ANTIBIOTIC INHIBITION of CATALYTIC RNA FUNCTION by Jeff

Total Page:16

File Type:pdf, Size:1020Kb

ANTIBIOTIC INHIBITION of CATALYTIC RNA FUNCTION by Jeff ANTIBIOTIC INHIBITION OF CATALYTIC RNA FUNCTION by Jeff Rogers B.Sc. (Honours), University of Regina, 1991 A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY in THE FACULTY OF GRADUATE STUDIES (DEPARTMENT OF MICROBIOLOGY AND IMMUNOLOGY) We accept this thesis as conforming to the required standard THE UNIVERSITY OF BRITISH COLUMBIA August 1996 ©Jeff Rogers, 1996 In presenting this thesis in partial fulfilment of the requirements for an advanced degree at the University of British Columbia, I agree that the Library shall make it freely available for reference and study. I further agree that permission for extensive copying of this thesis for scholarly purposes may be granted by the head of my department or by his or her representatives. It is understood that copying or publication of this thesis for financial gain shall not be allowed without my written permission. Department The University of British Columbia Vancouver, Canada DE-6 (2/88) ii ABSTRACT A number of compounds inhibit group I intron splicing. Competitive inhibitors include deoxyguanosine, dideoxyguanosine, arginine and streptomycin; the non-competitive inhibitors include members of the aminoglycoside family of antibiotics. Further screening of a collection of antibiotics for their ability to inhibit group I intron splicing identified several novel compounds. In particular, the pseudodisaccharide antibiotic lysinomicin, the peptide antibiotics netropsin and distamycin, and the tetracycline analog chelocardin, were found to inhibit group I intron splicing at concentrations of 250 pM or lower. Inhibition of group I intron splicing by pseudodisaccharide antibiotics was studied in detail. Lysinomicin and three closely related compounds were found to inhibit the self splicing reaction of the Tetrahymena, Bacillus phage SP01 and T4 phage td and sun 7 group I introns at concentrations less than 50 u.M. Lysinomicin competitively inhibited sunY intron splicing with a Kj of 8.5 pM (+/- 5 u,M). The pseudodisaccharides were also shown to interact at the A-site on the ribosome, as Escherichia coli strains resistant to neomycin, which binds to the ribosomal A- site, were also resistant to the pseudodisaccharides. To further examine antibiotic/ribozyme interactions, antibiotic inhibition of a second ribozyme system, the human hepatitis delta virus (HDV) ribozyme, was examined. The small size (150 nucleotides) of this ribozyme and the fact that it lacks a guanosine binding site (the proposed site of interaction of inhibitors of group I intron splicing) made it a good candidate for detailed studies of antibiotic/ribozyme interactions. The antibiotics that have been shown to inhibit group I intron splicing were found to inhibit the HDV genomic and antigenomic iii ribozymes. Kinetic analysis showed that neomycin competes with magnesium binding to the ribozyme with a Kj of 28 uM (+/- 10 uM). Lead cleavage also suggested that neomycin inhibits the self-cleavage reaction of the HDV ribozyme by competing with divalent cation binding. Footprint analysis also supported this hypothesis as neomycin binds HDV RNA near the cleavage site. I propose that the binding of neomycin to several different RNAs (Rev Responsive Element, 16S rRNA, and the hammerhead, group I intron and HDV ribozymes) may be due to neomycin recognition of divalent cation binding site(s) in these RNAs. iv TABLE OF CONTENTS ABSTRACT TABLE OF CONTENTS LIST OF TABLES LIST OF FIGURES vii ABBREVIATIONS ix ACKNOWLEDGMENTS x INTRODUCTION 1 MATERIALS AND METHODS 12 a. Bacterial strains and growth conditions 12 b. Antibiotic inhibition assays 12 c. Plasmids 12 d. DNA manipulations 15 e. In vitro transcription 15 f. Polyacrylamide gel electrophoresis 16 g. RNA purification and elution 17 h. Group I intron splicing assay and antibiotic screening 17 i. Kinetic analysis of group I intron inhibition by antibiotics 18 j. Hepatitis Delta Virus cleavage assay and antibiotic screening 19 k. The kinetics of antibiotic inhibition of the HDV ribozyme 19 self-cleavage reaction 1. 