytokine release syndrome, anaphylaxis and hypersensitivity as well as immunogenicity — pose a challenge to the development of new (and safer) immunomodulatory biologics. In this article, we assess the safety issues associated with immunomodulatory biologics and discuss the current approaches for predicting and mitigating adverse reactions associated with their use. We also outline how these approaches can inform the development of safer immunomodulatory biologics. Immunomodulatory Biologics currently represent more than 30% of licensed The high specificity of the interactions of immu- biologics pharmaceutical products and have expanded the thera- nomodulatory biologics with their relevant immune Biotechnology-derived peutic options available
    [Show full text]
  • Biological Therapies for Atopic Dermatitis: an Update (Review)
    EXPERIMENTAL AND THERAPEUTIC MEDICINE 17: 1061-1067, 2019 Biological therapies for atopic dermatitis: An update (Review) DIANA DELEANU1-3 and IRENA NEDELEA1,2 1Allergology and Immunology Discipline, ‘Iuliu Hatieganu’ University of Medicine and Pharmacy, 400058 Cluj-Napoca; Departments of 2Allergy and 3Internal Medicine, ‘Professor Doctor Octavian Fodor’ Regional Institute of Gastroenterology and Hepatology, 400162 Cluj-Napoca, Romania Received July 6, 2018; Accepted August 22, 2018 DOI: 10.3892/etm.2018.6989 Abstract. Severe atopic dermatitis, which affects both adults in low-income countries (3). Furthermore, the past decades and children, is a debilitating disorder with a significant decline brought a 2-3-fold increase in prevalence in industrialized of patients' quality of life. Although aetiopathogenic factors countries (3). Generally AD onset is in early childhood, as are currently a topic of study and interpretation, the main one of the first steps of the ‘atopic march’, which describes the features of atopic eczema are skin barrier disturbance and natural history of atopic manifestations, and it is character- immune dysregulation. Severe refractory disease that fails to ized by xerotic skin and acute flare-ups of intensely pruritic improve with conventional therapy may benefit from biologic eczematous lesions (4). Recent studies recognize a predilection therapy. Progress in understanding immunopathology of atopic of AD for persistence in adulthood, with a lifetime prevalence dermatitis have allowed identification of therapeutic molecular accounting for 34.1% (5). Early onset, allergic rhinitis and targets in the field of biological therapy. We reviewed the hand eczema in childhood are high-risk factors for persistent different biological treatments with a focus on novel targeted AD (5).
    [Show full text]
  • Alefacept for Severe Alopecia Areata a Randomized, Double-Blind, Placebo-Controlled Study
    STUDY Alefacept for Severe Alopecia Areata A Randomized, Double-blind, Placebo-Controlled Study Bruce E. Strober, MD, PhD; Kavita Menon, MD; Amy McMichael, MD; Maria Hordinsky, MD; Gerald Krueger, MD; Jackie Panko, MD; Kimberly Siu, MD; Jonathan L. Lustgarten, PhD; Elizabeth K. Ross, MD; Jerry Shapiro, MD Objective: To assess the efficacy of alefacept for the treat- istration–approved T-cell biologic inhibitor for the treat- ment of severe alopecia areata (AA). ment of moderate to severe plaque psoriasis. Design: Multicenter, double-blind, randomized, placebo- Main Outcome Measure: Improved Severity of Alo- controlled clinical trial. pecia Tool (SALT) score over 24 weeks. Results: Participants receiving alefacept for 12 consecu- Setting: Academic departments of dermatology in the tive weeks demonstrated no statistically significant im- United States. provement in AA when compared with a well-matched placebo-receiving group (P =.70). Participants: Forty-five individuals with chronic and severe AA affecting 50% to 95% of the scalp hair and re- Conclusion: Alefacept is ineffective for the treatment of sistant to previous therapies. severe AA. Intervention: Alefacept, a US Food and Drug Admin- Arch Dermatol. 2009;145(11):1262-1266 LOPECIA AREATA (AA) IS A lesions of AA are transplanted into mice chronic, potentially revers- with severe combined immunodefi- ible autoimmune skin dis- ciency that lack T lymphocytes, hair ease characterized by non- growth may resume, further confirming scarring patchy hair loss the potential pathogenic role of T lym- Ainvolving any hair-bearing surface.1 Alo- phocytes.8 pecia areata often causes considerable emo- Treatment options for more severe pre- tional distress and has limited treatment sentations of AA are limited, and neither Author Affiliations: options.
