Effect of ALDH2 on Sleep Disturbances in Patients
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Neurotransmitter Resource Guide
NEUROTRANSMITTER RESOURCE GUIDE Science + Insight doctorsdata.com Doctor’s Data, Inc. Neurotransmitter RESOURCE GUIDE Table of Contents Sample Report Sample Report ........................................................................................................................................................................... 1 Analyte Considerations Phenylethylamine (B-phenylethylamine or PEA) ................................................................................................. 1 Tyrosine .......................................................................................................................................................................................... 3 Tyramine ........................................................................................................................................................................................4 Dopamine .....................................................................................................................................................................................6 3, 4-Dihydroxyphenylacetic Acid (DOPAC) ............................................................................................................... 7 3-Methoxytyramine (3-MT) ............................................................................................................................................... 9 Norepinephrine ........................................................................................................................................................................ -
Review Paper Monoamine Oxidase Inhibitors: a Review Concerning Dietary Tyramine and Drug Interactions
PsychoTropical Commentaries (2016) 1:1 – 90 © Fernwell Publications Review Paper Monoamine Oxidase Inhibitors: a Review Concerning Dietary Tyramine and Drug Interactions PK Gillman PsychoTropical Research, Bucasia, Queensland, Australia Abstract This comprehensive monograph surveys original data on the subject of both dietary tyramine and drug interactions relevant to Monoamine Oxidase Inhibitors (MAOIs), about which there is much outdated, incorrect and incomplete information in the medical literature and elsewhere. Fewer foods than previously supposed have problematically high tyramine levels because international food hygiene regulations have improved both production and handling. Cheese is the only food that has, in the past, been associated with documented fatalities from hypertension, and now almost all ‘supermarket’ cheeses are perfectly safe in healthy-sized portions. The variability of sensitivity to tyramine between individuals, and the sometimes unpredictable amount of tyramine content in foods, means a little knowledge and care are still advised. The interactions between MAOIs and other drugs are now well understood, are quite straightforward, and are briefly summarized here (by a recognised expert). MAOIs have no apparently clinically relevant pharmaco-kinetic interactions, and the only significant pharmaco-dynamic interaction, other than the ‘cheese reaction’ (caused by indirect sympatho-mimetic activity [ISA], is serotonin toxicity ST (aka serotonin syndrome) which is now well defined and straightforward to avoid by not co-administering any drug with serotonin re-uptake inhibitor (SRI) potency. There are no therapeutically used drugs, other than SRIs, that are capable of inducing serious ST with MAOIs. Anaesthesia is not contra- indicated if a patient is taking MAOIs. Most of the previously held concerns about MAOIs turn out to be mythical: they are either incorrect, or over-rated in importance, or stem from apprehensions born out of insufficient knowledge. -
Alternative Acetate Production Pathways in Chlamydomonas Reinhardtii During Dark Anoxia and the Dominant Role of Chloroplasts in Fermentative Acetate Productionw