5' -(a-thio)triphosphate incorporation transcription and 20 iodine cleavage m. 5' end labeling of HDV ribozyme RNA 21 n. 3'end labeling of HDV ribozyme RNA 21 o. Pb++ cleavage of the HDV ribozyme 21 p. Chemical modification of HDV ribozyme RNA 22 q. Reverse transcription of HDV RNA 23 RESULTS 24 Chapter 1. Identification of antibiotics which inhibit group I intron splicing 24 a. Screening for antibiotics which inhibit group I intron splicing 24 b. Netropsin 27 c. Chelocardin 33 d. Lysinomicin 36 V Chapter 2. Analysis of pseudodisaccharide inhibition of group I intron splicing 37 a. Pseudodisaccharides competitively inhibit group I intron 37 splicing in vitro b. The effect of lysinomicin on other group I introns 40 c. Antimicrobial activity of lysinomicins 44 Chapter 3. Competitive inhibition of group I intron splicing by the 47 tuberactinomycin antibiotics a. Viomycin inhibits group I intron splicing 47 b. Peptide antibiotics of the tuberactinomycin family inhibit 47 group I intron splicing c. Structure/function relationships of tuberactinomycin inhibition 51 of group I intron splicing Chapter 4. Inhibition of the self-cleavage reaction of the hepatitis delta virus 52 ribozyme a. Specific antibiotics inhibit HDV self cleavage 52 b. Kinetic analysis of antibiotic inhibition of self cleavage 55 c. Effect of pH on antibiotic inhibition of self cleavage 58 d. Lead cleavage analysis of the HDV ribozyme 62 e. Footprint analysis of neomycin binding to the HDV ribozyme 68 DISCUSSION 75 a. Specificity of antibiotic inhibition of ribozyme function 75 b. Competitive inhibition of group I intron splicing by lysinomicin 78 c. Antibiotic inhibition of the HDV ribozyme 79 d. Searching for the divalent cation binding site(s) of the HDV 80 ribozyme e. A model for neomycin inhibition of ribozyme function 82 f. Antibiotics and their interactions with RNA: evolutionary and 85 clinical implications REFERENCES 88 vi LIST OF TABLES Table 1. Plasmids 14 Table 2. Compounds screened for ability to inhibit group I intron splicing 28 Table 3. Error in the slopes of the lines from the Lineweaver-Burk plot 42 of Fig. 7a Table 4. Antimicrobial activity of the lysinomicins 46 Table 5. Tuberactinomycin antibiotics and group I intron splicing 49 Table 6. Comparison of the effect of antibiotics on group I and HDV 54 ribozymes Table 7. Effect of pH on antibiotic inhibition of the HDV ribozyme 61 Table 8. Analysis of HDV RNA treated with dimethyl sulfate (followed 72 by aniline cleavage) in the presence and absence of neomycin and paromomycin Table 9. The eight classes of ribozyme inhibitors 76 Vll LIST OF FIGURES Figure 1. Group I introns 4 a. Group I intron splicing mechanism b. Group I intron secondary structure Figure 2. The hammerhead ribozyme self-cleavage pathway 9 Figure 3. Screening antibiotics for inhibition of group I intron splicing a. Tetrahymena group I intron 25 b. Bacillus phage group I intron 26 Figure 4. a. Structure of chelocardin 34 b. Structure of neomycin and related antibiotics • . 