Additional Studies on Mixed Uranyl Oxide-Hydroxide Hydrate

Total Page:16

File Type:pdf, Size:1020Kb

Additional Studies on Mixed Uranyl Oxide-Hydroxide Hydrate t45 TheC anadian M brc rala gis t Vol.35, pp. 145-r5r (1997) ADDITIONALSTUDIES ON MIXEDURANYL OXIDE-HYDROXIDE HYDRATE ALTERATIONPRODUCTS OF URANINITEFROM THE PALERMOAND RUGGLESGRANITIC PEGMATITES. GRAFTON COUNTV, NEW HAMPSHIRE EUGENEE. FOORD1 IJ.S. Geolagical Survey, Denver Fedzral Center,.Box 25M6, Mail Stop 905, Dewer, Colarado 80225, U.S-L STANLEYL. KORZEB 13993East Arkona Avmuz, Aurora, CoLorado80012, U.S.A. FREDERICKE. LICHTE U.S.GeoLogical Suney, DenverFederal Cewer,Box 25M6, Mail Snp 973, Denver, Colorado80225, U.SA. JOANJ. FIT?ATRICK U.S.Geolagical Survey, Dmver Fedcral Cewen Box 25M6, Mail Stop912, Denver, Colorado80225, U.SA- ABSTRACT Additional studieson an incompletely characterizedsecondary uranium 'hineral" from the Rugglesand Palermogranitic Fgmatites, New HampshAe,refened to as mineral "A' by Frondel (1956), reveal a mixnre of schoepit€-goupminerals and related nranyl oxide-hydroxide hydrated compounds.A compositechemical analysis yielded (in wt-Vo):PbO 4,85 (EMP), UOa 83.5 (EMP), BaO 0.675 (av. of EMP and ICP), CaO 0.167 (av. of EMP and ICP), KzO 2.455 (av. of EMP and ICP), SrO 021 (ICP), ThO20.85 (CP), HzO 6.9, D9.61. Powder-diffractionX-ray studiesindicaJe a closeresemblance in paffemsbetween mineral "A" atrd severaluranyl oxide-hydroxidehydrated minerals, including the schoepitefamily of mineralsand UOz(OFI)2. The powderdiffraction data for mineral "A" are most similar to those for syntheticUOzrlSHzO and UOz(OII), but other phasesare likely presentas well, TGA analysisof both mineral 'A' and metaschoepiteshow similar weigbt-loss and first derivativecurves. The dominantlosses are at 100'C, with secondaryevents aJ 4{Do and 6@"C. IR spectrashow the prasenceof (OII) andHzO. Uraninite from both pegmatites,analyzed by LAM-ICP-MS, showsthe trresenceof Tlt Pb, K and Ca" Keywords: mineral 'A', uraninite,schoepite, UO2(O[I)2, Rugglas pepatite, Palermopegoarib, New Hampshire. Somaens Des dtudesadditionnelles portant sur un nindral secondaired'rnanium despegnatites granitiques de Rugglaset de Palermq au New Hampshire,dont la caractdrisationdemerne incomplBte [c'est le mineral "A" de Frondel (1956)], monnent qu'il s'agit d'un m6langede min6raux du groupe de la schoepitee1 de compos6soxydes-hydroxydcs hydrat6s d'uranyle. Une analyse chimique compos€ea doon6,en pords,PbO 4.85 (microsonde6lectroniEre, MSE), Uq $.5 (MSE), BaO 0.675 (moyennede MSE et plasmaI couplageinduct'f, PCD, CaO 0.167 (moyennede MSE et PCD, KzO 2.455 (moyennede MSE et PCD, SrO 0.21 (PCD, ThO2 0.85 (PCD, H2O 6.9, >99.61. ks €tudespar difhaction X (m6thode des poudres)r6vdlent une grande ressemblanceentre les spectresdu min6ral 'A" et plusieursoxyde+-hydroxydes hydraf6s d'uranyle, y inclus les min6rauxdu group de la schoepiteet UO2(OI{)2.D'aprds les donn6esde diEfractionX le min€ral "A" ressembledavatrtage aux compos6s synthdtiquesUOz.ee.1.5HzO et UQ(OII)2, nais il est probable que d'autes phasessont aussi impliqu6es. Une analyse thermogravim€triquedu min6ral "A" et tle la m6tashoepitemontrent