The Last Arctic Sea Ice Refuge
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Ecological Consequences of Sea-Ice Decline Eric Post Et Al
SPECIALSECTION 31. K. B. Ritchie, Mar. Ecol. Prog. Ser. 322,1–14 (2006). 52. C. Moritz, R. Agudo, Science 341, 504–508 (2013). 71. A. J. McMichael, Proc. Natl. Acad. Sci. U.S.A. 109, 32. B. Humair et al., ISME J. 3, 955–965 (2009). 53. C. D. Thomas et al., Nature 427, 145–148 4730–4737 (2012). 33. D. Corsaro, G. Greub, Clin. Microbiol. Rev. 19,283–297 (2006). (2004). 72. T. Wheeler, J. von Braun, Science 341, 508–513 34. W. Jetz et al., PLoS Biol. 5, e157 (2007). 54. Intergovernmental Panel on Climate Change, Summary (2013). 35. B. J. Cardinale et al., Nature 486,59–67 (2012). for Policymakers. Climate Change 2007: The Physical 73. S. S. Myers, J. A. Patz, Annu. Rev. Environ. Resour. 34, 36. P. T. J. Johnson, J. T. Hoverman, Proc. Natl. Acad. Sci. U.S.A. Science Basis. Contribution of Working Group I to the Fourth 223–252 (2009). 109,9006–9011 (2012). Assessment Report of the Intergovernmental Panel on 74. C. A. Deutsch et al., Proc. Natl. Acad. Sci. U.S.A. 105, 37. F. Keesing et al., Nature 468, 647–652 (2010). Climate Change (Cambridge Univ. Press, New York, 2007). 6668–6672 (2008). 38. P. H. Hobbelen, M. D. Samuel, D. Foote, L. Tango, 55. S. Laaksonen et al., EcoHealth 7,7–13 (2010). D. A. LaPointe, Theor. Ecol. 6,31–44 (2013). 56. O. Gilg et al., Ann. N. Y. Acad. Sci. 1249, 166–190 (2012). Acknowledgments: This work was supported in part by an NSF 39. T. -
Modeling Global Sea Ice with a Thickness and Enthalpy Distribution Model in Generalized Curvilinear Coordinates
MAY 2003 ZHANG AND ROTHROCK 845 Modeling Global Sea Ice with a Thickness and Enthalpy Distribution Model in Generalized Curvilinear Coordinates JINLUN ZHANG AND D. A. ROTHROCK Polar Science Center, Applied Physics Laboratory, College of Ocean and Fishery Sciences, University of Washington, Seattle, Washington (Manuscript received 30 January 2002, in ®nal form 10 September 2002) ABSTRACT A parallel ocean and ice model (POIM) in generalized orthogonal curvilinear coordinates has been developed for global climate studies. The POIM couples the Parallel Ocean Program (POP) with a 12-category thickness and enthalpy distribution (TED) sea ice model. Although the POIM aims at modeling the global ocean and sea ice system, the focus of this study is on the presentation, implementation, and evaluation of the TED sea ice model in a generalized coordinate system. The TED sea ice model is a dynamic thermodynamic model that also explicitly simulates sea ice ridging. Using a viscous plastic rheology, the TED model is formulated such that all the metric terms in generalized curvilinear coordinates are retained. Following the POP's structure for parallel computation, the TED model is designed to be run on a variety of computer architectures: parallel, serial, or vector. When run on a computer cluster with 10 parallel processors, the parallel performance of the POIM is close to that of a corresponding POP ocean-only model. Model results show that the POIM captures the major features of sea ice motion, concentration, extent, and thickness in both polar oceans. The results are in reasonably good agreement with buoy observations of ice motion, satellite observations of ice extent, and submarine observations of ice thickness. -
New Facts and Additional Information Supporting the Cop16
NOVEMBER 2012 NRDC ISSUE PAPER IP:12-11-A New Facts and Additional Information Supporting the CoP16 Polar Bear Proposal Submitted by the United States of America About NRDC NRDC (Natural Resources Defense Council) is a national nonprofit environmental organization with more than 1.3 million members and online activists. Since 1970, our lawyers, scientists, and other environmental specialists have worked to protect the world’s natural resources, public health, and the environment. NRDC has offices in New York City, Washington, D.C., Los Angeles, San Francisco, Chicago, Montana, and Beijing. Visit us at www.nrdc.org. NRDC’s policy publications aim to inform and influence solutions to the world’s most pressing environmental and public health issues. For additional policy content, visit our online policy portal at www.nrdc.org/policy. NRDC Director of Communications: Phil Gutis NRDC Deputy Director