34 c. Structure of lysinomicin and related antibiotics 35 Figure 5. Lysinomicin inhibits group I intron splicing 38 Figure 6. Pseudodisaccharides inhibit group I intron splicing 39 Figure 7. Kinetic analysis of lysinomicin inhibition of group I intron 41 splicing a. Lineweaver-Burk plot b. Slopes of Lineweaver-Burk plot vs. concentration of lysinomicin Figure 8. Lysinomicins inhibit different group I introns 43 Figure 9. Structures of the tuberactinomycin antibiotics 48 Figure 10. Peptide antibiotics of the tuberactinomycin family inhibit 50 group I intron splicing Figure 11. The secondary structure of the HDV genomic and antigenomic 53 ribozymes Figure 12. Several antibiotics inhibit the human hepatitis delta virus 56 self-cleavage reaction a. Antibiotics and the genomic HDV ribozyme at 37° b. Antibiotics and the genomic HDV ribozyme at 95° c. Antibiotics and the antigenomic HDV ribozyme at 95 ° Figure 13. The effect of magnesium on HDV self-cleavage and neomycin 57 inhibition of HDV self-cleavage Figure 14. Determination of the Kj for neomycin inhibition of the HDV 59 ribozyme Figure 15. The effect of pH on neomycin, viomycin and chelocardin 60 inhibition of HDV self-cleavage Figure 16. Lead cleavage of the HDV genomic ribozyme 63 a. Competition with divalent cations 64 b. Competition with antibiotics 65 Figure 17. Three dimensional model of the proposed divalent cation 67 binding sites in HDV RNA Figure 18. Reverse transcription of dimethyl sulfate and kethoxal treated 70 HDV RNA (in the presence and absence of neomycin and paromomycin) Figure 19. Three dimensional representation of chemical modification 74 viii studies in HDV RNA (in stereo) Figure 20. Summary of the lead cleavage and footprinting experiments 84 with the HDV ribozyme (secondary structure) ix ABBREVIATIONS ATP adenosine triphosphate cpm counts per minute CTP cytidine triphosphate DEPC diethyl pyrocarbonate DMS dimethylsulfate DNA deoxyribonucleic acid DTT dithiothreitol El 5' exon E1-E2 ligatedexons E2 3' exon EDTA ethylenediaminetetraacetic acid EtOH ethanol F fraction of HDV ribozyme cleaved GTP guanosine triphosphate HDV hepatitis delta virus HEPES (N-[2-Hydroxyethyl]piperazine-N'-[2-ethanesulfonic acid]) HIV human immunodeficiency virus I linear intron I-E2 intron-3' exon k reaction rate constant (min"1) K; inhibition constant KM Michaelis-Menten constant KMg the magnesium concentration where the HDV self-cleavage reaction is proceeding at 1/2 its maximal rate LB Luria-Bertani
Recommended publications
  • Treatment Outcomes of Adjunctive Surgery in Multidrug-Resistant And
    MOJ Surgery Opinion Open Access Treatment outcomes of adjunctive surgery in multidrug-resistant and extensively drug-resistant tuberculosis Opinion Volume 5 Issue 2 - 2017 In 2013, the World Health Organization (WHO) reported that 3.5% and 20.5% of new and previously treated tuberculosis (TB) Attapon Cheepsattayakorn,1,2 Ruangrong cases were multidrug-resistant tuberculosis (MDR-TB, resistant 3 to both isoniazid and rifampicin), respectively, and 9.0% of them Cheepsattayakorn 1 developed extensively drug-resistant tuberculosis (XDR-TB, resistant 10th Zonal Tuberculosis and Chest Disease Center, Chiang Mai, Thailand to isoniazid, rifampicin, a fluoroquinolone, and 1 or greater injectable 2Department of Disease Control, Ministry of Public Health, agent). The WHO has estimated a global prevalence of 660,000 cases Thailand of MDR-TB and 150,000 MDR-TB related deaths annually. A previous 3Department of Pathology, Faculty of Medicine, Chiang Mai multi-country study revealed that among 1,278 MDR-TB cases, University, Thailand around 7% had XDR-TB. Only 136,000 MDR-TB cases (45.3%) Correspondence: Attapon Cheepsattayakorn, 10th Zonal among estimated 300,000 MDR-TB cases have been diagnosed and Tuberculosis and Chest Disease Center, 143 Sridornchai Road 97,000 cases (32.3%) are treated using appropriate regimens based on Changklan Muang Chiang Mai 50100 Thailand , Tel 66-531-407- drug susceptibility testing (DST). In 2013, the treatment success rate 67, 66 5-327-636-4, Fax 665-314-077-3, 665-327-359-0, of MDR-TB is only 48.0%; around 47,000 cases improved clinically Email [email protected]; [email protected] and biologically.
