A Brief History of Field Artillery Rockets, Missiles, and The

Total Page:16

File Type:pdf, Size:1020Kb

A Brief History of Field Artillery Rockets, Missiles, and The A BRIEF HISTORY OF FIELD ARTILLERY ROCKETS, MISSILES, AND THE THREAT Dropping the atomic bomb on Hiroshima and Nagasaki in August 1945 heralded the beginning of the atomic age, often called the nuclear age. Initially, the American defense establishment made strategic atomic weapons and airpower its number one priority to deter aggression and relegated the ground forces to a distant second. The Soviet acquisition of the atomic bomb in 1949, the fall of China to the communists in 1949, and the Korean War of the early 1950s, however, energized the Army to develop tactical atomic field artillery rockets and guided missiles to augment a conventional atomic cannon and to complement strategic atomic weapons. After the Korean War and through the 1980s, the Soviet-Warsaw Pact threat motivated the Army and the Field Artillery to continue modernizing and expanding their tactical nuclear weapons arsenal. With the collapse of the Soviet Union and Warsaw Pact in the 1990s, the need for tactical nuclear weapons disappeared. This emboldened the President of the United States, George H.W. Bush, to eliminate country’s tactical nuclear weapons and forced Army and the Field Artillery to rely upon long-range conventional rockets and missiles to counter international threats to national security. FIRST GENERATION OF NUCLEAR ROCKETS AND MISSILES Following World War Two, the American military community concluded that an air-delivered atomic bomb (a fission bomb in which the atom nucleus was split to generate energy) represented the ultimate weapon. President Harry Truman and the American defense community relied upon the threat of the atomic bomb as the nation’s first line of defense to deter and even halt an invasion of West Europe by the numerically superior Soviet army. As the War Department Equipment Board of 1946, headed by General Joseph W. Stilwell, pointed out, this required developing atomic bombs and long-range bombers as the nation’s number one priority and warning potential threats that an unprovoked attack on American interests would cause the United States to counter with atomic weapons. The Army Air Force would drop atomic bombs on enemy industrial areas, military bases, and naval ports, to name a few targets, in response to an attack. To make this a reality, the Air Force, created by the National Defense Act of 1947, acquired the B-36 “Peacemaker” bomber, a piston-engine aircraft with a range of 9,000 miles and a speed of 435 miles per hour in 1949, and the B-47 bomber, a jet engine aircraft with a range of 4,600 miles without bombs and speed of 587 miles per hour in 1951. Both had the ability to deliver the atomic bomb.1 While dropping atomic bombs dominated the defense community’s thinking and determined priorities, military strategists still recognized the supporting role of the ground forces in this new age. They would occupy the hostile territory after the bomb had been dropped and mop up any enemy military forces that might have survived the blast. In view of this, the Stilwell Board predicted a prominent role for ground based long-range field artillery rockets and guided missiles to strike deep into enemy territory and antiaircraft artillery to protect the ground forces from enemy aircraft. Sometime in the future, these rockets and missiles would augment the light caliber, multiple rocket launchers with ranges of 5,000 yards that had been employed during World War Two to saturate a target with rockets and to complement cannon (tube) artillery. The Stilwell Board even envisioned using rockets and guided missiles to deliver an atomic warhead.2 2 Upon reviewing Army equipment requirements in light of the progress in rocket and guided missile technology since 1946, the Army Equipment Board of March 1950 under Lieutenant General John R. Hodge supported obtaining atomic bombs as the top priority as advocated by the Stilwell Board, promoted modernizing the ground force’s equipment, and urged the Army to develop surface-to-surface and surface-to-air rockets and guided missiles. The latter would defend the country and overseas military installations against air threats, while the former would carry conventional or atomic warheads to support fast-moving, highly mobile combat units. However, with World War Two over and no major conflict in sight at the beginning of 1950, the defense budget of fiscal year 1950 restricted military spending; and the Department of Defense prioritized its efforts on acquiring aircraft to deliver the atomic bomb.3 Unanticipated events prompted the Army to step up the pace of acquiring rockets and missiles. Late in 1949, the Soviets detonated their own atomic bomb to end the American monopoly of the bomb. According to the Central Intelligence Agency in 1950 the American monopoly had discouraged the Soviets from invading West Europe. Armed with their own atomic bomb, they