This article is a Plant Cell Advance Online Publication. The date of its first appearance online is the official date of publication. The article has been edited and the authors have corrected proofs, but minor changes could be made before the final version is published. Posting this version online reduces the time to publication by several weeks. Alternative Acetate Production Pathways in Chlamydomonas reinhardtii during Dark Anoxia and the Dominant Role of Chloroplasts in Fermentative Acetate ProductionW Wenqiang Yang,a,1 Claudia Catalanotti,a Sarah D’Adamo,b Tyler M. Wittkopp,a,c Cheryl J. Ingram-Smith,d Luke Mackinder,a Tarryn E. Miller,b Adam L. Heuberger,e Graham Peers,f Kerry S. Smith,d Martin C. Jonikas,a Arthur R. Grossman,a and Matthew C. Posewitzb a Carnegie Institution for Science, Department of Plant Biology, Stanford, California 94305 b Colorado School of Mines, Department of Chemistry and Geochemistry, Golden, Colorado 80401 c Stanford University, Department of Biology, Stanford, California 94305 d Clemson University, Department of Genetics and Biochemistry, Clemson, South Carolina 29634 e Colorado State University, Proteomics and Metabolomics Facility, Fort Collins, Colorado 80523 f Colorado State University, Department of Biology, Fort Collins, Colorado 80523 ORCID ID: 0000-0001-5600-4076 (W.Y.) Chlamydomonas reinhardtii insertion mutants disrupted for genes encoding acetate kinases (EC 2.7.2.1) (ACK1 and ACK2) and a phosphate acetyltransferase (EC 2.3.1.8) (PAT2, but not PAT1) were isolated to characterize fermentative acetate production. ACK1 and PAT2 were localized to chloroplasts, while ACK2 and PAT1 were shown to be in mitochondria. -
The Aldehyde Dehydrogenase ALDH2*2 Allele Exhibits Dominance Over ALDH2*1 in Transduced Hela Cells
The aldehyde dehydrogenase ALDH2*2 allele exhibits dominance over ALDH2*1 in transduced HeLa cells. Q Xiao, … , T Johnston, D W Crabb J Clin Invest. 1995;96(5):2180-2186. https://doi.org/10.1172/JCI118272. Research Article Individuals heterozygous or homozygous for the variant aldehyde dehydrogenase (ALDH2) allele (ALDH2*2), which encodes a protein differing only at residue 487 from the normal protein, have decreased ALDH2 activity in liver extracts and experience cutaneous flushing when they drink alcohol. The mechanisms by which this allele exerts its dominant effect is unknown. To study this effect, the human ALDH2*1 cDNA was cloned and the ALDH2*2 allele was generated by site-directed mutagenesis. These cDNAs were transduced using retroviral vectors into HeLa and CV1 cells, which do not express ALDH2. The normal allele directed synthesis of immunoreactive ALDH2 protein (ALDH2E) with the expected isoelectric point. Extracts of these cells contained increased aldehyde dehydrogenase activity with low Km for the aldehyde substrate. The ALDH2*2 allele directed synthesis of mRNA and immunoreactive protein (ALDH2K), but the protein lacked enzymatic activity. When ALDH2*1-expressing cells were transduced with ALDH2*2 vectors, both mRNAs were expressed and immunoreactive proteins with isoelectric points ranging between those of ALDH2E and ALDH2K were present, indicating that the subunits formed heteromers. ALDH2 activity in these cells was reduced below that of the parental ALDH2*1-expressing cells. Thus, the ALDH2*2 allele is sufficient to cause ALDH2 deficiency in vitro. Find the latest version: https://jci.me/118272/pdf The Aldehyde Dehydrogenase ALDH2*2 Allele Exhibits Dominance over ALDH2*1 in Transduced HeLa Cells Qing Xiao, * Henry Weiner,* Timothy Johnston,* and David W. -
Combined Treatment of Isoflavone Supplementation and Exercise
Yoon et al. Journal of the International Society of Sports Nutrition 2014, 11:29 http://www.jissn.com/content/11/1/29 RESEARCH ARTICLE Open Access Combined treatment of isoflavone supplementation and exercise restores the changes in hepatic protein expression in ovariectomized rats - a proteomics approach Sun Yoon1, Joomin Lee2 and Seung-Min Lee1* Abstract Background: Postmenopausal women experience adverse physiological changes caused by estrogen deprivation. Here, we hypothesized that the administration of isoflavone, a phytoestrogn, and/or physical exercise could reverse changes in the levels of hepatic enzymes disturbed by loss of estrogen to ameliorate postmenopause-related health problems. Methods: Thirty-week-old female Sprague–Dawley rats were divided into five groups: a sham-operated (SHAM) group, ovariectomized groups on a regular diet with exercise (EXE) and without exercise (OVX), and ovariectomized groups on an isoflavone supplemented diet with (ISO + EXE) and without exercise (ISO). Proteomic tools were employed to identify candidate hepatic proteins that were differentially expressed among