(145453) 2005 RR43: a Case for a Carbon-Depleted Population of Tnos?

Total Page:16

File Type:pdf, Size:1020Kb

(145453) 2005 RR43: a Case for a Carbon-Depleted Population of Tnos? A&A 468, L25–L28 (2007) Astronomy DOI: 10.1051/0004-6361:20077294 & c ESO 2007 Astrophysics Letter to the Editor The water ice rich surface of (145453) 2005 RR43: a case for a carbon-depleted population of TNOs? N. Pinilla-Alonso1, J. Licandro2,3, R. Gil-Hutton4, and R. Brunetto5,6 1 Fundación Galileo Galilei & Telescopio Nazionale Galileo, PO Box 565, 38700, S/C de La Palma, Tenerife, Spain e-mail: [email protected] 2 Isaac Newton Group, 38700 Santa Cruz de La Palma, Tenerife, Spain 3 Instituto de Astrofísica de Canarias, c/Vía Láctea s/n, 38205 La Laguna, Tenerife, Spain 4 Complejo Astronómico El Leoncito (Casleo) and San Juan National University, Av. España 1512 sur, J5402DSP, San Juan, Argentina 5 Dipartimento di Fisica, Università del Salento, via Arnesano, 73100 Lecce, Italy 6 INAF-Osservatorio Astrofisico di Catania, via S. Sofia 78, 95123 Catania, Italy Received 13 February 2007 / Accepted 23 April 2007 ABSTRACT Context. Recent results suggest that there is a group of trans-Neptunian objects (TNOs) (2003 EL61 being the biggest member), with surfaces composed of almost pure water ice and with very similar orbital elements. These objects provide exciting laboratories for the study of the processes that prevent the formation of an evolved mantle of organics on the surfaces of the bodies in the trans-Neptunian belt (TNb). Aims. We study the surface composition of another TNO that moves in a similar orbit, (145453) 2005 RR43, and compare it with the surface composition of the other members of the group. Methods. We report visible and near-infrared spectra in the 0.53−2.4 µm spectral range, obtained with the 4.2 m William Herschel Telescope and the 3.58 m Telescopio Nazionale Galileo at the “Roque de los Muchachos” Observatory (La Palma, Spain). Scattering models are used to derive information about its surface composition. We also measure the depth D of the water ice absorption bands and compare with those of the other members of the group. Results. The spectrum of 2005 RR43 is neutral in color in the visible and dominated by very deep water ice absorption bands in the near infrared (D = 70.3 ± 2.1% and 82.8 ± 4.9% at 1.5 µm and 2.0 µm respectively). It is very similar to the spectrum of the group of TNOs already mentioned. All of them present much deeper water ice absorption bands (D > 40%) than any other TNO except Charon. Scattering models show that its surface is covered by water ice, a significant fraction in crystalline state with no trace (5% upper limit) of complex organics. Possible scenarios to explain the existence of this population of TNOs are discussed: a giant collision, an originally carbon depleted composition, or a common process of continuous resurfacing. Conclusions. 2005 RR43 is member of a group, may be a population, of TNOs clustered in the space of orbital parameters that show abundant water ice and no signs of complex organics and which origin needs to be further investigated. The lack of complex organics in their surfaces suggests a significant smaller fraction of carbonaceous volatiles like CH4 in this population than in “normal” TNOs. A carbon depleted population of TNOs could be the origin of the population of carbon depleted Jupiter family comets already noticed by A’Hearn et al. (1995). Key words. Kuiper Belt – solar system: formation 1. Introduction (Brown et al. 1999) also have surface composition similar to Charon. During last year the spectra of five other objects were Spectroscopic and spectrophotometric studies show that published, revealing that their surfaces are also covered by fresh about 70% of TNOs present a mantle of complex organics on water ice: (136108) 2003 EL61 (Trujillo et al. 2007), its biggest their surfaces (Brunetto et al. 2006). Long term processing by satellite S/2005 (136108) 1 (Barkume et al. 2006) and during high energy particles and solar radiation on icy bodies, induces the review process of this paper 2003 OP32, 1995 SM55 and the formation of organic species in their outer layers, resulting in 2005 RR43 (Brown et al. 2007). The spectra of these TNOs show a mantle that covers the unprocessed original ices (Moore et al. all the same characteristics, they are neutral and featureless in the 1983; Johnson et al. 1984; Strazzulla & Johnson 1991). Until visible and show strong water ice absorption bands in the near recently, the only case of a TNO with a surface covered basically infrared. All these TNOs, except Charon, are located in a narrow by a thick layer of water ice was Charon (Buie et al. 1987; region