of Communications: Lisa Goffredi NRDC Policy Publications Director: Alex Kennaugh Lead Editor: Design and Production: www.suerossi.com Cover photo © Paul Shoul: paulshoulphotography.com © Natural Resources Defense Council 2012 n October 4, 2012, the United States, supported by the Russian Federation, submitted a proposal to transfer the polar bear, Ursus maritimus, from OAppendix II to Appendix I of the Convention in accordance with Article II and Resolution Conf. 9.24 (Rev. CoP15) on the basis that the polar bear is affected by trade and shows a marked decline in the population size in the wild, which has been inferred or projected on the basis of a decrease in area of habitat and a decrease in quality of habitat. Pursuant to the Convention, “Appendix I shall include all species threatened with extinction which are or may be affected by trade.” CITES Article II, paragraph 1. -
Recent Declines in Warming and Vegetation Greening Trends Over Pan-Arctic Tundra
Remote Sens. 2013, 5, 4229-4254; doi:10.3390/rs5094229 OPEN ACCESS Remote Sensing ISSN 2072-4292 www.mdpi.com/journal/remotesensing Article Recent Declines in Warming and Vegetation Greening Trends over Pan-Arctic Tundra Uma S. Bhatt 1,*, Donald A. Walker 2, Martha K. Raynolds 2, Peter A. Bieniek 1,3, Howard E. Epstein 4, Josefino C. Comiso 5, Jorge E. Pinzon 6, Compton J. Tucker 6 and Igor V. Polyakov 3 1 Geophysical Institute, Department of Atmospheric Sciences, College of Natural Science and Mathematics, University of Alaska Fairbanks, 903 Koyukuk Dr., Fairbanks, AK 99775, USA; E-Mail: [email protected] 2 Institute of Arctic Biology, Department of Biology and Wildlife, College of Natural Science and Mathematics, University of Alaska, Fairbanks, P.O. Box 757000, Fairbanks, AK 99775, USA; E-Mails: [email protected] (D.A.W.); [email protected] (M.K.R.) 3 International Arctic Research Center, Department of Atmospheric Sciences, College of Natural Science and Mathematics, 930 Koyukuk Dr., Fairbanks, AK 99775, USA; E-Mail: [email protected] 4 Department of Environmental Sciences, University of Virginia, 291 McCormick Rd., Charlottesville, VA 22904, USA; E-Mail: [email protected] 5 Cryospheric Sciences Branch, NASA Goddard Space Flight Center, Code 614.1, Greenbelt, MD 20771, USA; E-Mail: [email protected] 6 Biospheric Science Branch, NASA Goddard Space Flight Center, Code 614.1, Greenbelt, MD 20771, USA; E-Mails: [email protected] (J.E.P.); [email protected] (C.J.T.) * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +1-907-474-2662; Fax: +1-907-474-2473. -
Unprecedented Decline of Arctic Sea Ice out Ow in 2018
Unprecedented decline of Arctic sea ice outow in 2018 Hiroshi Sumata ( [email protected] ) Norwegian Polar Institute https://orcid.org/0000-0002-2832-2875 Laura de Steur Norwegian Polar Institute Sebastian Gerland Norwegian Polar Institute Dmitry Divine Norwegian Polar Institute Olga Pavlova Norwegian Polar Institute Article Keywords: Sea Ice Export, Climate and Deep Water Formation, Anomalous Atmospheric Circulation, Freshwater Cycle, Ice Thinning Posted Date: May 12th, 2021 DOI: https://doi.org/10.21203/rs.3.rs-376386/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License 1 Unprecedented decline of Arctic sea ice outflow in 2018 2 3 4 5 Hiroshi Sumata1*, Laura de Steur1, Sebastian Gerland1, Dmitry Divine1, Olga Pavlova1 6 1Norwegian Polar Institute, Fram Centre, Tromsø, Norway 7 8 9 * Correspondence to: Hiroshi Sumata ([email protected]) 10 11 12 13 14 15 16 17 Abstract 18 19 Fram Strait is the major gateway connecting the Arctic Ocean and North Atlantic Ocean, where nearly 90% 20 of the sea ice export from the Arctic Ocean takes place. The exported sea ice is a large source of freshwater 21 to the Nordic Seas and Subpolar North Atlantic, thereby preconditioning European climate and deep water 22 formation in the downstream North Atlantic Ocean. Here we show that in 2018, the ice export through Fram 23 Strait showed an unprecedented decline since the early 1990s. The 2018 ice export was reduced to less than 24 40% relative to that between 2000 and 2017, and amounted to just 25% of the 1990s. -
Arctic Species Trend Index 2010