un taux de perte de poids et une courbedu premier d6riv6 assezsemblables. Les pertesimportantes sont d 100'C, avecdes 6v6nements seconrlaires i 4@oet i 600oC.Le spectreinfra-rouge r6vblela pr6sencede (OII) et de HzO. Des&hantillons d'uraniniteprovenant des deux pegmatiGs, analys6s par PCI avecablation au laser et spectometriede masse,contiennent Tb" Pb, K et Ca (fraduit par la Rddaction) Mots-clds: min6ral "A', uraninite,schoepit€, UO2(OII)2, pegnatite de Ruggles,pgmatite de Palermo,New Hampshire. I E-mail addr"ss: [email protected] 146 INIR,oDUc"iloN other analytical methods,including gas chromato- graphy,X-ray diffraction Q(RD), and transmissionin- An unknownand incompletsly chracterized 3'mhetral" frared spectrophotomety,were utilized during the study o, of wanium was originally describedas phase'A" by of mineral "A uraniniteand schoepite,and tle resul- Frondel (1956) as part of a study on "gummite". Addi- tant data were used to determinethe na.tureof mineral tionalsflrdies wereconductedonmineral "A" in anafiempt "A". IJnsuccassfrrlattempts were made to determine to fully characterizeit asa new species.Uraninite, from unit-cell dimensions from powder-diffraction data four localities, also was chemically studie{ and their using the zone-axismethod of Visser (1969), and to ages determined. Metaschoepitefrom Shinkolobwe, interpret these data by Rietveld structure analysisby Zaire, was chemicallyanalyzed and studiedby thermo- B.C. Chakoumakosatthe OakRidgeNational Laboratory, gravimefiic analysis(TGA). Oak Ridge, Tennessee. Samplesof phase"A" from two bodies of granitic ooA" pegmatite,the PalermoNo. I and Ruggles,were used Tlfi NeruRE oF UNK].IOWN in this investigation.The PalermoNo. 1 pegmatiteis locdted near North Groton Village, Groton, Grafton Mineral "A" is oneof a numberof mineralsid€Nrtind County, New llampshire, andthe Rugglespegmatite is in "gummite" (Frondel 1956).This mineral was found located in Grafton, Grafton County, New Hampshire at six localities, all in granitic pegmatites,at North lseeFig. 1 of Korzeb et al. (1997)1. Wilton, Pale, o, Ruggles,Alst€aq andBeryl Mountairl New Hampshireand at GrassyCreek, Mitchell County, METHoDSor Irrwrsrrcanot North Carolina. We believed it to be a new mineral speciesbased on the X-raypatiems obtained.However, Specimensof phase '4" were obtained from the chemical and structural studreswere not completed. collection of the Harvard University Mineralogical Additional unpubiishedwork was doneon mineral o'A" Museum (HUI4I/Q collection and from Mr. Robert by Frondel (C. Frondel, pers. comnt", 1994 and C.A. Whitnore, Weare,New llampshire.Electron-microprobe, Francis, trErs. comm., 1993). We have attemptedto TGA, (LAM-ICP-MS) laser-ablation microprobe - further clarify the statusof Mineral "A" using maferial inductively coupledplasma - rnassspectometry, and from PalermoNo. 