now would be emboldened to attack. This meant that the nation’s ground forces had to be modernized. In 1949 China fell to the communists under Mao Tse Tung. Subsequently, North Korea invaded South Korea in June 1950, reaffirming to American leaders the Soviet Union’s hostility and willingness to support a client state’s assault on American interests. The invasion also heightened American fears about Communist aggression and a potential attack on West Europe. Later in 1951, the Central Intelligence Agency predicted that the Soviets would have 200 atomic bombs by 1954 and would employ them to strike cities and military targets in West Europe. These 3 series of events provided the existential national security crisis for the United States. This prompted President Dwight D. Eisenhower to decide that the United States needed to be equipped with the most modern weapons to deter Soviet aggression and to sign National Security Council Memorandum 162/2 in October 1953. This memorandum encouraged maintaining and even expanding the country’s nuclear arsenal and played importantly in the formulation of a doctrine of massive retaliation under the rubric of “the New Look,” declaring that the United States would respond to communist aggression by employing nuclear weapons. In harmony with this, the country developed a nuclear bomb (a fusion bomb in which a fission bomb was used to compress and heat fusion fuel to generate much greater energy) to be dropped by an aircraft and a nuclear warhead to be delivered by an intercontinental missile to stay ahead of the Soviets and to discourage Soviet and Chinese aggression. Eisenhower’s “New Look” strategy of relying on nuclear weapons and the subsequent spurt of military technological innovation aimed to compensate for the Soviet conventional forces’ numerical superiority and has often been called “the first offset” by some historians and political scientists. Basically, the United States planned to rely on nuclear weapons to counteract the Soviet numerical superiority in conventional military forces. At the time the Soviets could assemble around 175 active divisions and had 125 reserve divisions. In comparison, the United States had 29 Army and Marine divisions with seven in the reserve and could not afford to expand its conventional forces.4 Simultaneously, Soviet acquisition of an atomic bomb forced the Army to accelerate development of tactical atomic weapons. Fearing that West Europe would now be vulnerable to a Soviet attack with conventional and atomic weapons, the Army initiated work in May 1950 to acquire an atomic cannon. Rushed into production, the M-65 280- 4 mm. cannon, called Atomic Annie, fired an atomic warhead for the first time on 25 May 1953 at Frenchman Flats, Nevada. The warhead had a yield of 15-kilotons, which was equal to the atomic bomb dropped on Hiroshima in August 1945. Weighing 88 tons, the ungainly cannon required two tractor trucks to move it – one on its front and one on its rear. The cannon lacked the range (maximum range was 30 kilometers or 20 miles) and flexibility of aircraft-delivered munitions; but it could provide atomic fire support to ground forces in all weather and at night whereas aircraft had difficulties providing support in inclement weather and during hours of darkness.5 Concurrently, the Army rushed the Honest John rocket through development by using as much off-the-shelf equipment and parts as possible because it promised to provide the requisite conventional and atomic firepower for the Army. The Army hoped to deploy the rocket to Korea as an interim rocket until it could be replaced by a better one. Fielded in 1954 after the Korean War armistice had been signed in 1953, the M31 Honest John was a free-flight, fin-stabilized, solid propellant rocket. It was fired from a rail-type launcher, received no guidance in flight, and followed a ballistic trajectory similar to a cannon projectile. It carried a 1,500-pound conventional or atomic warhead, had a range of 5.7 to 15.7 miles (9.2 to 25.26 kilometers), could hit within 300 yards (274 meters) of the target, could be transported on highways or cross country with ease, and was less expensive than a guided missile. Even armed with a conventional warhead, it furnished more fire power than heavy cannon field artillery. The rocket also provided responsive fire support for the division and could engage targets beyond the enemy’s forward line of troops and out of range of conventional cannon artillery.6 5 Atomic Annie, an 8-inch nuclear projectile introduced in 1955, and Honest John gave the Army the capability to discourage and even thwart a massive Soviet armor strike through the Fulda Gap into West Germany that would easily overwhelm the West’s numerically inferior forces. By the mid-1950s, these nuclear weapons along with strategic nuclear weapons served as the primary means of defending West Europe and prompted the Army to develop its pentomic division of five battle groups by 1957 to function on the atomic battlefield.