of the orbital parameters space (41.6 < a < 43.6AU, Marcialis et al. 1987), and it has been considered an intringuing 25.8 < i < 28.2deg,0.10 < e < 0.19). The existence of a pop- case because of the need of a resurfacing mechanism like ulation of TNOs with Charon-like surfaces and similiar orbital cryovolcanism or collisons with micro-meteorites (Brown 2002; parameters needs to be explained as it can have a strong impact Cruikshank 1998). Recently, it has been showed that (55636) in the knowledge of the trans-neptunian belt formation theories 2002 TX300 (Licandro et al. 2006) and (13308) 1996 TO66 and/or resurfacing mechanisms. Article published by EDP Sciences and available at http://www.aanda.org or http://dx.doi.org/10.1051/0004-6361:20077294 L26 N. Pinilla-Alonso et al.: The surface of (145453) 2005 RR43: a case for a carbon-depleted population of TNOs? In this paper we present visible and near-infrared spec- troscopy of a member of this group, (145453) 2005 RR43 (a, e, i = 43.06 AU, 0.14, 28.54 deg) and derive compositional information using scattering models. Finally we describe differ- ent scenarios that can explain the existence of this population of TNOs. 2. Observations and analysis of the spectrum We obtained the visible spectrum of 2005 RR43 with the 4.2 m William Herschel telescope (WHT) and the near-infrared spec- trum with the 3.58 m “Telescopio Nazionale Galileo” (TNG) both at the “Roque de los Muchachos” Observatory (Canary Islands, Spain). The visible spectrum (0.35−0.95 µm) was obtained on 2006 Sep. 23.18 UT using the low resolution grating (R158R, Fig. 1. Spectrum of 2005 RR43, normalized at 0.55 µm, together with with a dispersion of 1.63 Å/pixel) of the double-armed spectro- the spectra of the other members of the group shifted in the vertical axis graph ISIS at WHT, and a 4 slit width oriented at the parallactic for clarity. References in Table 1. angle. The tracking was at the TNO proper motion. Three 900 s exposure time spectra were obtained by shift- ing the object by 10 in the slit to better correct the fringing. the depth of the bands, D, with respect to the continuum of the Calibration and extraction of the spectra were done using IRAF = − / and following standard procedures (Massey et al. 1992). TNO spectrum as D 1 Rb Rc,whereRb is the reflectance in the spectra were averaged and the reflectance spectrum was obtained center of the band and Rc is the reflectance of the continuum at 1.2 µm. For 2005 RR43, D is 70.3 ± 2.1% and 82.8 ± 4.9% by dividing the spectrum of the TNO by the spectrum of the so- µ µ lar analogue star Hyades 64 obtained the same night just before at 1.5 m and 2.0 m respectively, beeing the deepest water ice and after the observation of the TNO at a similar airmass. Final absorption bands ever observed in a TNO. spectrum presented in Fig. 1 was smoothed using a smoothing Thus, we conclude that the surface of 2005 RR43 is com- box-car of 15 pixels to improve the S/N. posed by a large fraction of large sized (or a thick layer of) wa- The near-infrared spectrum was obtained on ter ice particles, and none or a very small fraction of complex 2006 Sep. 29.15 UT, using the low resolution spectroscopic organics or silicates. mode of NICS (Near-Infrared Camera and Spectrometer) at the This is confirmed by scattering models. We use the TNG based on an Amici prism disperser. This mode yields a simple one-dimensional geometrical-optics formulation by complete 0.8−2.4 µm spectrum. A 1.5 slit width corresponding Shkuratov et al. (1999), to obtain information about the surface to a spectral resolving power R 34 quasi-constant along the composition. spectrum was used. The observing and reduction procedures It is important to determine if water ice is in amorphous or were as described in Licandro et al. (2002). The total “on crystalline state as it can be indicative of resurfacing processes. object” exposure time was 11 160 s. Crystalline water ice can be easily identified by an absorption To correct for telluric absorption and to obtain the relative band at 1.65 µm. This band has been detected in the spec- reflectance, solar analogue star Hyades 64 and two G-2 Landolt trum of TNOs Charon (Brown & Calvin 2000) and 2003 EL61 stars (115−271 and 98−978, Landolt 1992) were observed at dif- (Trujillo et al. 2007), the only TNOs that have spectra similar ferent airmasses during the night. The reflectance spectrum of to 2005 RR43 and sufficiently high signal-to-noise to see this the TNO was obtained using all the SA stars, averaged and then band. Unfortunately, the relatively poor S/N of our spectrum normalized to fit the visible one using the overlapping spectral does not allow us to clearly detect this feature.