    [Show full text]
  • Federal Register / Vol. 60, No. 80 / Wednesday, April 26, 1995 / Notices DIX to the HTSUS—Continued
    20558 Federal Register / Vol. 60, No. 80 / Wednesday, April 26, 1995 / Notices DEPARMENT OF THE TREASURY Services, U.S. Customs Service, 1301 TABLE 1.ÐPHARMACEUTICAL APPEN- Constitution Avenue NW, Washington, DIX TO THE HTSUSÐContinued Customs Service D.C. 20229 at (202) 927±1060. CAS No. Pharmaceutical [T.D. 95±33] Dated: April 14, 1995. 52±78±8 ..................... NORETHANDROLONE. A. W. Tennant, 52±86±8 ..................... HALOPERIDOL. Pharmaceutical Tables 1 and 3 of the Director, Office of Laboratories and Scientific 52±88±0 ..................... ATROPINE METHONITRATE. HTSUS 52±90±4 ..................... CYSTEINE. Services. 53±03±2 ..................... PREDNISONE. 53±06±5 ..................... CORTISONE. AGENCY: Customs Service, Department TABLE 1.ÐPHARMACEUTICAL 53±10±1 ..................... HYDROXYDIONE SODIUM SUCCI- of the Treasury. NATE. APPENDIX TO THE HTSUS 53±16±7 ..................... ESTRONE. ACTION: Listing of the products found in 53±18±9 ..................... BIETASERPINE. Table 1 and Table 3 of the CAS No. Pharmaceutical 53±19±0 ..................... MITOTANE. 53±31±6 ..................... MEDIBAZINE. Pharmaceutical Appendix to the N/A ............................. ACTAGARDIN. 53±33±8 ..................... PARAMETHASONE. Harmonized Tariff Schedule of the N/A ............................. ARDACIN. 53±34±9 ..................... FLUPREDNISOLONE. N/A ............................. BICIROMAB. 53±39±4 ..................... OXANDROLONE. United States of America in Chemical N/A ............................. CELUCLORAL. 53±43±0
    [Show full text]
  • Wo 2008/127291 A2
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (43) International Publication Date PCT (10) International Publication Number 23 October 2008 (23.10.2008) WO 2008/127291 A2 (51) International Patent Classification: Jeffrey, J. [US/US]; 106 Glenview Drive, Los Alamos, GOlN 33/53 (2006.01) GOlN 33/68 (2006.01) NM 87544 (US). HARRIS, Michael, N. [US/US]; 295 GOlN 21/76 (2006.01) GOlN 23/223 (2006.01) Kilby Avenue, Los Alamos, NM 87544 (US). BURRELL, Anthony, K. [NZ/US]; 2431 Canyon Glen, Los Alamos, (21) International Application Number: NM 87544 (US). PCT/US2007/021888 (74) Agents: COTTRELL, Bruce, H. et al.; Los Alamos (22) International Filing Date: 10 October 2007 (10.10.2007) National Laboratory, LGTP, MS A187, Los Alamos, NM 87545 (US). (25) Filing Language: English (81) Designated States (unless otherwise indicated, for every (26) Publication Language: English kind of national protection available): AE, AG, AL, AM, AT,AU, AZ, BA, BB, BG, BH, BR, BW, BY,BZ, CA, CH, (30) Priority Data: CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, 60/850,594 10 October 2006 (10.10.2006) US ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, (71) Applicants (for all designated States except US): LOS LR, LS, LT, LU, LY,MA, MD, ME, MG, MK, MN, MW, ALAMOS NATIONAL SECURITY,LLC [US/US]; Los MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL, Alamos National Laboratory, Lc/ip, Ms A187, Los Alamos, PT, RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, SV, SY, NM 87545 (US).