Recommended publications
  • Winning the Salvo Competition Rebalancing America’S Air and Missile Defenses
    WINNING THE SALVO COMPETITION REBALANCING AMERICA’S AIR AND MISSILE DEFENSES MARK GUNZINGER BRYAN CLARK WINNING THE SALVO COMPETITION REBALANCING AMERICA’S AIR AND MISSILE DEFENSES MARK GUNZINGER BRYAN CLARK 2016 ABOUT THE CENTER FOR STRATEGIC AND BUDGETARY ASSESSMENTS (CSBA) The Center for Strategic and Budgetary Assessments is an independent, nonpartisan policy research institute established to promote innovative thinking and debate about national security strategy and investment options. CSBA’s analysis focuses on key questions related to existing and emerging threats to U.S. national security, and its goal is to enable policymakers to make informed decisions on matters of strategy, security policy, and resource allocation. ©2016 Center for Strategic and Budgetary Assessments. All rights reserved. ABOUT THE AUTHORS Mark Gunzinger is a Senior Fellow at the Center for Strategic and Budgetary Assessments. Mr. Gunzinger has served as the Deputy Assistant Secretary of Defense for Forces Transformation and Resources. A retired Air Force Colonel and Command Pilot, he joined the Office of the Secretary of Defense in 2004. Mark was appointed to the Senior Executive Service and served as Principal Director of the Department’s central staff for the 2005–2006 Quadrennial Defense Review. Following the QDR, he served as Director for Defense Transformation, Force Planning and Resources on the National Security Council staff. Mr. Gunzinger holds an M.S. in National Security Strategy from the National War College, a Master of Airpower Art and Science degree from the School of Advanced Air and Space Studies, a Master of Public Administration from Central Michigan University, and a B.S. in chemistry from the United States Air Force Academy.
    [Show full text]
  • EURASIA Russian Heavy Artillery
    EURASIA Russian Heavy Artillery: Leaving Depots and Returning to Service OE Watch Commentary: The Soviet Union developed large caliber artillery, such as the 2S4 ‘Tyulpan’ 240mm mortar and the 2S7 ‘Pion’ 203mm howitzer, to suppress lines of communication, destroy enemy headquarters, tactical nuclear weapons, logistic areas, and other important targets and to destroy urban areas and field fortifications. After the end of the Cold War, the Russian Federation placed most of these large caliber artillery systems into long-term storage depots for several reasons. The first is that they were intended to deliver nuclear, as well as conventional, munitions (the end of the Cold War meant that a long-range tactical nuclear weapon delivery was no longer needed). Another reason is that better tube (2S19M Msta-SM) and missile (MLRS/SRBM/GLCM) systems, such as new 300mm MLRS platforms, the Iskander missile system, and the 2S19M Msta-SM 152mm howitzer, allow Russia to fulfill many of the same tasks as large caliber artillery to varying degrees. The 2S4 ‘Tyulpan’ self-propelled mortar is equipped with a 240mm 2B8 mortar mounted on a modified Object 123 tracked chassis (similar to the 2S3 Akatsiya self-propelled howitzer) with a V-59 V-12, 520 horsepower diesel engine, capable of 60 km/h road speed. The Tyulpan has a crew of four, but five additional crewman are carried in the support vehicle that typically accompanies it. The system is capable of firing conventional, chemical, and nuclear munitions at a rate of one round per minute, although Russia reportedly now only has conventional munitions in service.