Recommended publications
  • Comparative Kbology: Using Surface Spectra of Triton, Pluto, and Charon
    COMPARATIVE KBOLOGY: USING SURFACE SPECTRA OF TRITON, PLUTO, AND CHARON TO INVESTIGATE ATMOSPHERIC, SURFACE, AND INTERIOR PROCESSES ON KUIPER BELT OBJECTS by BRYAN JASON HOLLER B.S., Astronomy (High Honors), University of Maryland, College Park, 2012 B.S., Physics, University of Maryland, College Park, 2012 M.S., Astronomy, University of Colorado, 2015 A thesis submitted to the Faculty of the Graduate School of the University of Colorado in partial fulfillment of the requirement for the degree of Doctor of Philosophy Department of Astrophysical and Planetary Sciences 2016 This thesis entitled: Comparative KBOlogy: Using spectra of Triton, Pluto, and Charon to investigate atmospheric, surface, and interior processes on KBOs written by Bryan Jason Holler has been approved for the Department of Astrophysical and Planetary Sciences Dr. Leslie Young Dr. Fran Bagenal Date The final copy of this thesis has been examined by the signatories, and we find that both the content and the form meet acceptable presentation standards of scholarly work in the above mentioned discipline. ii ABSTRACT Holler, Bryan Jason (Ph.D., Astrophysical and Planetary Sciences) Comparative KBOlogy: Using spectra of Triton, Pluto, and Charon to investigate atmospheric, surface, and interior processes on KBOs Thesis directed by Dr. Leslie Young This thesis presents analyses of the surface compositions of the icy outer Solar System objects Triton, Pluto, and Charon. Pluto and its satellite Charon are Kuiper Belt Objects (KBOs) while Triton, the largest of Neptune’s satellites, is a former member of the KBO population. Near-infrared spectra of Triton and Pluto were obtained over the previous 10+ years with the SpeX instrument at the IRTF and of Charon in Summer 2015 with the OSIRIS instrument at Keck.
    [Show full text]
  • A Search for Volatile Ices on the Surfaces of Cold Classical Kuiper Belt Objects
    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Masters Theses Graduate School 5-2013 A search for volatile ices on the surfaces of cold classical Kuiper Belt Objects Daine Michael Wright [email protected] Follow this and additional works at: https://trace.tennessee.edu/utk_gradthes Part of the Other Astrophysics and Astronomy Commons, and the The Sun and the Solar System Commons Recommended Citation Wright, Daine Michael, "A search for volatile ices on the surfaces of cold classical Kuiper Belt Objects. " Master's Thesis, University of Tennessee, 2013. https://trace.tennessee.edu/utk_gradthes/1699 This Thesis is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Masters Theses by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a thesis written by Daine Michael Wright entitled "A search for volatile ices on the surfaces of cold classical Kuiper Belt Objects." I have examined the final electronic copy of this thesis for form and content and recommend that it be accepted in partial fulfillment of the requirements for the degree of Master of Science, with a major in Geology. Joshua Emery, Major Professor We have read this thesis and recommend its acceptance: Harry McSween, Jeffrey Moersch Accepted for the Council: Carolyn R. Hodges Vice Provost and Dean of the Graduate School (Original signatures are on file with official studentecor r ds.) A search for volatile ices on the surfaces of cold classical Kuiper Belt Objects A Thesis Presented for The Master of Science Degree The University of Tennessee, Knoxville Daine Michael Wright May 2013 c by Daine Michael Wright, 2013 All Rights Reserved.