    [Show full text]
  • Molecular Mechanism of Viomycin Inhibition of Peptide Elongation in Bacteria
    Molecular mechanism of viomycin inhibition of peptide elongation in bacteria Mikael Holma, Anneli Borga, Måns Ehrenberga, and Suparna Sanyala,1 aDepartment of Cell and Molecular biology, Uppsala University, 75124 Uppsala, Sweden Edited by Joseph D. Puglisi, Stanford University School of Medicine, Stanford, CA, and approved December 16, 2015 (received for review September 2, 2015) Viomycin is a tuberactinomycin antibiotic essential for treating multi- activity of viomycin in genetic code translation (6) and its stabilization drug-resistant tuberculosis. It inhibits bacterial protein synthesis by of peptidyl tRNA in the A site (24). blocking elongation factor G (EF-G) catalyzed translocation of messen- In this study we used rapid kinetics methods in a state-of-the-art ger RNA on the ribosome. Here we have clarified the molecular aspects in vitro translation system with in vivo-like rates (25, 26) to charac- of viomycin inhibition of the elongating ribosome using pre-steady- terize the mechanism of viomycin inhibition of the peptide elongation state kinetics. We found that the probability of ribosome inhibition by cycle. We constructed a quantitative model for viomycin action with viomycin depends on competition between viomycin and EF-G for precise estimates of the model parameters. This model quantifies the binding to the pretranslocation ribosome, and that stable viomycin functional aspects of viomycin inhibition of translocation. It paves the binding requires an A-site bound tRNA. Once bound, viomycin stalls the way for deeper understanding of the basis of the antimicrobial activity ribosome in a pretranslocation state for a minimum of ∼45 s. This of viomycin and the evolution of viomycin resistance, thereby stalling time increases linearly with viomycin concentration.
    [Show full text]
  • Stembook 2018.Pdf
    The use of stems in the selection of International Nonproprietary Names (INN) for pharmaceutical substances FORMER DOCUMENT NUMBER: WHO/PHARM S/NOM 15 WHO/EMP/RHT/TSN/2018.1 © World Health Organization 2018 Some rights reserved. This work is available under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 IGO licence (CC BY-NC-SA 3.0 IGO; https://creativecommons.org/licenses/by-nc-sa/3.0/igo). Under the terms of this licence, you may copy, redistribute and adapt the work for non-commercial purposes, provided the work is appropriately cited, as indicated below. In any use of this work, there should be no suggestion that WHO endorses any specific organization, products or services. The use of the WHO logo is not permitted. If you adapt the work, then you must license your work under the same or equivalent Creative Commons licence. If you create a translation of this work, you should add the following disclaimer along with the suggested citation: “This translation was not created by the World Health Organization (WHO). WHO is not responsible for the content or accuracy of this translation. The original English edition shall be the binding and authentic edition”. Any mediation relating to disputes arising under the licence shall be conducted in accordance with the mediation rules of the World Intellectual Property Organization. Suggested citation. The use of stems in the selection of International Nonproprietary Names (INN) for pharmaceutical substances. Geneva: World Health Organization; 2018 (WHO/EMP/RHT/TSN/2018.1). Licence: CC BY-NC-SA 3.0 IGO. Cataloguing-in-Publication (CIP) data.