Arctic Species Trend Index 2010Tracking Trends in Arctic Wildlife CAFF CBMP Report No. 20 discover the arctic species trend index: www.asti.is ARCTIC COUNCIL Acknowledgements CAFF Designated Agencies: • Directorate for Nature Management, Trondheim, Norway • Environment Canada, Ottawa, Canada • Faroese Museum of Natural History, Tórshavn, Faroe Islands (Kingdom of Denmark) • Finnish Ministry of the Environment, Helsinki, Finland • Icelandic Institute of Natural History, Reykjavik, Iceland • The Ministry of Infrastructure and Environment, the Environmental Agency, the Government of Greenland • Russian Federation Ministry of Natural Resources, Moscow, Russia • Swedish Environmental Protection Agency, Stockholm, Sweden • United States Department of the Interior, Fish and Wildlife Service, Anchorage, Alaska CAFF Permanent Participant Organisations: • Aleut International Association (AIA) • Arctic Athabaskan Council (AAC) • Gwich’in Council International (GCI) • Inuit Circumpolar Conference (ICC) Greenland, Alaska and Canada • Russian Indigenous Peoples of the North (RAIPON) • The Saami Council This publication should be cited as: Louise McRae, Christoph Zöckler, Michael Gill, Jonathan Loh, Julia Latham, Nicola Harrison, Jenny Martin and Ben Collen. 2010. Arctic Species Trend Index 2010: Tracking Trends in Arctic Wildlife. CAFF CBMP Report No. 20, CAFF International Secretariat, Akureyri, Iceland. For more information please contact: CAFF International Secretariat Borgir, Nordurslod 600 Akureyri, Iceland Phone: +354 462-3350 Fax: +354 462-3390 Email: [email protected] Website: www.caff.is Design & Layout: Lily Gontard Cover photo courtesy of Joelle Taillon. March 2010 ___ CAFF Designated Area Report Authors: Louise McRae, Christoph Zöckler, Michael Gill, Jonathan Loh, Julia Latham, Nicola Harrison, Jenny Martin and Ben Collen This report was commissioned by the Circumpolar Biodiversity Monitoring Program (CBMP) with funding provided by the Government of Canada. -
Climate Change and Food Sovereignty in Nunavut
land Article Being on Land and Sea in Troubled Times: Climate Change and Food Sovereignty in Nunavut Bindu Panikkar 1,* and Benjamin Lemmond 2 1 Environmental Studies Program and the Rubenstein School of the Environment and Natural Resources, University of Vermont, 81 Carrigan Dr., Burlington, VT 05405, USA 2 Department of Plant Pathology, University of Florida, Gainesville, FL 32611, USA; blemmond@ufl.edu * Correspondence: [email protected] Received: 7 November 2020; Accepted: 7 December 2020; Published: 10 December 2020 Abstract: Climate change driven food insecurity has emerged as a topic of special concern in the Canadian Arctic. Inuit communities in this region rely heavily on subsistence; however, access to traditional food sources may have been compromised due to climate change. Drawing from a total of 25 interviews among Inuit elders and experienced hunters from Cambridge Bay and Kugluktuk in Nunavut, Canada, this research examines how climate change is impacting food sovereignty and health. Our results show that reports of food insecurity were more pronounced in Kugluktuk than Cambridge Bay. Participants in Kugluktuk consistently noted declining availability of preferred fish and game species (e.g., caribou, Arctic char), a decline in participation of sharing networks, and overall increased difficulty accessing traditional foods. Respondents in both communities presented a consistent picture of climate change compounding existing socio-economic (e.g., poverty, disconnect between elders and youth) and health stressors affecting multiple aspects of food sovereignty. This article presents a situated understanding of how climate change as well as other sociocultural factors are eroding food sovereignty at the community-scale in the Arctic. -
Physical Oceanography in the Arctic Ocean: 1968
