The Clinical Audiogram

Total Page:16

File Type:pdf, Size:1020Kb

The Clinical Audiogram The Clinical Audiogram Its History and Current Use Donald A. Vogel, Au.D. Hunter College, City University of New York Patricia A. McCarthy Rush University Medical Center Gene W. Bratt, Vanderbilt University Carmen Brewer National Institutes of Health This article documents the historical development and evolution of the audiogram through a litera- ture review and describes how audiologists currently use the audiogram. Issues of electronic data collection, privacy, and future developments are briefly discussed. Introduction ing the auditory receptive communication skills of their patients. Audiologists base habilitative and rehabilitative The audiogram has been the banner of the clinical programs on information obtained from the audiogram. audiologist’s work since the profession gained recog- Considering the variety of ways that hearing sensitivi- nition after World War II. Without the data contained ty of an individual can be recorded, a widespread ac- on the audiogram, physicians could not properly docu- ceptance of established standards has enabled the au- ment pathologic conditions of the ear, nor prepare for diogram to be universally understood despite variables otological surgeries. Speech-language pathologists have such as patient-related historical data, types of tests per- utilized the audiogram for the purposes of understand- formed, and test conditions/components. Communicative Disorders Review Volume 1, Number 2, pp. 81–94 81 Copyright © 2007 Plural Publishing, Inc. 82 cOMMUnicativE DISORDERS REVIEW, VOL. 1, NO. 2 As facilities and practices grow in a technologically fluid field, the audiologist must remain current in every aspect of his or her practice. Similarly, the audiogram must periodically change to reflect current advances or modifications in clinical protocols and state of the art equipment. The purpose of this paper, therefore, is to document the historical development and evolution of the audio- gram through literature review and to describe how au- diologists currently use the audiogram and briefly raise issues about privacy, electronic data collection, and fu- ture applications. An Audiometry Time line in Appendix A highlights the landmarks of hearing measurement. The History of the Audiogram Since the invention of the audiometer over 100 years ago, the audiogram has become the graphic and/ Figure 1. Recreation of Hartmann’s Auditory Chart, first or numerical record of hearing sensitivityFigure for1. Recreation the oto- of Hartmann’s Auditory Chart, first conceived in 1885. This was used to logic and audiologic specialties in health care. The au- conceived in 1885. This was used to document tuning diogram was born out of necessity asdocument the signature tuning tool fork responsesfork responses to the to leftthe andleft andright right ears. ears. specific to the hearing scientist’s ability to observe, mea- sure, and record hearing behavior (Hedge, 1987). With- out the ability to record information retrieved from the cording forms for hearing testing. It was finally accepted test environment, data collection would be circumspect in 1909 during the 8th International Congress of Otol- and haphazard. Interestingly, this indispensable tool has ogy in Budapest, Hungary. Called an “Acumetric Sche- received little more than cursory attention throughout ma,” this attempt at hearing record standardization was the years. never universally accepted (Feldmann, 1970). From a historical perspective, as audiology grew in- Unfortunately, hearing loss in the eras of Hartmann to a profession, the audiogram reflected the technolo- and Wien could not be specified in quantitative values gies developed and used in the clinical environment. relative to normal hearing. The tester arbitrarily selected (See the Audiometry Time Line in Appendix A for an intensity steps. It was not until 1922 that Fletcher, Fowl- overview of the historical development of these tools.) er, and Wegel first employed frequency at octave inter- In 1885, Arthur Hartmann designed an “Auditory Chart” vals plotted along the abscissa and intensity downward which included left and right ear tuning fork represen- along the ordinate as a degree of hearing loss. Fletch- tation on the abscissa and percent of hearing along the er et al. also coined the term “audiogram” at that time ordinate (Figure 1) (Feldmann, 1970). (Feldmann, 