    [Show full text]
  • Doctoral Thesis
    CHARLES UNIVERSITY IN PRAGUE FACULTY OF PHARMACY IN HRADEC KRÁLOVÉ Doctoral Thesis 2011 Martin Krátký Charles University in Prague Faculty of Pharmacy in Hradec Králové Department of Inorganic and Organic Chemistry Design and Synthesis of New Compounds Active Especially against Multidrug- Resistant Mycobacterial Strains Ph.D. thesis Author: Martin Krátký Study Program: Organic Chemistry Specialization: Bioorganic Chemistry Supervisor: Prof. Dr. Jarmila Vinšová, Ph.D. Hradec Králové December 2011 Universita Karlova v Praze Farmaceutická fakulta v Hradci Králové Katedra anorganické a organické chemie Design a syntéza nových sloučenin působících zejména vůči multilékově resistentním kmenům mykobakterií Disertační práce Autor: Martin Krátký Studijní program: Organická chemie Studijní obor: Bioorganická chemie Školitel: Prof. RNDr. Jarmila Vinšová, CSc. Hradec Králové Prosinec 2011 Prohlašuji, že tato práce je mým původním autorským dílem, které jsem vypracoval samostatně pod vedením prof. RNDr. Jarmily Vinšové, CSc. Veškerá literatura a další zdroje, z nichž jsem při zpracování čerpal, jsou uvedeny v seznamu použité literatury a v práci řádně citovány. I declare that this work is my original authorial work which I developed independently under the supervision of Professor Dr. Jarmila Vinšová, Ph.D. All literature and other sources which I used during processing of this thesis are listed in the list of references and cited properly in the thesis. Hradec Králové, .................................. Abstract Charles University in Prague, Faculty of Pharmacy in Hradec Králové Department of Inorganic and Organic Chemistry Candidate Martin Krátký Supervisor Prof. Dr. Jarmila Vinšová, Ph.D. Title of Doctoral Thesis Design and Synthesis of New Compounds Active Especially against Multidrug-Resistant Mycobacterial Strains This work is focused mainly on the field of searching of new potential antimicrobial agents, particularly against multidrug-resistant Mycobacterium tuberculosis strains, based on the modification of the salicylanilide (2-hydroxy-(N-phenyl)benzamide) group.
    [Show full text]
  • Insights Into Functional Modulation of Catalytic RNA Activity
    IUBMB Life, 60(10): 669–683, October 2008 Critical Review Insights into Functional Modulation of Catalytic RNA Activity Anastassios Vourekas, Vassiliki Stamatopoulou, Chrisavgi Toumpeki, Marianthi Tsitlaidou and Denis Drainas Department of Biological Chemistry, School of Medicine, University of Patras, Rio-Patras, Greece ‘living’ system comprised self-replicases composed of RNA (1). Summary RNA can be both informational and catalytic and therefore can RNA molecules play critical roles in cell biology, and novel provide a logical solution to the ‘chicken and egg’ type of prob- findings continuously broaden their functional repertoires. lem concerning the first living systems at a molecular level. It Apart from their well-documented participation in protein syn- is worth mentioning that the idea that the RNA was the first thesis, it is now apparent that several noncoding RNAs (i.e., micro-RNAs and riboswitches) also participate in the regulation biomolecule was presciently formulated in two famous papers of gene expression. The discovery of catalytic RNAs had pro- by Crick and Orgel in the late 1960s (2, 3). found implications on our views concerning the evolution of life RNA catalysts and other ‘functional’ RNAs (e.g., ribos- on our planet at a molecular level. A characteristic attribute of witches) can naturally or artificially evolve into flexible ‘biosen- RNA, probably traced back to its ancestral origin, is the ability sors’ that can modulate their activity by interacting with a wide to interact with and be modulated by several ions and mole- cules of different sizes. The inhibition of ribosome activity by variety of molecules (4). It is considered that such molecules antibiotics has been extensively used as a therapeutical (e.g., peptides and antibiotics) could have been present in prebi- approach, while activation and substrate-specificity alteration otic conditions (5) assisting primordial reactions.