Physical Oceanography in the Arctic Ocean: 1968 L. K. COACHMAN1 INTRODUCTION Three years ago I reviewed our knowledge of the physical regime of the Arctic Ocean (Coachman 1968). Briefly, the Ocean may be thought of as composed of two layers of different density: a light, relatively thin (W 200 m.) and well-mixed top layer overlying a large thick mass of water of extremely uniform salinity, and hence density. In cold seawater, the density is largely determined by the salinity. Superimposed on this regime is a three-layer temperature regime. The surface layer is cold, being at or near freezing. Frequently there is a tem- perature minimum near the bottom of the surface layer (- 150 to 200 m. depth), and within the Canada Basin a slight temperature maximum is found at 75 to 100 m. depth owing to the intrusion of Bering Sea water. The intermediate layer, Atlantic water, is above OOC., and below this layer (> 1000 m.) occurs the large mass of bottom water which has extremely uniform temperatures below 0°C. but definitely above freezing. The general picture of the water masses is drawn from 70 years of oceano- graphic data collection, The Naval Arctic Research Laboratory, in its support of drifting stations and other scientific work on the pack ice, has provided the basic support for the United States contribution to physical oceanographic studies of the central Arctic Ocean. There are still enormous gaps in our knowledge. The Arctic Ocean is probably no less complex than any of the world oceans, but its ranges of property values are less and hence the complexities are reflected as smallervariations of the values in space and time. -
The Need for Fast Near-Term Climate Mitigation to Slow Feedbacks and Tipping Points
The Need for Fast Near-Term Climate Mitigation to Slow Feedbacks and Tipping Points Critical Role of Short-lived Super Climate Pollutants in the Climate Emergency Background Note DRAFT: 27 September 2021 Institute for Governance Center for Human Rights and & Sustainable Development (IGSD) Environment (CHRE/CEDHA) Lead authors Durwood Zaelke, Romina Picolotti, Kristin Campbell, & Gabrielle Dreyfus Contributing authors Trina Thorbjornsen, Laura Bloomer, Blake Hite, Kiran Ghosh, & Daniel Taillant Acknowledgements We thank readers for comments that have allowed us to continue to update and improve this note. About the Institute for Governance & About the Center for Human Rights and Sustainable Development (IGSD) Environment (CHRE/CEDHA) IGSD’s mission is to promote just and Originally founded in 1999 in Argentina, the sustainable societies and to protect the Center for Human Rights and Environment environment by advancing the understanding, (CHRE or CEDHA by its Spanish acronym) development, and implementation of effective aims to build a more harmonious relationship and accountable systems of governance for between the environment and people. Its work sustainable development. centers on promoting greater access to justice and to guarantee human rights for victims of As part of its work, IGSD is pursuing “fast- environmental degradation, or due to the non- action” climate mitigation strategies that will sustainable management of natural resources, result in significant reductions of climate and to prevent future violations. To this end, emissions to limit temperature increase and other CHRE fosters the creation of public policy that climate impacts in the near-term. The focus is on promotes inclusive socially and environmentally strategies to reduce non-CO2 climate pollutants, sustainable development, through community protect sinks, and enhance urban albedo with participation, public interest litigation, smart surfaces, as a complement to cuts in CO2. -
Precursors of September Arctic Sea-Ice Extent Based on Causal Effect Networks
atmosphere Article Precursors of September Arctic Sea-Ice Extent Based on Causal Effect Networks Sha Li 1, Muyin Wang 2,3,*, Nicholas A. Bond 2,3, Wenyu Huang 1 , Yong Wang 1, Shiming Xu 1 , Jiping Liu 4, Bin Wang 1,5 and Yuqi Bai 1,* 1 Ministry of Education Key Laboratory for Earth System Modeling, Department of Earth System Science, Tsinghua University, Beijing 100084, China; [email protected] (S.L.); [email protected] (W.H.); [email protected] (Y.W.); [email protected] (S.X.); [email protected] (B.W.) 2 Joint Institute for the Study of the Atmosphere and Ocean, University of Washington, Seattle, WA 98195, USA; [email protected] 3 Pacific Marine Environmental Laboratory, National Oceanic and Atmospheric Administration, Seattle, WA 98115, USA 4 Department of Atmospheric and Environmental Sciences, University at Albany, State University of New York, Albany, NY 12222, USA; [email protected] 5 State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics (LASG), Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China * Correspondence: [email protected] (M.W.); [email protected] (Y.B.); Tel.: +1-206-526-4532 (M.W.); +86-10-6279-5269 (Y.B.) Received: 1 October 2018; Accepted: 2 November 2018; Published: 9 November 2018 Abstract: Although standard statistical methods and climate models can simulate and predict sea-ice changes well, it is still very hard to distinguish some direct and robust factors associated with sea-ice changes from its internal variability and other noises. -