1970). Although Hartmann’s “Auditory Chart” does show Throughout the years, the audiogram has reflected similarities to today’s pure-tone grid, the standard for re- the growth of audiometry from air conduction in the cording hearing sensitivity gradually evolved from Max early 1920s (Jacobson & Northern, 1991) to otoacoustic Wien’s “Sensitivity Curve” first presented in 1903 (Fig- emissions of the 1990s. Virtually every population served ure 2). Wien’s graph documented results from tuning by the audiologist, at some point, has its hearing sensitiv- fork stimuli. Physical sensitivity was indicated along the ity recorded on the audiogram. As mid and late 20th cen- ordinate and the chart was the first to show the relation- tury hearing technologies grew, the audiogram moved ship between hearing thresholds and frequency (Feld- into a position not only as the standard for displaying mann, 1970). recorded data, but also as a counseling tool among au- It was not until some 20 years later that a different diologists. Its value is currently emphasized by clinical type of record of hearing measurement was presented doctoral audiology courses as an important application for recognition as a standard by Politzer, Gradenigo, and used to illustrate degrees and types of hearing losses for Delsaux (Figure 3). Their proposal, given in 1904 during patients and caregivers (Chial, 1998). Outside the pro- the 7th International Congress of Otology in Bordeaux, fession of audiology, otologists and speech-language pa- France, was intended to standardize nomenclature such thologists continue to receive training in audiometrics as “auditory horizon” and “auditory area” along with re- so they may understand hearing loss (Nodar, 1997). 4 THE CLINICAL AUDIOGRAM 83 Figure 2. Re-creationFigure of Wien’s2. Re-creation sensitivity of curve,Wien’s first sensitivity conceived curve, in 1903. first The con -graph was the first ceived in 1903. The graph was the first attempt to mark hear- attempt to mark hearinging sensitivity sensitivity in relationin relation to tofrequency frequency (Feldmann, (Feldmann, 1970). 1970). AD 1 1 4 W S a M a A c A R H P V v LI LS AS Figure 3. Recreation of the Acumetric Schema submitted by Politzer et al. in 1904. Although Figure 3. Recreation of the Acumetric Schema submitted by Politzer et al. in 1904. Although intended to document hearing sensitivity, the schema failed in its attempt at standardize nomenclature. Key: W = We- intended to document hearing sensitivity, the schema failed in its attempt at standardize ber test; AD = auris dextra (right ear); S = Schwabach test; AS = auris sinistra (left ear); a1M = duration of 1 4 4 thenomenclature. auditory sensation Key: with W = a Weberfork placed test; AD on the= auris mastoid; dextra a (rightA = same ear); forS = air Schwabach conduction; test; c ASA = = same auris for a c fork and air conduction; R = Rinne test; H = horlogium (distance that a watch may be heard); P = results of Politzer’s acumeter; V1 = vox (distance to which conversational speech is understood); v = same1 for whis- sinistra (left ear); a M = duration of the auditory sensation with a fork placed on the mastoid; a A = same pered voice; LI = limes inferior (lower frequency limit); LS = limes superior (upper frequency limit). 4 4 for air conduction; c A = same for a c fork and air conduction; R = Rinne test; H = horlogium (distance thatThe a watchAudiogram may be heard); and P the = results First of Politzer’s acumeter;sented a V tone = vox or a(distance click; it tohad which an attenuator conversational set in a scale Commercially Produced Audiometer of 40 steps (Seashore, 1899). Although Seashore’s audi- speech is understood); v = same for whispered voice; LIometer = limes was inferior not the (lower first frequencyattempt to limit); create LS an = instrument for hearing testing, its ability to attenuate intensity log- Any limesdiscussion superior of the(upper audiogram frequency must limit). include a dis- arithmically6 made it a landmark invention. This device cussion of the development of the audiometer. In 1899, initiated early forms of hearing testing standards, and Carl E. Seashore introduced the audiometer as an instru- consequently the otologist’s understanding of the need ment to measure the “keenness of hearing” whether in for evaluation protocols and the construction of sound- the laboratory, schoolroom, or office of the psychologist treated test