1 mine and Rugglesmine. -.1 -!. j'i. :r::ii -ii! : *.:,i;s; FIc. l. Photographshowing the variable alterationof uraninite to mineral "A". Palermono. l' HtIMlVl# 13205. The width of thefield of view is 1.8cn- PRODUCTS OF ALTERATION OF IJRANINITE 147 oomineral" TADI.B1. CHBMICAL @MPGIr!ON OF MINERAL !A! Mineral "A" is the first to fotm as an FROMTHB PALBRMOMINB GROTON NEW HAMTSHIRE alterationproduct of uraninite(Figs. 1, 2). We alsohave o'mineral'o Elmdc EMP&dCC LA-ICP-MS Co[palte idenffied ttris from several pegnaiites in orldg @lF6 (wr %) a$lysb (wt. A) @lysls (wL %) Maine and Nortl Carolina" and from the Monticello Pb 4J. fluorite disni4 New Mexico. In al1cases, the "minemlo' u 69.tr is a distinctive orangeto yellow-orangecolor. K 0.s Cg 0.0v Resuls of a compositechemical analysis for mineral BA 1.7 ooA" 213 ar€given in Table 1. Additionalanalyocal daJa were s 0.721 providedby TGA for weightloss as a functionof tempera- c 0.07 N 0.01r fire, andby I,AM-ICP-MS formore tlan 70 eleme,lrts. T@l 98.3:t The analyticaldatainTable 1 indicateacomposition Uo3 E5.3 E3.$ very similar to that of two samplesof "gummite" from Tho, 0.85 0.8y Mtchell County,North Carolin4 which yielded X-ray rbo 3.0 4.85, BaO 0.01 0.67f powderpafterns for mineral "A" in Frondel'sstrdy. An ko. 0.07 Yrot o.a averageof the two compositionsafter subtractionfor Cao o.26 0.16?6 uranophaneand FezO:is: BaO 1.6 wt,Vo,PbO8.25Vo, &o 3.n 2.455! SrO 0.21 0217 UOt 8l.5Vo, H2O 8.657o, 2L00J wt.Vo, sro 6.9 6.9 Resultsof aLAM-ICP-MS analysisof mineral "A' Total 100.39 9.@l from the Palermomine are given in Table 2. All of the lead presentis radiogenic,and the 26Pbt2ntPbratio is TGA btal wdgli !c b LmC - 8.i6 wL%, subhadng 186wt% bsue of cwsdcr of UOr b U& betum 80$'md 1@^c qlra h a total of 6J9 0.053,yielding a calculatedage of.329 Mu wt%. Total @b (rufc): 69 wt%r Wts t{tft TGA dtu" 0.72 wl% H There are several significant differences between s&[.|3d b EtzOis 65 wL%, avaluet!@ble ag@twdrEte altoed (EMP) deffiutlodt duab otat Chedol arulyto w@ d@ by a nebo of the electron-microprobe results and the refirodc dsEedcroprobemlysfmU, O, Bq K Pb mdcarc dmby LAM-ICP-MS results.The LAM-ICP-MS showedno KL wsrrdr (U56, Dsru), gsr d'mabgnply aulyo fm ll c, md N, by EMP. The level of Pb dre m arylewedglis 6 1429& dtd,8^a \Wrc*pecdvely,rc dreby cJ. Ba, as opposedta L.2 wt.Vo ed OS6, Rest6r),edlhem![detmhdsr (baat +, md, (CadEalE determined by EMP is greater than that obtained tttntt@) rc dsE by LL ta*m (tls6, Dsvs} I a@ge od 3 by LAM-ICP-MS. On the other hand, K is higher by debi#raffotai, mge of 4 mlyaeE s rcge of 5 mlt8€S I rege of 6 m1,€€4 tEMP; 6rcgeof EMPdtdICFmlte; zICP. LAM-ICP-MS thanbyEMP. - :iq .i.,!?'. i.s! n*h* i fFfu -$ i&s ffi ,;tr .# Frc. 2. Photogra,phshowing a closerview of the variablealteration of uraninite to mineral "A' and relaled secondaryuranium minerals@alermo no. 1). HIIMM# 132005.The width of the field of view is 6 mm. 148 THE CANADIAN MINERALOGIST TAELB 2. POWDM, DIMACTION DATA FOR MINERAL'A' FROM lgE PALERMO AND RUCGLESMINES, MAFTON COTJNTY,NS. Mreral'A" Mhsal'A' Mlneral'A' UO2g'1.5&O p-UOr'2&O Rugglosdm Palernomlne hlermo nine ICDD 2!1,161 ICDD All40l Frodel(1950 (thlsp4er) Powderdffiastomele( de w deI4 IA de d* I/t d& I/I" d& 4 7.U 7.38' 10 ?.E0 t9 7.4 7.n lm 7.53 6.37 7 6.35 6 49 6.n 6.n t0 6.37 5 S.m 2 5.9r . 5 5.32 E 5.09 5.10 2 5.gl x 4.gr 4.70 I 3 4.80 4.n' t 4.49 5 4.26 10 4.26 5 4.V2 I 4.m 3 3.98 3.90 l 9 3.95 3.956 15 3.7t 3.70 30 3.76 4 3.75 3.49 10 3.50 l0 l0 3.528 3.5n lm 3.56 4 3.55 10 t.49 49 3.439 X.431 4 3.4 15 3.376 3.380 50 3.32 7 3.?tt 7 3.n 8l 3.Ut 3.?39 lm 3.n | 3.21 3.lE 7b 3.20 & n 3.92 3.tCl 55 3.11 6 3.16 I 3.(D 3.V2 5 3.04 6 6 3.(b 2 2.vl 6 2.X9 2.W 5 2.%
