sustainability Review A Review of Modeling Rotating Packed Beds and Improving Their Parameters: Gas–Liquid Contact Farhad Ghadyanlou 1, Ahmad Azari 1,* and Ali Vatani 2 1 Faculty of Petroleum, Gas and Petrochemical Engineering, Persian Gulf University, Bushehr P.O. Box 75169-13817, Iran;
[email protected] 2 School of Chemical Engineering and Institute of LNG, College of Engineering, University of Tehran, Tehran P.O. Box 14779-56315, Iran;
[email protected] * Correspondence:
[email protected] or
[email protected]; Tel.: +98-917-323-8639; Fax: +98-773-344-5182 Abstract: The aim of this review is to investigate a kind of process intensification equipment called a rotating packed bed (RPB), which improves transport via centrifugal force in the gas–liquid field, especially by absorption. Different types of RPB, and their advantages and effects on hydrodynamics, mass transfer, and power consumption under available models, are analyzed. Moreover, different approaches to the modeling of RPB are discussed, their mass transfer characteristics and hydrody- namic features are compared, and all models are reviewed. A dimensional analysis showed that suitable dimensionless numbers could make for a more realistic definition of the system, and could be used for prototype scale-up and benchmarking purposes. Additionally, comparisons of the results demonstrated that Re, Gr, Sc, Fr, We, and shape factors are effective. In addition, a study of mass transfer models revealed that the contact zone was the main area of interest in previous studies, and this zone was not evaluated in the same way as packed beds. Moreover, CFD studies revealed that Citation: Ghadyanlou, F.; Azari, A.; the realizable k-" turbulence model and the VOF two-phase model, combined with experimental Vatani, A.