rooms. The decade of the 1920s propelled or aurist. The instrument operated on a battery and pre- hearing testing into a more exacting science with the 8 84 cOMMUnicativE DISORDERS REVIEW, VOL. 1, NO. 1 introduction of audiometers capable of producing pure It may be surmised that the advent of the audiogram tones via air conduction and bone conduction, and, to did not result from any preconceived design born out of a limited extent, even speech testing capabilities. In the scientific necessity; rather, it became the sum of hear- early 1920s, Western Electric developed the first com- ing technology’s evolutionary parts. Scientists in the ear- mercially produced electronic audiometer. This instru- ly years were focused on exploring diseases of the ear, ment was
Recommended publications
  • CASE REPORT Resolution of Delayed Sudden Sensorineural Hearing Loss After Stapedectomy
    The Mediterranean Journal of Otology CASE REPORT Resolution of Delayed Sudden Sensorineural Hearing Loss After Stapedectomy: A Case Report and Review of the Literature Noam Yehudai, MD, Michal Luntz, MD From the Department of Significant sensorineural hearing loss may develop immediately after suc- Otolaryngology, Head and Neck cessful stapedectomy but sometimes occurs months or even years later. Surgery, Bnai-Zion Medical The rate of recovery from that disorder has not been determined. Several Center, Technion-Israel School of Technology, Haifa, Israel reports in the 1960s described patients with delayed sensorineural hear- ing loss, but that entity has not been mentioned in the English-language Correspondence literature for the last 30 years. We present a review of the literature on this Michal Luntz, MD postsurgical auditory complication and describe a patient with delayed Department of Otolaryngology, Head and Neck Surgery poststapedectomy sensorineural hearing loss that developed 15 months Bnai-Zion Medical Center, after surgery and resolved completely after treatment with an oral steroid. Technion-Israel School of Technology 47 Golomb St, PO Box 4940, Haifa 31048, Israel Phone: 972-4-8359544 Fax: 972-4-8361069 E-mail: [email protected] Submitted: 05 February, 2006 Revised: 07 May, 2006 Accepted: 09 May, 2006 Mediterr J Otol 2006; 3: 156-160 Copyright 2005 © The Mediterranean Society of Otology and Audiology 156 Resolution of Delayed Sudden Sensorineural Hearing Loss After Stapedectomy: A Case Report and Review of the Literature
    [Show full text]
  • Auditory Brainstem Response Latency in Noise As a Marker of Cochlear Synaptopathy
    The Journal of Neuroscience, March 30, 2016 • 36(13):3755–3764 • 3755 Systems/Circuits Auditory Brainstem Response Latency in Noise as a Marker of Cochlear Synaptopathy X Golbarg Mehraei,1,2 XAnn E. Hickox,1,4 X Hari M. Bharadwaj,2,7 Hannah Goldberg,1 Sarah Verhulst,2,6 M. Charles Liberman,1,4,5 and XBarbara G. Shinn-Cunningham2,3 1Program in Speech and Hearing Bioscience and Technology, Harvard University/Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, 2Center for Computational Neuroscience and Neural Technology, Boston University, Boston, Massachusetts 02215, 3Department of Biomedical Engineering, Boston University, Boston, Massachusetts 02215, 4Eaton-Peabody Laboratory, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts 02114, 5Department of Otology and Laryngology, Harvard Medical School, Boston, Massachusetts 02114, 6Cluster of Excellence Hearing4All and Medical Physics, Department of Medical Physics and Acoustics, Oldenburg University, 26129 Oldenburg, Germany, 7Martinos Center for Biomedical Imaging, Department of Neurology, Massachusetts General Hospital/Harvard Medical School, Charlestown, Massachusetts 02129 Evidence from animal and human studies suggests that moderate acoustic exposure, causing only transient threshold elevation, can nonetheless cause “hidden hearing loss” that interferes with coding of suprathreshold sound. Such noise exposure destroys synaptic connections between cochlear hair cells and auditory nerve fibers; however, there is no clinical test of this synaptopathy in humans. In animals, synaptopathy reduces the amplitude of auditory brainstem response (ABR) wave-I. Unfortunately, ABR wave-I is difficult to measure in humans, limiting its clinical use. Here, using analogous measurements in humans and mice, we show that the effect of masking noise on the latency of the more robust ABR wave-V mirrors changes in ABR wave-I amplitude.