Changes in Snow, Ice and Permafrost Across Canada
CHAPTER 5 Changes in Snow, Ice, and Permafrost Across Canada CANADA’S CHANGING CLIMATE REPORT CANADA’S CHANGING CLIMATE REPORT 195 Authors Chris Derksen, Environment and Climate Change Canada David Burgess, Natural Resources Canada Claude Duguay, University of Waterloo Stephen Howell, Environment and Climate Change Canada Lawrence Mudryk, Environment and Climate Change Canada Sharon Smith, Natural Resources Canada Chad Thackeray, University of California at Los Angeles Megan Kirchmeier-Young, Environment and Climate Change Canada Acknowledgements Recommended citation: Derksen, C., Burgess, D., Duguay, C., Howell, S., Mudryk, L., Smith, S., Thackeray, C. and Kirchmeier-Young, M. (2019): Changes in snow, ice, and permafrost across Canada; Chapter 5 in Can- ada’s Changing Climate Report, (ed.) E. Bush and D.S. Lemmen; Govern- ment of Canada, Ottawa, Ontario, p.194–260. CANADA’S CHANGING CLIMATE REPORT 196 Chapter Table Of Contents DEFINITIONS CHAPTER KEY MESSAGES (BY SECTION) SUMMARY 5.1: Introduction 5.2: Snow cover 5.2.1: Observed changes in snow cover 5.2.2: Projected changes in snow cover 5.3: Sea ice 5.3.1: Observed changes in sea ice Box 5.1: The influence of human-induced climate change on extreme low Arctic sea ice extent in 2012 5.3.2: Projected changes in sea ice FAQ 5.1: Where will the last sea ice area be in the Arctic? 5.4: Glaciers and ice caps 5.4.1: Observed changes in glaciers and ice caps 5.4.2: Projected changes in glaciers and ice caps 5.5: Lake and river ice 5.5.1: Observed changes in lake and river ice 5.5.2: Projected changes in lake and river ice 5.6: Permafrost 5.6.1: Observed changes in permafrost 5.6.2: Projected changes in permafrost 5.7: Discussion This chapter presents evidence that snow, ice, and permafrost are changing across Canada because of increasing temperatures and changes in precipitation. -
Record Winter Winds in 2020/21 Drove Exceptional Arctic Sea Ice Transport ✉ R
ARTICLE https://doi.org/10.1038/s43247-021-00221-8 OPEN Record winter winds in 2020/21 drove exceptional Arctic sea ice transport ✉ R. D. C. Mallett 1 , J. C. Stroeve1,2,3, S. B. Cornish 4, A. D. Crawford 3, J. V. Lukovich3, M. C. Serreze2, A. P. Barrett2, W. N. Meier2, H. D. B. S. Heorton 1 & M. Tsamados1 The volume of Arctic sea ice is in decline but exhibits high interannual variability, which is driven primarily by atmospheric circulation. Through analysis of satellite-derived ice products and atmospheric reanalysis data, we show that winter 2020/21 was characterised by anomalously high sea-level pressure over the central Arctic Ocean, which resulted in unprecedented anticyclonic winds over the sea ice. This atmospheric circulation pattern 1234567890():,; drove older sea ice from the central Arctic Ocean into the lower-latitude Beaufort Sea, where it is more vulnerable to melting in the coming warm season. We suggest that this unusual atmospheric circulation may potentially lead to unusually high summer losses of the Arctic’s remaining store of old ice. 1 Centre for Polar Observation and Modelling, Earth Sciences, University College London, London, UK. 2 National Snow and Ice Data Center, CIRES, University of Colorado, Boulder, CO, USA. 3 Centre for Earth Observation Science, University of Manitoba, Winnipeg, Canada. 4 Department of Earth Sciences, ✉ University of Oxford, Oxford, UK. email: [email protected] COMMUNICATIONS EARTH & ENVIRONMENT | (2021) 2:149 | https://doi.org/10.1038/s43247-021-00221-8 | www.nature.com/commsenv 1 ARTICLE COMMUNICATIONS EARTH & ENVIRONMENT | https://doi.org/10.1038/s43247-021-00221-8 heage,extent,thicknessandvolumeofArcticseaicearein A measure of anticyclonic flow is the relative vorticity7.Relative multidecadal decline1,2.However,thesequantitiesallexhibit vorticity of the 10-m winds over Arctic Ocean sea ice fell more than T – − year-to-year variability, which is in part determined by vari- 2.3 standard deviations below 1979 2021 mean (Fig.