    [Show full text]
  • Army Ballistic Missile Programs at Cape Canaveral 1953 – 1988
    ARMY BALLISTIC MISSILE PROGRAMS AT CAPE CANAVERAL 1953 – 1988 by Mark C. Cleary 45th SPACE WING History Office TABLE OF CONTENTS Preface…………………………………………………… iii INTRODUCTION……………………………………… 1 REDSTONE……………………………………………… 15 JUPITER…………………………………………………. 44 PERSHING………………………………………………. 68 CONCLUSION………………………………………….. 90 ii Preface The United States Army has sponsored far fewer launches on the Eastern Range than either the Air Force or the Navy. Only about a tenth of the range’s missile and space flights can be attributed to Army programs, versus more than a third sponsored by each of the other services. Nevertheless, numbers seldom tell the whole story, and we would be guilty of a grave disservice if we overlooked the Army’s impressive achievements in the development of rocket- powered vehicles, missile guidance systems, and reentry vehicle technologies from the late 1940s onward. Several years of experimental flights were conducted at the White Sands Proving Ground before the Army sponsored the first two ballistic missile launches from Cape Canaveral, Florida, in July 1950. In June 1950, the Army moved some of its most important guided missile projects from Fort Bliss, Texas, to Redstone Arsenal near Huntsville, Alabama. Work began in earnest on the REDSTONE ballistic missile program shortly thereafter. In many ways, the early Army missile programs set the tone for the development of other ballistic missiles and range instrumentation by other military branches in the 1950s. PERSHING missile launches continued at the Cape in the 1960s, and they were followed by PERSHING 1A and PERSHING II launches in the 1970s and 1980s. This study begins with a summary of the major events leading up to the REDSTONE missile program at Cape Canaveral.
    [Show full text]
  • Hezbollah's Missiles and Rockets
    JULY 2017 CSIS BRIEFS CSIS Hezbollah’s Missiles and Rockets An Overview By Shaan Shaikh and Ian Williams JULY 2018 THE ISSUE Hezbollah is the world’s most heavily armed non-state actor, with a large and diverse stockpile of unguided artillery rockets, as well as ballistic, antiair, antitank, and antiship missiles. Hezbollah views its rocket and missile arsenal as its primary deterrent against Israeli military action, while also useful for quick retaliatory strikes and longer military engagements. Hezbollah’s unguided rocket arsenal has increased significantly since the 2006 Lebanon War, and the party’s increased role in the Syrian conflict raises concerns about its acquisition of more sophisticated standoff and precision-guided missiles, whether from Syria, Iran, or Russia. This brief provides a summary of the acquisition history, capabilities, and use of these forces. CENTER FOR STRATEGIC & middle east INTERNATIONAL STUDIES program CSIS BRIEFS | WWW.CSIS.ORG | 1 ezbollah is a Lebanese political party public source information and does not cover certain topics and militant group with close ties to such as rocket strategies, evolution, or storage locations. Iran and Syria’s Assad regime. It is the This brief instead focuses on the acquisition history, world’s most heavily armed non-state capabilities, and use of these forces. actor—aptly described as “a militia trained like an army and equipped LAND ATTACK MISSILES AND ROCKETS like a state.”1 This is especially true Hwith regard to its missile and rocket forces, which Hezbollah 107 AND 122 MM KATYUSHA ROCKETS has arrayed against Israel in vast quantities. The party’s arsenal is comprised primarily of small, man- portable, unguided artillery rockets.
    [Show full text]
  • The Army's New Multiple Rocket Launcher-A Shining Example of A
    The Army's New Multiple Rocket Launcher-A Shining Example of a Weapon That Works The military forces of the United States and its NATO partners have no hope nor intention of matching the Warsaw Pact gun-for-gun or tank­ for-tank. Instead we and our allies plan to rely from the onset of hostil­ ities in Europe on tactics and weapons which would blunt the initial attack and deliver a knockout blow to the Soviet second echelon forces before they could exploit any initial success. To give our Army the wherewithal to fight a numerically superior foe­ and win, we have organized and trained balanced ground fighting forces capable of successful combat against any army in the world. Of equal import, we are providing our soldiers with the weap­ ons and equipment to exhibit a credi­ ble deterrence to war-armaments like the M1 Abrams tank and its compan­ ion, the Bradley infantry fighting ve­ hicle, the AH-64 Apache attack heli­ copter and the UH -60 utility helicopter. In addition the Army is quietly field­ ing another new system that could provide the firepower edge our sol­ diers need. That weapon is the Multi­ ple Launch Rocket System (MLRS), and it is described by the general in charge of Army research and develop­ ment as "the best piece of equipment that we have fielded for close support of the battlefield since World War II." The MLRS is a highly reliable, ex­ tremely accurate field artillery rocket system with which three soldiers can deliver the volume of firepower that would normally require nearly a bat­ talion of heavy artillery.