    [Show full text]
  • Hearing Loss Due to Myringotomy and Tube Placement and the Role of Preoperative Audiograms
    ORIGINAL ARTICLE Hearing Loss Due to Myringotomy and Tube Placement and the Role of Preoperative Audiograms Mark Emery, MD; Peter C. Weber, MD Background: Postoperative complications of myrin- erative and postoperative sensorineural and conductive gotomy and tube placement often include otorrhea, tym- hearing loss. panosclerosis, and tympanic membrane perforation. How- ever, the incidence of sensorineural or conductive hearing Results: No patient developed a postoperative sensori- loss has not been documented. Recent efforts to curb the neural or conductive hearing loss. All patients resolved use of preoperative audiometric testing requires docu- their conductive hearing loss after myringotomy and tube mentation of this incidence. placement. There was a 1.3% incidence of preexisting sen- sorineural hearing loss. Objective: To define the incidence of conductive and sensorineural hearing loss associated with myrin- Conclusions: The incidence of sensorineural or con- gotomy and tube placement. ductive hearing loss after myringotomy and tube place- ment is negligible and the use of preoperative audiomet- Materials and Methods: A retrospective chart re- ric evaluation may be unnecessary in selected patients, view of 550 patients undergoing myringotomy and tube but further studies need to be done to corroborate this placement was performed. A total of 520 patients under- small data set. going 602 procedures (1204 ears), including myrin- gotomy and tube placement, were assessed for preop- Arch Otolaryngol Head Neck Surg. 1998;124:421-424 TITIS MEDIA (OM) is one erative hearing status and whether it has of the most frequent dis- either improved or remained stable after eases of childhood, af- MTT. A recent report by Manning et al11 fecting at least 80% of demonstrated a 1% incidence of preop- children prior to school erative sensorineural hearing loss (SNHL) Oentry.1-4 Because of the high incidence of in children undergoing MTT.
    [Show full text]
  • Correlations Between Audiogram and Objective Hearing Tests in Sensorineural Hearing Loss
    International Tinnitus Journal, Vol. 5, No.2, 107-112 (1999) Correlations Between Audiogram and Objective Hearing Tests in Sensorineural Hearing Loss L. Bishara,1 J. Ben-David,l L. Podoshin,1 M. Fradis,l C.B. Teszler,l H. Pratt,2 T. Shpack,3 H. Feiglin,3 H. Hafner,3 and N. Herlinger2 I Department of Otolaryngology, Head and Neck Surgery, and 3Institute of Audiology, Bnai-Zion Medical Center, and 2Evoked Potentials Laboratory, Technion, Haifa, Israel Abstract: Owing to its subjective nature, behavioral pure-tone audiometry often is an unre­ liable testing method in uncooperative subjects, and assessing the true hearing threshold be­ comes difficult. In such cases, objective tests are used for hearing-threshold determination (i.e., auditory brainstem evoked potentials [ABEP] and frequency-specific auditory evoked potentials: slow negative response at 10 msec [SN-1O]). The purpose of this study was to evaluate the correlation between pure-tone audiogram shape and the predictive accuracy of SN-IO and ABEP in normal controls and in patients suf­ fering from sensorineural hearing loss (SNHL). One-hundred-and-fifty subjects aged 15 to 70, some with normal hearing and the remainder with SNHL, were tested prospectively in a double-blind design. The battery of tests included pure-tone audiometry (air and bone conduction), speech reception threshold, ABEP, and SN- 10. Patients with SNHL were divided into four categories according to audiogram shape (i.e., flat, ascending, descending, and all other shapes). The results showed that ABEP predicts behavioral thresholds at 3 kHz and 4 kHz in cases of high-frequency hearing loss.
    [Show full text]
  • Tympanostomy Tubes in Children Final Evidence Report: Appendices
    Health Technology Assessment Tympanostomy Tubes in Children Final Evidence Report: Appendices October 16, 2015 Health Technology Assessment Program (HTA) Washington State Health Care Authority PO Box 42712 Olympia, WA 98504-2712 (360) 725-5126 www.hca.wa.gov/hta/ [email protected] Tympanostomy Tubes Provided by: Spectrum Research, Inc. Final Report APPENDICES October 16, 2015 WA – Health Technology Assessment October 16, 2015 Table of Contents Appendices Appendix A. Algorithm for Article Selection ................................................................................................. 1 Appendix B. Search Strategies ...................................................................................................................... 2 Appendix C. Excluded Articles ....................................................................................................................... 4 Appendix D. Class of Evidence, Strength of Evidence, and QHES Determination ........................................ 9 Appendix E. Study quality: CoE and QHES evaluation ................................................................................ 13 Appendix F. Study characteristics ............................................................................................................... 20 Appendix G. Results Tables for Key Question 1 (Efficacy and Effectiveness) ............................................. 39 Appendix H. Results Tables for Key Question 2 (Safety) ............................................................................