the five animal groups. Results: INMT was detected in the SHAM but not in all of the ovariectomized rats. Seven proteins (PPIA, AKR1C3, ALDH2, PSME2, BUCS1, OTC, and GAMT) were identified to have differential expression among the groups. When compared to the SHAM group, the ovariectomy elevated the levels of PPIA, BUCS1, PSME2, AKR1C3, and GAMT while decreasing ALDH2 and OTC. Among these OVX-induced changes, OVX-increased BUCS1 and GAMT levels were noticeably decreased by ISO or EXE and further greatly down-regulated by ISO + EXE. In the case of PSME2, ISO and EXE further increased OVX-upregulated expression levels but ISO + EXE greatly reduced OVX-increased levels. -
S41598-021-90243-1.Pdf
www.nature.com/scientificreports OPEN Metabolomics and computational analysis of the role of monoamine oxidase activity in delirium and SARS‑COV‑2 infection Miroslava Cuperlovic‑Culf1,2*, Emma L. Cunningham3, Hossen Teimoorinia4, Anuradha Surendra1, Xiaobei Pan5, Stefany A. L. Bennett2,6, Mijin Jung5, Bernadette McGuiness3, Anthony Peter Passmore3, David Beverland7 & Brian D. Green5* Delirium is an acute change in attention and cognition occurring in ~ 65% of severe SARS‑CoV‑2 cases. It is also common following surgery and an indicator of brain vulnerability and risk for the development of dementia. In this work we analyzed the underlying role of metabolism in delirium‑ susceptibility in the postoperative setting using metabolomic profling of cerebrospinal fuid and blood taken from the same patients prior to planned orthopaedic surgery. Distance correlation analysis and Random Forest (RF) feature selection were used to determine changes in metabolic networks. We found signifcant concentration diferences in several amino acids, acylcarnitines and polyamines linking delirium‑prone patients to known factors in Alzheimer’s disease such as monoamine oxidase B (MAOB) protein. Subsequent computational structural comparison between MAOB and angiotensin converting enzyme 2 as well as protein–protein docking analysis showed that there potentially is strong binding of SARS‑CoV‑2 spike protein to MAOB. The possibility that SARS‑CoV‑2 infuences MAOB activity leading to the observed neurological and platelet‑based complications of SARS‑CoV‑2 infection requires further investigation. COVID-19 is an ongoing major global health emergency caused by severe acute respiratory syndrome coro- navirus SARS-CoV-2. Patients admitted to hospital with COVID-19 show a range of features including fever, anosmia, acute respiratory failure, kidney failure and gastrointestinal issues and the death rate of infected patients is estimated at 2.2%1. -
Table 2. Significant
Table 2. Significant (Q < 0.05 and |d | > 0.5) transcripts from the meta-analysis Gene Chr Mb Gene Name Affy ProbeSet cDNA_IDs d HAP/LAP d HAP/LAP d d IS Average d Ztest P values Q-value Symbol ID (study #5) 1 2 STS B2m 2 122 beta-2 microglobulin 1452428_a_at AI848245 1.75334941 4 3.2 4 3.2316485 1.07398E-09 5.69E-08 Man2b1 8 84.4 mannosidase 2, alpha B1 1416340_a_at H4049B01 3.75722111 3.87309653 2.1 1.6 2.84852656 5.32443E-07 1.58E-05 1110032A03Rik 9 50.9 RIKEN cDNA 1110032A03 gene 1417211_a_at H4035E05 4 1.66015788 4 1.7 2.82772795 2.94266E-05 0.000527 NA 9 48.5 --- 1456111_at 3.43701477 1.85785922 4 2 2.8237185 9.97969E-08 3.48E-06 Scn4b 9 45.3 Sodium channel, type IV, beta 1434008_at AI844796 3.79536664 1.63774235 3.3 2.3 2.75319499 1.48057E-08 6.21E-07 polypeptide Gadd45gip1 8 84.1 RIKEN cDNA 2310040G17 gene 1417619_at 4 3.38875643 1.4 2 2.69163229 8.84279E-06 0.0001904 BC056474 15 12.1 Mus musculus cDNA clone 1424117_at H3030A06 3.95752801 2.42838452 1.9 2.2 2.62132809 1.3344E-08 5.66E-07 MGC:67360 IMAGE:6823629, complete cds NA 4 153 guanine nucleotide binding protein, 1454696_at -3.46081884 -4 -1.3 -1.6 -2.6026947 8.58458E-05 0.0012617 beta 1 Gnb1 4 153 guanine nucleotide binding protein, 1417432_a_at H3094D02 -3.13334396 -4 -1.6 -1.7 -2.5946297 1.04542E-05 0.0002202 beta 1 Gadd45gip1 8 84.1 RAD23a homolog (S. -
The Effects of Phenelzine and Other Monoamine Oxidase Inhibitor