    [Show full text]
  • Army Guide Monthly • Issue #3 (102)
    Army G uide monthly # 3 (102) March 2013 Savings Served Up for Bradley Armor Plates Tachanka Hwacha Patria Delivered 1st Batch of NextGen Armoured Wheeled Vehicles to Sweden Micro-robotics Development Furthered with ARL Contract Extension Textron Marine & Land Systems to Build 135 Additional Mobile Strike Force Vehicles Saab Acquires Ballistic Protection Technology Scale Armour Textron Awarded Contract to Produce Turrets and Provide Support for Colombia's APCs US Army Developing New 120mm AMP Tank Round Siege Engine Heavy Tank Medium Tank Tanegashima Super-Heavy Tank www.army-guide.com Army Guide Monthly • #3 (102) • March 2013 Army to change the armor tile box material from titanium to Savings Served Up for Bradley Armor aluminum for more than 800 reactive armor tile sets. Plates "They wanted to change the material for several reasons," said Peter Snedeker, a contracting officer with ACC-New Jersey. "It was easier to manufacture with aluminum rather than titanium, so there would be shorter lead times. Aluminum was also more readily available and cheaper." However, changing a contract isn't a simple matter. The change can't have a material effect on the design, nor can performance be less than what the contract requires. The aluminum must perform just as well or better than titanium to support the demands of the Soldier. When a military contractor approached the Army ACC-New Jersey's technical team performed an with a proposal for significant savings on armor extensive analysis of the change proposal and continued tiles for the Bradley Fighting Vehicle, the impulse to to work with General Dynamics to determine if the quickly go for the savings had to be postponed: The Bradley played such an important role in saving material switch served the form, fit and function lives that keeping a steady flow of contracts was specified in the technical data package.
    [Show full text]
  • United States Rocket Research and Development During World War II
    United States Rocket Research and Development During World War II Unidentified U.S. Navy LSM(R) (Landing Ship Medium (Rocket)) launching barrage rockets during a drill late in the Second World War. Image courtesy of the U.S. National Archives and Records Administration. and jet-assisted takeoff (JATO) units for piston-pow- Over the course of the Second World War, rockets ered attack fighters and bombers. Wartime American evolved from scientific and technical curiosities into rocket research evolved along a number of similar and practical weapons with specific battlefield applications. overlapping research trajectories. Both the U.S. Navy The Allied and Axis powers both pursued rocket re- and Army (which included the Army Air Forces) devel- search and development programs during the war. Brit- oped rockets for ground bombardment purposes. The ish and American rocket scientists and engineers (and services also fielded aerial rockets for use by attack their Japanese adversaries) mainly focused their efforts aircraft. The Navy worked on rocket-powered bombs on tactical applications using solid-propellant rockets, for antisubmarine warfare, while the Army developed while the Germans pursued a variety of strategic and the handheld bazooka antitank rocket system. Lastly, tactical development programs primarily centered on both the Army and Navy conducted research into JATO liquid-propellant rockets. German Army researchers units for use with bombers and seaplanes. Throughout led by Wernher von Braun spent much of the war de- the war, however, limited coordination between the veloping the A-4 (more popularly known as the V-2), armed services and federal wartime planning bodies a sophisticated long-range, liquid-fueled rocket that hampered American rocket development efforts and led was employed to bombard London and Rotterdam late to duplicated research and competition amongst pro- in the war.