    [Show full text]
  • Formation, Structure and Habitability of Super-Earth and Sub-Neptune
    Formation, Structure and Habitability of Super-Earth and Sub-Neptune Exoplanets by Leslie Anne Rogers B.Sc., Honours Physics-Mathematics, University of Ottawa (2006) Submitted to the Department of Physics in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY June 2012 c Massachusetts Institute of Technology 2012. All rights reserved. Author.............................................................. Department of Physics May 22, 2012 Certified by. Sara Seager Professor of Planetary Science Professor of Physics Class of 1941 Professor Thesis Supervisor Accepted by . Krishna Rajagopal Professor of Physics Associate Department Head for Education 2 Formation, Structure and Habitability of Super-Earth and Sub-Neptune Exoplanets by Leslie Anne Rogers Submitted to the Department of Physics on May 22, 2012, in partial fulfillment of the requirements for the degree of Doctor of Philosophy Abstract Insights into a distant exoplanet's interior are possible given a synergy between models and observations. Spectral observations of a star's radial velocity wobble induced by an orbiting planet's gravitational pull measure the planet mass. Photometric transit observations of a planet crossing the disk of its star measure the planet radius. This thesis interprets the measured masses and radii of super-Earth and sub-Neptune exoplanets, employing models to constrain the planets' bulk compositions, formation histories, and habitability. We develop a model for the internal structure of low-mass exoplanets consisting of up to four layers: an iron core, silicate mantle, ice layer, and gas layer. We quantify the span of plausible bulk compositions for low-mass transiting planets CoRoT-7b, GJ 436b, and HAT-P-11b, and describe how Bayesian analysis can be applied to rigorously account for observational, model, and inherent uncertainties.
    [Show full text]
  • Phd. Compositional Variation of Small Bodies Across the Solar System
    Observatoire de Paris Ecole´ Doctorale Astronomie et Astrophysique d'^Ile-de-France THESE` DE DOCTORAT pr´esent´eepour obtenir le grade de DOCTEUR DE L'OBSERVATOIRE DE PARIS Sp´ecialit´e:Astronomie & Astrophysique par Francesca E. DeMeo La variation compositionnelle des petits corps `atravers le syt`emesolaire soutenue le 16 juin 2010 devant le jury: Dr. Bruno Sicardy Pr´esident Dr. Hermann Boehnhardt Rapporteur Dr. Alberto Cellino Rapporteur Dr. Humberto Campins Examinateur Dr. Beth Clark Examinateur Dr. Daniel Hestroffer Examinateur Dr. M. Antonietta Barucci Co-Directrice de th`ese Dr. Richard P. Binzel Co-Directeur de th`ese LESIA, Observatoire de Paris-Meudon [email protected] The Paris Observatory Doctoral School of Astronomy and Astrophysics of ^Ile-de-France DOCTORAL THESIS presented to obtain the degree of DOCTOR OF THE PARIS OBSERVATORY Specialty: Astronomy & Astrophysics by Francesca E. DeMeo The compositional variation of small bodies across the Solar System defended the 16th of June 2010 before the jury: Dr. Bruno Sicardy President Dr. Hermann Boehnhardt Reviewer Dr. Alberto Cellino Reviewer Dr. Humberto Campins Examiner Dr. Beth Clark Examiner Dr. Daniel Hestroffer Examiner Dr. M. Antonietta Barucci Co-Advisor Dr. Richard P. Binzel Co-Advisor LESIA, Observatoire de Paris-Meudon [email protected] Abstract Small bodies hold keys to our understanding of the Solar System. By studying these populations we seek the information on the conditions and structure of the primordial and current Solar System, its evolution, and the formation process of the planets. Constraining the surface composition of small bodies provides us with the ingredients and proportions for this cosmic recipe.
    [Show full text]
  • New Discoveries Beyond the Neptune and the Pluto Orbit
    New Discoveries Beyond the Neptune and the Pluto Orbit © Robert von Heeren, Munich 1994-1998 (Translator: Kirstin Heimerl) This english version of my german article (1) was published in "The Mountain Astrologer"-magazine in 1/1996 (The mentioned tables and figures are not shown here, because you find them updated at my astrology-page. See: Neue Planeten) There is more news from the border of the Solar System: so far 11 trans-Neptunians (Table 2) and a further 16 trans-Plutonians (Table 1) have been brought to light (as at: October 1995) since the spectacular discovery of a trans-Plutonian miniplanet by Jewitt and Luu with the Mauna Kea Telescope at Hilo, Hawaii on August 30, 1992 (3; click here for the discovery chart of 1992 QB1). Its provisonal designation is "1992 QB1" (2). The discoveries of all this planets partly confirm the theory promulgated by the Dutch-American astronomer Gerard Kuiper (12/7/1905-12/23/1973) in 1951 (4). He assumed that a ring of comet-like matter, so-called Planetesimals, could exist beyond Neptune, which was left when the planets formed over 4 billion years ago. The existence of such a "Kuiper-belt" or "Kuiper-disk" (surrounding the whole Solar System) would explain the partly unknown origin of many comets: through collisions and orbit disturbances (caused by Neptune's gravity) within the belt isolated fragments would reach the interior of the Solar System as comets or unusual minor planets on more or less eccentric and unstable orbits. According to spectral analysises the currently known 28 Kuiper-belt objects do NOT seem to be comets, but they nonetheless belong to the Kuiper-belt.