British Journal of Phammcology (1995) 114. 837-845 B 1995 Stockton Press All rights reserved 0007-1188/95 $9.00 The effects of phenelzine and other monoamine oxidase inhibitor antidepressants on brain and liver 12 imidazoline-preferring receptors Regina Alemany, Gabriel Olmos & 'Jesu's A. Garcia-Sevilla Laboratory of Neuropharmacology, Department of Fundamental Biology and Health Sciences, University of the Balearic Islands, E-07071 Palma de Mallorca, Spain 1 The binding of [3H]-idazoxan in the presence of 106 M (-)-adrenaline was used to quantitate 12 imidazoline-preferring receptors in the rat brain and liver after chronic treatment with various irre- versible and reversible monoamine oxidase (MAO) inhibitors. 2 Chronic treatment (7-14 days) with the irreversible MAO inhibitors, phenelzine (1-20 mg kg-', i.p.), isocarboxazid (10 mg kg-', i.p.), clorgyline (3 mg kg-', i.p.) and tranylcypromine (10mg kg-', i.p.) markedly decreased (21-71%) the density of 12 imidazoline-preferring receptors in the rat brain and liver. In contrast, chronic treatment (7 days) with the reversible MAO-A inhibitors, moclobemide (1 and 10 mg kg-', i.p.) or chlordimeform (10 mg kg-', i.p.) or with the reversible MAO-B inhibitor Ro 16-6491 (1 and 10 mg kg-', i.p.) did not alter the density of 12 imidazoline-preferring receptors in the rat brain and liver; except for the higher dose of Ro 16-6491 which only decreased the density of these putative receptors in the liver (38%). 3 In vitro, phenelzine, clorgyline, 3-phenylpropargylamine, tranylcypromine and chlordimeform dis- placed the binding of [3H]-idazoxan to brain and liver I2 imidazoline-preferring receptors from two distinct binding sites. -
ALDH2) in Escherichia Coli Nissle 1917 for Oral Delivery in ALDH2-Deficient Individuals
bioRxiv preprint doi: https://doi.org/10.1101/674606; this version posted June 21, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Recombinant Expression of Aldehyde Dehydrogenase 2 (ALDH2) in Escherichia coli Nissle 1917 for Oral Delivery in ALDH2-Deficient Individuals Authors Tim Ho, Catherine Chang, Justin Wu, Iris Huang, Leona Tsai, Justin Lin, Emily Tai, Caroline Chou, Justin Yang, Yvonne Wei, Catherine Yeh, William Chen, Dylan Lu, Charlotte Chou, Longan Su, Nicole Chang, Colin Huang, Chloe Wang, Paul Abrena, Christy Cheung, Cassandra Yeh, Shantih Whiteford, Phoebe Chen, Austin Huang, Aire Wu, Benjamin Wei, Eugene Kao, Nicholas Lin, Anna Chang, Jake Yang, Yasmin Lin, Sean Tsao, Nicholas Ward, Teresa Chiang, Jude Clapper* Taipei American School, Taipei City, Taiwan. *Corresponding author: [email protected] Abstract Turning red after consuming alcohol may seem like a mere social inconvenience. Yet, this flushing response is caused by an accumulation of acetaldehyde, a carcinogenic intermediate of alcohol metabolism. Aldehyde dehydrogenase 2 (ALDH2) deficiency, the result of a point mutation, produces a less efficient ALDH2. The resulting accumulation of acetaldehyde greatly increases the risk of developing esophageal and head and neck cancers. In this study, we produced recombinant ALDH2 in the probiotic E. coli Nissle 1917, which successfully reduces acetaldehyde levels in simulated oral conditions. Packaged in a hard candy, the ALDH2-probiotic would remain in the mouth to specifically target salivary acetaldehyde. Using mathematical modeling, we also determined how much recombinant ALDH2 is needed to reduce elevated acetaldehyde levels. -
Aldehyde Dehydrogenase 2 Activation and Coevolution of Its Εpkc
Nene et al. Journal of Biomedical Science (2017) 24:3 DOI 10.1186/s12929-016-0312-x RESEARCH Open Access Aldehyde dehydrogenase 2 activation and coevolution of its εPKC-mediated phosphorylation sites Aishwarya Nene†, Che-Hong Chen*† , Marie-Hélène Disatnik, Leslie Cruz and Daria Mochly-Rosen Abstract Background: Mitochondrial aldehyde dehydrogenase 2 (ALDH2) is a key enzyme for the metabolism of many toxic aldehydes such as acetaldehyde, derived from alcohol drinking, and 4HNE, an oxidative stress-derived lipid peroxidation aldehyde. Post-translational enhancement of ALDH2 activity can be achieved by serine/threonine phosphorylation by epsilon protein kinase C (εPKC). Elevated ALDH2 is beneficial in reducing injury following myocardial infarction, stroke and other oxidative stress and aldehyde toxicity-related diseases. We have previously identified three εPKC phosphorylation sites, threonine 185 (T185), serine 279 (S279) and threonine 412 (T412), on ALDH2. Here we further characterized the role and contribution of each phosphorylation site to the enhancement of enzymatic activity by εPKC. Methods: Each individual phosphorylation site was mutated to a negatively