    [Show full text]
  • Anticorps FR-EN 110X90.Indd
    MONOCLONAL ANTIBODIES and Fc fusion proteins for therapeutic use DISTRIBUTION OF INTERNATIONAL NONPROPRIETARY NAMES BY INDICATION SOLID TUMORS RHUMATOLOGY PNEUMOLOGY Lung cancer bevacizumab Rheumatoid arthritis etanercept Allergic asthma omalizumab nivolumab infliximab Severe eosinophilic asthma mepolizumab necitumumab adalimumab reslizumab atezolizumab rituximab Colorectal cancer bevacizumab abatacept TRANSPLANTATION cetuximab tocilizumab Transplant rejection basiliximab panitumumab certolizumab pegol belatacept aflibercept golimumab Graft versus host disease inolimomab Bladder cancer atezolizumab Psoriatic arthritis etanercept Breast cancer trastuzumab adalimumab OPHTALMOLOGY bevacizumab infliximab Age related macular ranibizumab pertuzumab golimumab degeneration aflibercept trastuzumab entansine ustekinumab bevacizumab Gastric cancer trastuzumab certolizumab pegol Macular edema ranibizumab ramucirumab secukinumab aflibercept Head and neck cancer cetuximab Ankylosing spondylitis infliximab Myopic choroidal ranibizumab Ovarian cancer bevacizumab etanercept neovascularization aflibercept Fallopian tube cancer bevacizumab adalimumab Cervical cancer bevacizumab golimumab HAEMOSTASIS AND THROMBOSIS Kidney cancer bevacizumab certolizumab pegol nivolumab secukinumab Haemophilia A efmoroctocog α Melanoma ipilimumab Juvenile arthritis etanercept Haemophilia B eftrenonacog α nivolumab adalimumab Reversal of dabigatran idarucizumab Idiopathic thrombocytopenic pembrolizumab abatacept romiplostim Neuroblastoma dinutuximab tocilizumab purpura Malignant
    [Show full text]
  • DEMAND REDUCTION a Glossary of Terms
    UNITED NATIONS PUBLICATION Sales No. E.00.XI.9 ISBN: 92-1-148129-5 ACKNOWLEDGEMENTS This document was prepared by the: United Nations International Drug Control Programme (UNDCP), Vienna, Austria, in consultation with the Commonwealth of Health and Aged Care, Australia, and the informal international reference group. ii Contents Page Foreword . xi Demand reduction: A glossary of terms . 1 Abstinence . 1 Abuse . 1 Abuse liability . 2 Action research . 2 Addiction, addict . 2 Administration (method of) . 3 Adverse drug reaction . 4 Advice services . 4 Advocacy . 4 Agonist . 4 AIDS . 5 Al-Anon . 5 Alcohol . 5 Alcoholics Anonymous (AA) . 6 Alternatives to drug use . 6 Amfetamine . 6 Amotivational syndrome . 6 Amphetamine . 6 Amyl nitrate . 8 Analgesic . 8 iii Page Antagonist . 8 Anti-anxiety drug . 8 Antidepressant . 8 Backloading . 9 Bad trip . 9 Barbiturate . 9 Benzodiazepine . 10 Blood-borne virus . 10 Brief intervention . 11 Buprenorphine . 11 Caffeine . 12 Cannabis . 12 Chasing . 13 Cocaine . 13 Coca leaves . 14 Coca paste . 14 Cold turkey . 14 Community empowerment . 15 Co-morbidity . 15 Comprehensive Multidisciplinary Outline of Future Activities in Drug Abuse Control (CMO) . 15 Controlled substance . 15 Counselling and psychotherapy . 16 Court diversion . 16 Crash . 16 Cross-dependence . 17 Cross-tolerance . 17 Custody diversion . 17 Dance drug . 18 Decriminalization or depenalization . 18 Demand . 18 iv Page Demand reduction . 19 Dependence, dependence syndrome . 19 Dependence liability . 20 Depressant . 20 Designer drug . 20 Detoxification . 20 Diacetylmorphine/Diamorphine . 21 Diuretic . 21 Drug . 21 Drug abuse . 22 Drug abuse-related harm . 22 Drug abuse-related problem . 22 Drug policy . 23 Drug seeking . 23 Drug substitution . 23 Drug testing . 24 Drug use .
    [Show full text]