    [Show full text]
  • USARMY/NASA Redstone Arsenal, Superfund Site Profile
    USARMY/NASA REDSTONE ARSENAL | Superfund Site Profile | Superfund Site Information | US EPA Español 中中: 中中中 中中: 中中中 Tiếng Việt 中中中 United States Environmental Protection Agency Learn the Issues Science & Technology Laws & Regulations About EPA EPA Superfund Program: USARMY/NASA REDSTONE ARSENAL, HUNTSVILLE, AL Contact Us Share EPA’s Superfund Program: Making a Visible Difference Where is this site? The U.S. Army at Redstone Arsenal (RSA) is an active installation that Stay Updated Regional News encompasses 38,300 acres of land southwest of Huntsville, Alabama. Public Participation Since opening in the early 1940s, development within RSA has largely Opportunities: There are no meetings or revolved around the historical need to produce, and later dispose of, comment periods scheduled at conventional and chemical munitions. From 1942 to 1945, DA this time. operations were used to manufacture raw materials for toxic agents and incendiary materials, and to assemble, store, and ship the final Site Reports and products. Onsite waste disposal activities included the disposal of Documents construction debris, drums, and chemical munitions, and open burning No published Administrative of combustible materials. After the war, the RSA became a center for Record documents currently the receipt, storage, and demilitarization of Allied and German available. No published Special chemical agents. In 1949, RSA’s mission changed to research and Collection documents development of rocketry and guided missile systems. In 1960, civilian currently available. rocketry and missile activities were transferred to National Aeronautics and Space Administration’s (NASA) The George C. Marshall Space Flight Center (MSFC) which is located in the central portion of the Site Facts installation (1,841 acres).
    [Show full text]
  • 19940015753.Pdf
    National Aeronautics and Educational Product Space Administration Teachers I Grades 2-6 I Office of Education and Human Resources Education Division _o N N cO 0 u_ 0 N t_ I ,.-, CO ,4" U O" 0_ _ Z _ 0 0 tM < u Is LIJ I-. _-.q4" W_ O ul ,,_ W;Z. INWel I I,,-. UJ .... 0,. i,-,{ .... u4 uJ I-,- .. IU_ Z_ .1 i ! I i I j | ] ROCKETS Physical Science Teacher's Guide with Activities National Aeronautics and Space Administration Office of Human Resources and Education Education Division This publication is in the Public Domain and is not protected by copyright. Permission is not required for duplication. EP-291 July 1993 Acknowledgments This publication was developed for the National Aeronautics and Space Administra- tion with the assistance of the many educa- tors of the Aerospace Education Services Program, Oklahoma State University. Writer: Gregory L. Vogt, Ed.D. Teaching From Space Program NASA Johnson Space Center Houston, TX Editor: Carla R. Rosenberg Teaching From Space Program NASA Headquarters Washington, DC Table of Contents How To Use This Guide ............................... 1 Activities and Demonstration Matrix ............. 2 Brief History of Rockets ................................ 3 Rocket Principles ......................................... 8 Practical Rocketry ...................................... 12 Activities and Demonstrations .................... 19 Glossary ..................................................... 40 NASA Educational Materials And Suggested Readings .......................... 41 NASA Educational Resources ................... 42 Evaluation Card ..................................... Insert ii How To Use This Guide vehiclesockets arein theexistence.oldest formEarlyofrocketsself-containedwere in use more than two thousand years ago. Over a long and exciting history, rockets have evolved from simple tubes filled with black powder into mighty vehicles capable of launching a spacecraft out into the galaxy.
    [Show full text]
  • 53Rd IAA HISTORY of ASTRONAUTICS SYMPOSIUM (E4) “Can You Believe They Put a Man on the Moon?” the Apollo Program
    70th International Astronautical Congress 2019 Paper ID: 48885 oral 53rd IAA HISTORY OF ASTRONAUTICS SYMPOSIUM (E4) \Can you believe they put a man on the moon?" The Apollo Program. (3) Author: Mr. John Goodman Odyssey Space Research, United States, [email protected] DORIS CHANDLER AND THE SATURN V GUIDANCE DEBATE Abstract Doris Chandler was a NASA engineer who led the team of men who developed the on-board guidance algorithm used by the Saturn launch vehicles. She received a B.S. in Mathematics from Tulane University with a Phi Beta Kappa Key and joined the Aeroballistics Laboratory at the Redstone Arsenal in 1953. As a NASA employee at the Marshall Space Flight Center in the 1960s, she served in three management positions: Deputy Chief of the Guidance Theory Section, Chief of the Guidance Application Section, and Chief of the Applied Guidance and Flight Mechanics Branch. In the early 1960s, Doris Chandler's team developed one of two competing mathematical concepts for Saturn guidance. The advent of flyable digital computers permitted the development of software- based guidance algorithms. Reference trajectory guidance methods employing analog computing, used for ballistic missiles in the 1950s, were not suitable for new space launch vehicles like the Saturn V. The Polynomial Guidance Mode (PGM), championed by Peenem¨undeveteran Rudolf Hoelker, used guidance polynomials derived from curve fits of nominal and dispersed optimal trajectories computed using the calculus of variations. PGM required extensive pre-flight computation but resulted in simple on-board software. Doris Chandler's team developed the Iterative Guidance Mode (IGM) based on an idea of Peenem¨unde veteran Helmut Horn that involved Lawden's linear tangent steering law.