    [Show full text]
  • Drug Resistance in Mycobacterium Tuberculosis
    Curr. Issues Mol. Biol. 8: 97–112. Online journal at www.cimb.org Drug Resistance in Mycobacterium tuberculosis Rabia Johnson†, Elizabeth M. Streicher†, Gail developed countries (Espinal, 2003). By the end of the E. Louw, Robin M. Warren, Paul D. van Helden, 1960s rifampicin (RIF) was introduced and with the use of and Thomas C. Victor* combination therapy, there was a decline in drug resistant and drug susceptible TB in developed countries. This led DST/NRF Centre of Excellence in Biomedical to a decline in funding and interest in TB control programs. Tuberculosis Research/MRC Centre for Molecular and As a result, no concrete monitoring of drug resistance was Cellular Biology, Division of Molecular Biology and Human carried out for the following 20 years (Espinal, 2003). The Genetics, Department of Biomedical Science, Faculty arrival of HIV/AIDS in the 1980s resulted in an increase of Health Science, Tygerberg, Stellenbosch University, in transmission of TB associated with outbreaks of multi- South Africa drug-resistant TB (MDR-TB) (Edlin et al., 1992; Fischl et al., 1992) i.e. resistant to INH and RIF. In the early 1990s Abstract drug resistance surveillance was resumed in developed Anti-tuberculosis drugs are a two-edged sword. While countries, but the true incidence remained unclear in the they destroy pathogenic M. tuberculosis they also select developing world (Cohn et al., 1997). for drug resistant bacteria against which those drugs are then ineffective. Global surveillance has shown that The WHO/IUATLD global project on drug-resistance drug resistant Tuberculosis is widespread and is now a surveillance threat to tuberculosis control programs in many countries.
    [Show full text]
  • Guidelines for Drug Susceptibility Testing for Second-Line Anti-Tuberculosis Drugs for Dots-Plus
    WHO/CDS/TB/2001.288 Original: English Distr.: General GUIDELINES FOR DRUG SUSCEPTIBILITY TESTING FOR SECOND-LINE ANTI-TUBERCULOSIS DRUGS FOR DOTS-PLUS Communicable Diseases World Health Organization ©World Health Organization, 2001 This document is not a formal publication of the World Health Organization (WHO), and all rights are reserved by the Organization. The document may, however, be freely reviewed, abstracted, reproduced or translated, in part or in whole, but not for sale nor for use in conjunction with commercial purposes. The views expressed herein by named authors are solely the responsibility of those authors. i Acknowledgments Adalbert Laszlo, Marcos A. Espinal, Max Salfinger, Nuria Martin-Casabona, Sabine Rüsch- Gerdes, Sang Jae Kim, Sven Hoffner, and Véronique Vincent, prepared this document. Françoise Portaels, Leen Rigouts and Francis Drobniewski provided useful comments. ii TABLE OF CONTENTS Page Introduction …………………………………………………………………………………. 1 Objectives for guidelines …………………………………………………………………… 2 Objectives for the laboratory ……………………………………………………………….. 2 Technical Issues …………………………………………………………………………….. 2 1. Drugs to be tested …………………………………………………………………….. 2 2. Standard method: Löwenstein Jensen ……………………………………………….. 2 3. Concentrations ……………………………………………………………………….. 3 4. Media preparation, dilutions, inoculation, incubation, and reading …………………. 4 5. Internal quality control procedures for drug susceptibility testing of M. tuberculosis by the proportion method on L-J ………………………………… 5 6. Storage of mybobacteria in 10% skim
    [Show full text]
  • Antitubercular Drugs Pdf
    Antitubercular drugs pdf Continue Tb treatment is aimed at shortening the clinical course of tuberculosis, preventing complications, preventing the development of delay and/or subsequent recurrences, and reducing the likelihood of transmission of tuberculosis. In patients with laten tuberculosis, the purpose of therapy is to prevent the progression of the disease. View full drug information This is the primary drug selected for use in preventive therapy and for use in active tuberculosis combination therapy. It is also used in combination with Rifapentin for adults and children aged 2 years or older with laten TB as a once-weekly DOT therapy for 12 weeks. Its mechanism of action is not fully understood, but isosiosied can inhibit the synthesis of myclic acid, resulting in disruption of the bacterial cell wall. In patients receiving active TB, 25-50 mg of pyridoxin should be taken orally once a day to prevent peripheral neuropathy. See the full drug information Rifampin is used in co-ed with at least 1 other anti-tuberculosis drug active in TB. Inhibits DNA-dependent RNA polymerase activity in bacterial cells, but not mammalian cells. Cross resistance may occur. In most susceptible cases, the patient undergoes 6 months of treatment. Treatment lasts for 9 months if the patient's sputum herniation results are positive after 2 months of treatment. View full drug information This is an analogue of nicotinamide pirazine, which is bacteriostatic or bactericidal against M tuberculosis, depending on the concentration of the drug reached at the site of infection. The mechanism of action of pyrazinamide is unknown. Inject the drug into the initial 2 months of a 6-month or longer treatment regimen with drug-sensitive TB.