    [Show full text]
  • Audiometric Test Procedures
    Audiometric Test Procedures 101 This information is meant to help you better understand the various test procedures as well as some of the terms you might see on an audiometric report. By Larry Medwetsky individual could, in fact, exhibit nor- In the previous issue of Hearing mal hearing acuity across these three Loss Magazine, I provided an over- Anyone who has ever had their frequencies, yet, exhibit a significant view concerning hearing threshold hearing tested should know how hearing loss in the higher frequencies results as recorded on the audiogram to read the audiogram, but that’s (3000-8000 Hz). Thus, it is important and an explanation of the pure-tone easier said than done. Hopefully, to examine the SRT in the context of audiogram. In this article, I will after reading this article you will the other audiometric test findings. describe various test procedures have a greater understanding of the Speech Awareness Threshold that are typically administered in principles discussed and use your (SAT): an audiometric evaluation and what knowledge going forward—be it in Compound words are pre- information the tests provide. reviewing hearing test results you sented, the goal being to determine already have or when discussing your the softest level one can detect the Audiometric Test Procedures results at your next hearing test. presence of words. This test is often Pure-tone Audiometry: Tones of used when an individual’s hearing loss different frequencies are presented; the is so great that the person is unable goal is to find the softest sound level relatively flat hearing losses, and the to recognize/repeat the words, yet is which one can hear (threshold) the average of 500 and 1000 Hz for those aware that words have been presented.
    [Show full text]
  • The Audiogram
    Recently,Recently, I’veI’ve been trying to orga- evaluations, and they are truly im- nize some of the columns and articles pressive, the information and insights RI’veI’ve written overover the past ten years.years. provided by the simple audiogram As I was looking through them, it be- can still provide the most pertinent came apparent that I’ve neglected to information to explain the behavioral discuss what is perhaps the implications of a hearing loss. most important hearing di- Perhaps the most important in- mension of all, the simple sight of all is an appreciation of how The audiogram. specifi c audiograms impact upon the In reality, however, perception of certain speech sounds. the “simple” audiogram, Without including speech in the Audiogram: and particularly its im- equation, it is simply not possible to Audiogram: plications, is not quite so intelligibly discuss the audiogram. simple. Even though just This, after all, is the signal we are about everybody who re- most interested in hearing (not to Explanation ceives a hearing aid has his minimize the specifi c needs of certain or her hearing tested with groups of people for other types of a pure-tone audiometer, sounds, such as musicians). and not everybody receives a comprehensive explanation Figure One Audiogram — of exactly what the results The “Speech Banana” Signifi cance mean and what the impli- cations are for them. The audiogram of a fairly typical And even for those who audiogram can be seen in Figure 1. do, at a time when prospec- (My thanks to Brad Ingrao for creat- By Mark Ross tive hearing aid purchasers ing these fi gures for me.) Let’s fi rst go are being inundated with through the fundamentals.
    [Show full text]
  • A Comparison of Behavioral and Auditory Brainstem Response
    A Dissertation entitled A Comparison of Behavioral and Auditory Brainstem Response Measures of Hearing in the Laboratory Rat (Rattus norvegicus) By Evan M. Hill Submitted to the Graduate Faculty as partial fulfillment of the requirements for the Doctor of Philosophy Degree in Psychology ________________________________________ ______________ Dr. Henry Heffner, Committee Chair ______________________________________ ________________ Dr. Harvard Armus, Committee Member ______________________________________________________ Dr. Stephen Christman, Committee Member ______________________________________________________ Dr. Kamala London, Committee Member ______________________________________________________ Dr. Lori Pakulski, Committee Member ______________________________________________________ Dr. Patricia R. Komuniecki, Dean College of Graduate Studies The University of Toledo December 2011 i ii An Abstract of A Comparison of Behavioral and Auditory Brainstem Response Measures of Hearing in the Laboratory Rat (Rattus norvegicus) by Evan M. Hill Submitted to the Graduate Faculty as partial fulfillment of the requirements for the Doctor of Philosophy Degree in Psychology The University of Toledo December 2011 The basic measure of an animal‘s hearing is the behavioral, pure-tone audiogram, which shows an animal‘s sensitivity to pure tones throughout its hearing range. Because obtaining a behavioral audiogram on an animal can take months, the tone-evoked auditory brainstem response (ABR) is often used instead to obtain thresholds. Although the tone-evoked ABR is obtained quickly and with relative ease, it does not accurately reflect an animal‘s behavioral sensitivity to pure tones. Because several lines of evidence suggested that using narrow-band noise to evoke the ABR might give a more accurate measure, ABR thresholds evoked by one-octave noise bands and short-duration tones (tone pips) were compared in rats to determine which most closely estimated the animals‘ behavioral, pure-tone thresholds.