charged amino acid, glutamate, to mimic a phosphorylation, or to a non-phosphorylatable amino acid, alanine. ALDH2 enzyme activities and protection against 4HNE inactivation were measured in the presence or absence of εPKC phosphorylation in vitro. Coevolution of ALDH2 and its εPKC phosphorylation sites was delineated by multiple sequence alignments among a diverse range of species and within the ALDH multigene family. Results: We identified S279 as a critical εPKC phosphorylation site in the activation of ALDH2. The critical catalytic site, cysteine 302 (C302) of ALDH2 is susceptible to adduct formation by reactive aldehyde, 4HNE, which readily renders the enzyme inactive. -
Supplementary Materials
Supplementary Materials COMPARATIVE ANALYSIS OF THE TRANSCRIPTOME, PROTEOME AND miRNA PROFILE OF KUPFFER CELLS AND MONOCYTES Andrey Elchaninov1,3*, Anastasiya Lokhonina1,3, Maria Nikitina2, Polina Vishnyakova1,3, Andrey Makarov1, Irina Arutyunyan1, Anastasiya Poltavets1, Evgeniya Kananykhina2, Sergey Kovalchuk4, Evgeny Karpulevich5,6, Galina Bolshakova2, Gennady Sukhikh1, Timur Fatkhudinov2,3 1 Laboratory of Regenerative Medicine, National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, Moscow, Russia 2 Laboratory of Growth and Development, Scientific Research Institute of Human Morphology, Moscow, Russia 3 Histology Department, Medical Institute, Peoples' Friendship University of Russia, Moscow, Russia 4 Laboratory of Bioinformatic methods for Combinatorial Chemistry and Biology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia 5 Information Systems Department, Ivannikov Institute for System Programming of the Russian Academy of Sciences, Moscow, Russia 6 Genome Engineering Laboratory, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russia Figure S1. Flow cytometry analysis of unsorted blood sample. Representative forward, side scattering and histogram are shown. The proportions of negative cells were determined in relation to the isotype controls. The percentages of positive cells are indicated. The blue curve corresponds to the isotype control. Figure S2. Flow cytometry analysis of unsorted liver stromal cells. Representative forward, side scattering and histogram are shown. The proportions of negative cells were determined in relation to the isotype controls. The percentages of positive cells are indicated. The blue curve corresponds to the isotype control. Figure S3. MiRNAs expression analysis in monocytes and Kupffer cells. Full-length of heatmaps are presented. -
The Evolution and Population Genetics of the ALDH2 Locus: Random Genetic Drift, Selection, and Low Levels of Recombination
doi: 10.1046/j.1529-8817.2003.00060.x The evolution and population genetics of the ALDH2 locus: random genetic drift, selection, and low levels of recombination Hiroki Oota1, Andrew J. Pakstis1, Batsheva Bonne-Tamir2, David Goldman3, Elena Grigorenko4, Sylvester L. B. Kajuna5, Nganyirwa J. Karoma5, Selemani Kungulilo6, Ru-Band Lu7, Kunle Odunsi8, Friday Okonofua9, Olga V. Zhukova10, Judith R. Kidd1 and Kenneth K. Kidd1,∗ 1Department of Genetics, Yale University School of Medicine, 333 Cedar Street, P.O. Box 208005, New Haven, CT 06520-8005, USA 2Department of Human Genetics, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel 3Laboratory of Neurogenetics, National Institute of Alcohol Abuse and Alcoholism, Rockville, MD 20852, USA 4Department of Psychology, Yale University, New Haven, CT 06520, USA 5The Hubert Kairuki Memorial University, Dar es Salaam, Tanzania 6Muhimbili University College of Health Sciences, Dar es Salaam, Tanzania 7Department of Psychiatry, Tri-Service General hospital, National Defense Medical Center, Taipei, Taiwan, R.O.C. 8Department of Gynecological Oncology, Roswell Park Cancer Institute, Buffalo, NY 14263, USA 9Department of Obstetrics and Gynecology, Faculty of Medicine, University of Benin, Benin City, Nigeria 10N.I. Vavilov Institute of General Genetics RAS, Moscow, Russia Summary The catalytic deficiency of human aldehyde dehydrogenase 2 (ALDH2) is caused by a nucleotide substitution (G1510A; Glu487Lys) in exon 12 of the ALDH2 locus. This SNP,and four non-coding SNPs, including one in the promoter, span 40 kb of ALDH2; these and one downstream STRP have been tested in 37 worldwide populations. Only four major SNP-defined haplotypes account for almost all chromosomes in all populations.