    [Show full text]
  • Rebel Forces in Northern Mali
    REBEL FORCES IN NORTHERN MALI Documented weapons, ammunition and related materiel April 2012-March 2013 Co-published online by Conflict Armament Research and the Small Arms Survey © Conflict Armament Research/Small Arms Survey, London/Geneva, 2013 First published in April 2013 All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means without the prior permission in writing of Conflict Armament Research and the Small Arms Survey, or as expressly permitted by law, or under terms agreed with the appropriate reprographics rights organisation. Enquiries concerning reproduction outside the scope of the above should be sent to the secretary, Conflict Armament Research ([email protected]) or the secretary, Small Arms Survey ([email protected]). Copy-edited by Alex Potter ([email protected]) Reviewed by Alex Diehl and Nic Jenzen-Jones Cover image: © Joseph Penny, 2013 Above image: Design and layout by Julian Knott (www.julianknott.com) © Richard Valdmanis, 2013 TABLE OF CONTENTS About 4 3.7 M40 106 mm recoilless gun 11 Abbreviations and acronyms 5 4. Light Weapons Ammunition 12 Introduction 6 4.1 12.7 x 108 mm ammunition 12 4.2 14.5 x 115 mm ammunition 12 1. Small Arms 7 4.3 PG-7 rockets 13 1.1 Kalashnikov-pattern 7.62 x 39 mm assault 4.4 OG-82 and PG-82 rockets 13 rifles 7 4.5 82 mm mortar bombs 14 1.2 FN FAL-pattern 7.62 x 51 mm rifle 7 4.6 120 mm mortar bombs 14 1.3 G3-pattern 7.62 x 51 mm rifle 7 4.7 Unidentified nose fuzes 14 1.4 MAT-49 9 x 19 mm sub-machine gun 7 4.8 F1-pattern fragmentation grenades 15 1.5 RPD-pattern 7.62 x 39 mm light 4.9 NR-160 106 mm HEAT projectiles 15 machine gun 7 1.6 PK-pattern 7.62 x 54R mm general-purpose 5.
    [Show full text]
  • U.S. Army Board Study Guide Version 5.3 – 02 June, 2008
    U.S. Army Board Study Guide Version 5.3 – 02 June, 2008 Prepared by ArmyStudyGuide.com "Soldiers helping Soldiers since 1999" Check for updates at: http://www.ArmyStudyGuide.com Sponsored by: Your Future. Your Terms. You’ve served your country, now let DeVry University serve you. Whether you want to build off of the skills you honed in the military, or launch a new career completely, DeVry’s accelerated, year-round programs can help you make school a reality. Flexible, online programs plus more than 80 campus locations nationwide make studying more manageable, even while you serve. You may even be eligible for tuition assistance or other military benefits. Learn more today. Degree Programs Accounting, Business Administration Computer Information Systems Electronics Engineering Technology Plus Many More... Visit www.DeVry.edu today! Or call 877-496-9050 *DeVry University is accredited by The Higher Learning Commission of the North Central Association, www.ncahlc.org. Keller Graduate School of Management is included in this accreditation. Program availability varies by location Financial Assistance is available to those who qualify. In New York, DeVry University and its Keller Graduate School of Management operate as DeVry College of New York © 2008 DeVry University. All rights reserved U.S. Army Board Study Guide Table of Contents Army Programs ............................................................................................................................................. 5 ASAP - Army Substance Abuse Program...............................................................................................
    [Show full text]