    [Show full text]
  • Absolute Magnitudes and Phase Coefficients of Trans-Neptunian Objects
    A&A 586, A155 (2016) Astronomy DOI: 10.1051/0004-6361/201527161 & c ESO 2016 Astrophysics Absolute magnitudes and phase coefficients of trans-Neptunian objects A. Alvarez-Candal1, N. Pinilla-Alonso2, J. L. Ortiz3,R.Duffard3, N. Morales3, P. Santos-Sanz3, A. Thirouin4, and J. S. Silva1 1 Observatório Nacional / MCTI, Rua General José Cristino 77, 20921-400 Rio de Janeiro, RJ, Brazil e-mail: [email protected] 2 Department of Earth and Planetary Sciences, University of Tennessee, Knoxville, TN, 37996, USA 3 Instituto de Astrofísica de Andalucía, CSIC, Apt 3004, 18080 Granada, Spain 4 Lowell Observatory, 1400 W Mars Hill Rd, Flagstaff, 86001 Arizona, USA Received 10 August 2015 / Accepted 27 November 2015 ABSTRACT Context. Accurate measurements of diameters of trans-Neptunian objects (TNOs) are extremely difficult to obtain. Thermal modeling can provide good results, but accurate absolute magnitudes are needed to constrain the thermal models and derive diameters and geometric albedos. The absolute magnitude, HV , is defined as the magnitude of the object reduced to unit helio- and geocentric distances and a zero solar phase angle and is determined using phase curves. Phase coefficients can also be obtained from phase curves. These are related to surface properties, but only few are known. Aims. Our objective is to measure accurate V-band absolute magnitudes and phase coefficients for a sample of TNOs, many of which have been observed and modeled within the program “TNOs are cool”, which is one of the Herschel Space Observatory key projects. Methods. We observed 56 objects using the V and R filters. These data, along with those available in the literature, were used to obtain phase curves and measure V-band absolute magnitudes and phase coefficients by assuming a linear trend of the phase curves and considering a magnitude variability that is due to the rotational light-curve.
    [Show full text]
  • Implications of Magnitude Distribution Comparisons Between Trans-Neptunian Objects and Comets
    Implications of Magnitude Distribution Comparisons between Trans-Neptunian Objects and Comets by Alexander J. Willman, Jr. SpSt 997 “Independent Study” Department of Space Studies University of North Dakota Dr. C. A. Wood, Advisor December 1, 1995 Implications of Magnitude Distribution Comparisons between Trans-Neptunian Objects and Comets Abstract The population of observed trans-neptunian objects has a fairly well-defined magnitude distribution, however, the population of observed short-period comets does not. This analysis of the population distributions of observed trans-neptunian objects (TNOs) and short-period comets (SPCs) indicates that the observed number of TNOs and SPCs is insufficient to judge conclusively whether the trans-neptunian objects are related to the short-period comets or whether the TNOs are part of the Kuiper belt from which the SPCs are believed to be derived. Differences in the population distributions of TNOs and SPCs indicate that the TNOs are not representative of the Kuiper belt as a whole, even if they are part of the Kuiper belt. Further analysis of the population distributions of comets and the TNOs has provided additional information and some predictions about the populations’ characteristics. This derived information includes the facts that: the six brightest SPCs for which H10 magnitudes have been calculated likely belong to the Oort cloud population (long-period) of comets instead of the Kuiper belt population of comets; Pluto and Charon are likely to belong to the TNO population instead of the major planet population; there are likely to be ~109 TNOs in the Kuiper belt, including many Pluto-sized objects, massing a total of ~1025 kg in all.