    [Show full text]
  • WO 2013/086415 Al 13 June 2013 (13.06.2013) W P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2013/086415 Al 13 June 2013 (13.06.2013) W P O P C T (51) International Patent Classification: Irosha [LK/US]; 2007 Huron Parkway #2, Ann Arbor, C07D 265/34 (2006.01) Michigan 48104 (US). KIRCHHOFF, Paul D. [US/US]; 9670 Sherwood Drive., Saline, MI 48176 (US). (21) International Application Number: PCT/US2012/068570 (74) Agent: CASIMIR, David A.; Casimir Jones, S.C., 2275 Deming Way, Suite 310, Middleton, WI 53562 (US). (22) International Filing Date: 7 December 2012 (07.12.2012) (81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, (25) Filing Language: English AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, (26) Publication Language: English BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, (30) Priority Data: HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, 61/569,100 9 December 201 1 (09. 12.201 1) US KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, (71) Applicant: THE REGENTS OF THE UNIVERSITY ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, OF MICHIGAN [US/US]; 1600 Huron Parkway, 2nd NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, Floor, Ann Arbor, Michigan 48109-2590 (US). RW, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, (72) Inventors; and ZM, ZW.
    [Show full text]
  • Contact Investigation Using T-SPOT to Evaluate Exposure To
    Contact investigation using T-SPOT to evaluate exposure to extensively multi-drug-resistant tuberculosis 1 COI: I have no financial conflicts of interest Akira Ukimura . to disclose concerning the presentation. 1Osaka Medical College, Takatsuki, Japan. Background Japan continues to be an intermediate tuberculosis (TB)-burden country. Osaka Medical College Hospital is located in Takatsuki City, where the prevalence of TB was 16.0 per 100,000 individuals in 2013, nearly identical to that in Japan (16.1). Interferon gamma release assays (IGRA) were used to screen for latent TB infection from 2008, since the rate of tuberculin skin test positivity was high due to the high rate of BCG vaccination in Japan. The Quanti Methods FERON-TB assay was changed to the T-SPOT assay from 2013. There are no The T-SPOT was evaluated in 40 HWs and 10 patients who had close contact paper on the use of the T-SPOT for investigating contacts of extensively multi- with the XDR-TB patient. drug-resistant tuberculosis (XDR-TB) cases in PubMed. Results Objectives The use of the T-SPOT in the evaluation of nosocomial XDR-TB The baseline T-SPOT was positive in one patient with close contact, and chest CT showed no infiltration, so it was decided to follow the patient with chest X-ray infection of hospital workers (HWs) and patients was evaluated. monitoring. The baseline and 3 months after contact T-SPOTs were negative in 9 patients and 40 HWs. The T-SPOT at 6 months after contact was negative in 5 Patient patients and 9 HWs who had many close contacts.
    [Show full text]