    [Show full text]
  • How to Read an Audiogram
    How to read an Audiogram WHAT IS AN AUDIOGRAM? An audiogram is a graph that shows the softest sounds a person can hear at different pitches or frequencies. Frequency is the unit by which how high or low a sound is measured. Frequency is measured horizontally on the top of the audiogram. As the frequencies go from left to right they range from lower to higher. Example: If you read the audiogram from left to right, the final X is all the way at 8,000 hertz – that means this person would have high frequency loss. They can only hear above 80 decibels at 8,000 hertz. High Frequency loss makes it difficult to hear higher pitched sounds such as women and children. If the X’s and O’s on your hearing test remain predominantly on the left side, you have low frequency loss making lower pitched sounds more difficult to hear and understand. Decibels are the unit by which sound is measured. On your audiogram, the decibel loss is measured vertically on the left side. As the number gets bigger, so does your hearing loss. Example: Reading the above audiogram from left to right, the final O (right ear) hits about 70 db or so. This means that anything below 70 db. (Whispered conversations, leaves rustling, birds chirping) will not be heard. The last X (left ear) has slightly more severe hearing loss, hitting at 75 db. Again, this means that any sound below 75 db will be unable to be heard. PURE TONE TESTING INTERPRETATION RELATIONSHIP TYPE OF LOSS LEFT RIGHT Hearing loss by AC and BC within Sensorineural Air Conduction (AC) × 10dB (SNHL) Hearing loss by AC and BC > 10 dB Mixed Air Conduction Masked Δ better than AC Bone Conduction (BC) > < Hearing loss by AC and Normal BC Conductive (CHL) Bone Conduction Masked ] [ > 10 dB better than AC RANGE CLASSIFICATION 0 dB HL Normal ears can hear all frequencies 0-20 dB HL Normal range 21-40 dB HL Mild loss 41-55 dB HL Moderate loss 56-70 dB HL Moderately severe loss 71-90 dB HL Severe loss 91 dB HL + Profound loss MOST COMFORTABLE LOUDNESS SPEECH TESTING (MCL) TESTING PURPOSE OF TEST 1.
    [Show full text]
  • UNDERSTANDING an AUDIOGRAM Marni L
    SERVING STUDENTS WHO ARE HARD OF HEARING UNDERSTANDING AN AUDIOGRAM Marni L. Johnson University of South Dakota SUMMARY from 125 to 8000 Hz. The normal hearing listener can typically hear sounds as soft as 0 dB HL if one is present, can be determined by reading an and when sounds are above 100 dB HL they are audiogram. The type of hearing loss is determined by generally considered to be uncomfortably loud. comparing auditory thresholds obtained using head- phones or insert earphones (air-conduction thresholds) KEY CONCEPTS to those obtained using a bone oscillator (bone-conduc- tion thresholds). By itself, the audiogram cannot tell us Conductive hearing losses (CHL) how an individual will perform in the real world. While CHL are characterized by a reduction in hearing ability tests of speech perception in quiet and in noise can despite a normal functioning cochlea (inner ear). This greatly enhance the diagnostic value of the audiogram, type of hearing loss is caused by impaired sound the results obtained in a sound booth do not always transmission through the ear canal, eardrum, and/ translate directly to how an individual will perform in or ossicular chain. Conductive hearing losses are the real world infections and wax impaction are two common causes KEY TERMINOLOGY of this type of hearing loss. In conductive hearing losses, air conduction thresholds are abnormal, bone Audiogram conduction thresholds are normal, and an air-bone gap is present. representing the softest sounds that a person can Sensorineural hearing losses (SNHL) Decibel (dB) Decibel refers to the loudness of sounds. A sound SNHL are characterized by a reduction in hearing low in dB is perceived as soft and a sound high in dB ability due to disorders involving the cochlea and/or is perceived as loud.