    [Show full text]
  • Volatile Evolution and Atmospheres of Trans-Neptunian Objects
    Volatile evolution and atmospheres of Trans-Neptunian Objects Leslie A. Younga Felipe Braga-Ribasb Robert E. Johnsonc a Southwest Research Institute, Boulder CO, USA b Federal University of Technology - Paraná/Brazil - UTFPR/Curitiba c University of Virginia, Charlottesville, VA, USA Abstract At 30-50 K, the temperatures typical for surfaces in the Kuiper Belt (e.g. Stern & Trafton 2008), only seven species have sublimation pressures higher than 1 nbar (Fray & Schmitt 2009): Ne, N2, CO, Ar, O2, CH4, and Kr. Of these, N2, CO, and CH4 have been detected or inferred on the surfaces of Trans-Neptunian Objects (TNOs). The presence of tenuous atmospheres above these volatile ices depends on the sublimation pressures, which are very sensitive to the composition, temperatures, and mixing states of the volatile ices. Therefore, the retention of volatiles on a TNO is related to its formation environment and thermal history. The surface volatiles may be transported via seasonally varying atmospheres and their condensation might be responsible for the high surface albedos of some of these bodies. The most sensitive searches for tenuous atmospheres are made by the method of stellar occultation, which have been vital for the study of the atmospheres of Triton and Pluto, and has to-date placed upper limits on the atmospheres of 11 other bodies. The recent release of the Gaia astrometric catalog has led to a "golden age" in the ability to predict TNO occultations in order to increase the observational data base. Keywords: Trans Neptunian objects, Kuiper Belt Objects, ices, atmospheres 1. Introduction Several bodies in the Transneptunian region have volatiles on their surfaces that have significant vapor pressures at the temperatures of the outer solar system: CH4, N2, and CO (with CO only detected on Pluto and Triton).
    [Show full text]
  • Volatile Evolution and Atmospheres of Trans-Neptunian Objects
    Volatile evolution and atmospheres of Trans-Neptunian Objects Leslie A. Younga Felipe Braga-Ribasb Robert E. Johnsonc a Southwest Research Institute, Boulder CO, USA b Federal University of Technology - Paraná/Brazil - UTFPR/Curitiba c University of Virginia, Charlottesville, VA, USA Abstract At 30-50 K, the temperatures typical for surfaces in the Kuiper Belt (e.g. Stern & Trafton 2008), only seven species have sublimation pressures higher than 1 nbar (Fray & Schmitt 2009): Ne, N2, CO, Ar, O2, CH4, and Kr. Of these, N2, CO, and CH4 have been detected or inferred on the surfaces of Trans-Neptunian Objects (TNOs). The presence of tenuous atmospheres above these volatile ices depends on the sublimation pressures, which are very sensitive to the composition, temperatures, and mixing states of the volatile ices. Therefore, the retention of volatiles on a TNO is related to its formation environment and thermal history. The surface volatiles may be transported via seasonally varying atmospheres and their condensation might be responsible for the high surface albedos of some of these bodies. The most sensitive searches for tenuous atmospheres are made by the method of stellar occultation, which have been vital for the study of the atmospheres of Triton and Pluto, and has to-date placed upper limits on the atmospheres of 11 other bodies. The recent release of the Gaia astrometric catalog has led to a "golden age" in the ability to predict TNO occultations in order to increase the observational data base. Keywords: Trans Neptunian objects, Kuiper Belt Objects, ices, atmospheres 1. Spectral evidence of N2, CO, and CH4 on the surfaces of TNOs Methane ice has been reported or inferred on the surfaces Triton, Pluto, Eris, Makemake, Quaoar, Varuna, Sedna, and 2007 OR10.
    [Show full text]
  • Neptune and Triton Essential Pieces of the Solar System Puzzle
    Neptune and Triton: Essential pieces of the Solar System puzzle a, b,c d a e,f g A. Masters , N. Achilleos , C.B. Agnor , S. Campagnola , S. Charnoz , B. Christophe , A.J. Coates c,h, L.N. Fletcher i, G.H. Jones c,h, L. Lamy j, F. Marzari k, N. Nettelmann l, J. Ruiz m, R. Ambrosi n, N. Andre o, A. Bhardwaj p, J.J. Fortney l, C.J. Hansen q, R. Helled r, s t b,c u v G. Moragas-Klostermeyer , G. Orton , L. Ray , S. Reynaud , N. Sergis , R. Srama s, M. Volwerk w a Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 3-1-1 Yoshinodai, Chuo-ku, Sagamihara, Kanagawa 252-5210, Japan b Atmospheric Physics Laboratory, Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, UK c The Centre for Planetary Sciences at UCL/Birkbeck, Gower Street, London, WC1E 6BT, UK d Astronomy Unit, School of Physics and Astronomy, Queen Mary University of London, Mile End Road, London, E1 4NS, UK e Laboratoire AIM, Université Paris Diderot/CEA/CNRS, 91191 Gif-sur-Yvette Cedex, France f Institut Universitaire de France, 103 Boulevard Saint Michel, 75005 Paris, France g ONERA – The French Aerospace Lab, 92322 Châtillon, France h Mullard Space Science Laboratory, Department of Space and Climate Physics, University College London, Holmbury St. Mary, Dorking, Surrey RH5 6NT, UK i Atmospheric, Oceanic & Planetary Physics, Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU, UK j LESIA, Observatoire de Paris, CNRS, Université Pierre et Marie Curie, Université Paris Diderot, Meudon, France
    [Show full text]
  • The Compositional Variation of Small Bodies Across the Solar System F
    The compositional variation of small bodies across the Solar System F. E. Demeo To cite this version: F. E. Demeo. The compositional variation of small bodies across the Solar System. Astrophysics [astro-ph]. Observatoire de Paris, 2010. English. tel-00514550 HAL Id: tel-00514550 https://tel.archives-ouvertes.fr/tel-00514550 Submitted on 2 Sep 2010 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Observatoire de Paris Ecole´ Doctorale Astronomie et Astrophysique d’ˆIle-de-France THESE` DE DOCTORAT pr´esent´eepour obtenir le grade de DOCTEUR DE L’OBSERVATOIRE DE PARIS Sp´ecialit´e:Astronomie & Astrophysique par Francesca E. DeMeo La variation compositionnelle des petits corps `atravers le syt`emesolaire soutenue le 16 juin 2010 devant le jury: Dr. Bruno Sicardy Pr´esident Dr. Hermann Boehnhardt Rapporteur Dr. Alberto Cellino Rapporteur Dr. Humberto Campins Examinateur Dr. Beth Clark Examinateur Dr. Daniel Hestroffer Examinateur Dr. M. Antonietta Barucci Co-Directrice de th`ese Dr. Richard P. Binzel Co-Directeur de th`ese LESIA, Observatoire de Paris-Meudon [email protected] The Paris Observatory Doctoral School of Astronomy and Astrophysics of ˆIle-de-France DOCTORAL THESIS presented to obtain the degree of DOCTOR OF THE PARIS OBSERVATORY Specialty: Astronomy & Astrophysics by Francesca E.
    [Show full text]
  • 1I/'Oumuamua As an N2 Ice Fragment of an Exo-Pluto Surface II
    manuscript submitted to Journal of Geophysical Research 1I/‘Oumuamua as an N2 ice fragment of an exo-pluto surface II: Generation of N2 ice fragments and the origin of ‘Oumuamua S. J. Desch1* and A. P. Jackson1,^ 1School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85287. Corresponding author: Steve Desch ([email protected]) * Corresponding author, ORC-ID 0000-0002-1571-0836 ^ ORC-ID 0000-0003-4393-9520 Key Points: 14 • A dynamical instability in the early Kuiper belt likely ejected ~10 N2 ice fragments from thousands of plutos. • A fragment of N2 ice from an “exo-Pluto” would match all known attributes of the interstellar object 1I/‘Oumuamua. • The dynamical instability in the Kuiper belt experienced by our Solar System may be common among stellar systems. 1 manuscript submitted to Journal of Geophysical Research Abstract The origin of the interstellar object 1I/‘Oumuamua, has defied explanation. In a companion paper (Jackson & Desch, 2021), we show that a body of N2 ice with axes 45 m × 44 m × 7.5 m at the time of observation would be consistent with its albedo, non-gravitational acceleration, and lack of observed CO or CO2 or dust. Here we demonstrate that impacts on the surfaces of Pluto- like Kuiper belt objects (KBOs) would have generated and ejected ~1014 collisional fragments— roughly half of them H2O ice fragments and half of them N2 ice fragments—due to the dynamical instability that depleted the primordial Kuiper belt. We show consistency between these numbers and the frequency with which we would observe interstellar objects like 1I/‘Oumuamua, and more comet-like objects like 2I/Borisov, if other stellar systems eject such objects with efficiency like that of the Sun; we infer that differentiated KBOs and dynamical instabilities that eject impact-generated fragments may be near-universal among extrasolar systems.
    [Show full text]