    [Show full text]
  • Review Perspectives on the Pure-Tone Audiogram
    J Am Acad Audiol 28:655–671 (2017) Review Perspectives on the Pure-Tone Audiogram DOI: 10.3766/jaaa.16061 Frank E. Musiek* Jennifer Shinn† Gail D. Chermak‡ Doris-Eva Bamiou§ Abstract Background: The pure-tone audiogram, though fundamental to audiology, presents limitations, espe- cially in the case of central auditory involvement. Advances in auditory neuroscience underscore the considerably larger role of the central auditory nervous system (CANS) in hearing and related disorders. Given the availability of behavioral audiological tests and electrophysiological procedures that can pro- vide better insights as to the function of the various components of the auditory system, this perspective piece reviews the limitations of the pure-tone audiogram and notes some of the advantages of other tests and procedures used in tandem with the pure-tone threshold measurement. Purpose: To review and synthesize the literature regarding the utility and limitations of the pure-tone audiogram in determining dysfunction of peripheral sensory and neural systems, as well as the CANS, and to identify other tests and procedures that can supplement pure-tone thresholds and provide en- hanced diagnostic insight, especially regarding problems of the central auditory system. Research Design: A systematic review and synthesis of the literature. Data Collection and Analysis: The authors independently searched and reviewed literature (journal articles, book chapters) pertaining to the limitations of the pure-tone audiogram. Results: The pure-tone audiogram provides information as to hearing sensitivity across a selected fre- quency range. Normal or near-normal pure-tone thresholds sometimes are observed despite cochlear damage. There are a surprising number of patients with acoustic neuromas who have essentially normal pure-tone thresholds.
    [Show full text]
  • Evaluation of the Results and Complications of the Ventilation Tubes’ Setting Surgery in Patients with Serous Otitis Media
    Artigo Original Evaluation of the Results and Complications of the Ventilation Tubes’ Setting Surgery in Patients with Serous Otitis Media Avaliação de Resultados e Complicações da Cirurgia de Colocação de Tubos de Ventilação em Pacientes com Otite Media Serosa José Ricardo Testa*, Spyros Cardoso Dimatos**, Bárbara Greggio***, Juliana Antoniolli Duarte***. * Doctor of Medicine. Medical Faculty Otorhinolaryngology. ** Master Pediatric Otolaryngology. Medical Graduate Student. *** Medical Residency. Resident. Instituition: UNIFESP / EPM - Federal University of São Paulo Paulista School of Medicine - Department of Pediatric Otolaryngology. São Paulo / SP - Brazil. Mail Address: Juliana Antoniolli Duarte - Rua Pedro de Toledo, 947 - 2º andar - Vila Clementino - São Paulo / SP - Brazil - ZIP CODE: 04039-002 - Telefax: (+55 11) 5539-5378 - E-mail: [email protected] Article received in em March 1, 2010. Article approved in March 13, 2010. SUMMARY Introduction: Tympanostomy for ventilation tube setting is one of the surgeries more frequent performed in patients in the pediatric age group. Objective: This study evaluates the indications and complications post operatives more frequents in this otorhinolaryngological practice in a school hospital. Method: It was realized a series type retrospective study of cases in which 109 pediatric patients, that have received ventilation tube were evaluated as for the post operative indication and attendance for the otorhinolaryngology sector of the Paulista Medicine School for 2007 to 2008. Results: The age’ average found was 7,37 years, being the majority of the patients of the male sex (59,63%). All the cases have had as surgical indication serous otitis media. The taxes of complications found were lower than those related for the literature with 3,43% of residual perforation with necessity of surgical re intervention and 5,47% do not presented a audiometric improvement needing a new insertion of ventilation tube.
    [Show full text]