Recommended publications
  • Paulscherrerite from the Number 2 Workings, Mount Painter Inlier, Northern Flinders Ranges, South Australia: “Dehydrated Schoepite” Is a Mineral After All
    American Mineralogist, Volume 96, pages 229–240, 2011 Paulscherrerite from the Number 2 Workings, Mount Painter Inlier, Northern Flinders Ranges, South Australia: “Dehydrated schoepite” is a mineral after all JOËL BRUGGER,1,2,* NICOLAS MEISSER,3 BAR B ARA ETSCH M A nn ,1 STEFA N AN SER M ET ,3 A N D ALLA N PRI N G 2 1Tectonics, Resources and Exploration (TRaX), School of Earth and Environmental Sciences, University of Adelaide, SA-5005 Adelaide, Australia 2Division of Mineralogy, South Australian Museum, SA-5000 Adelaide, Australia 3Musée Géologique and Laboratoire des Rayons-X, Institut de Minéralogie et de Géochimie, UNIL—Anthropole, CH-1015 Lausanne-Dorigny, Switzerland AB STRACT Paulscherrerite, UO2(OH)2, occurs as an abundant dehydration product of metaschoepite at the Number 2 Workings at Radium Ridge, Northern Flinders Ranges, South Australia. The mineral name honors the contribution of Swiss physicist Paul Scherrer (1890–1969) to mineralogy and nuclear physics. Individual paulscherrerite crystals are tabular, reaching a maximum of 500 nm in length. Paulscherrerite has a canary yellow color and displays no fluorescence under UV light. Chemically, paulscherrerite is a pure uranyl hydroxide/hydrate, containing only traces of other metals (<1 wt% in total). Bulk (mg) samples always contain admixtures of metaschoepite (purest samples have ~80 wt% paulscherrerite). A thermogravimetric analysis corrected for the presence of metaschoepite contamina- tion leads to the empirical formula UO3·1.02H2O, and the simplified structural formula UO2(OH)2. Powder diffraction shows that the crystal structure of paulscherrerite is closely related to that of synthetic orthorhombic α-UO2(OH)2. However, splitting of some X-ray diffraction lines suggests a monoclinic symmetry for type paulscherrerite, with a = 4.288(2), b = 10.270(6), c = 6.885(5) Å, β = 3 90.39(4)°, V = 303.2(2) Å , Z = 4, and possible space groups P2, P21, P2/m, or P21/m.
    [Show full text]
  • Mineral Processing
    Mineral Processing Foundations of theory and practice of minerallurgy 1st English edition JAN DRZYMALA, C. Eng., Ph.D., D.Sc. Member of the Polish Mineral Processing Society Wroclaw University of Technology 2007 Translation: J. Drzymala, A. Swatek Reviewer: A. Luszczkiewicz Published as supplied by the author ©Copyright by Jan Drzymala, Wroclaw 2007 Computer typesetting: Danuta Szyszka Cover design: Danuta Szyszka Cover photo: Sebastian Bożek Oficyna Wydawnicza Politechniki Wrocławskiej Wybrzeze Wyspianskiego 27 50-370 Wroclaw Any part of this publication can be used in any form by any means provided that the usage is acknowledged by the citation: Drzymala, J., Mineral Processing, Foundations of theory and practice of minerallurgy, Oficyna Wydawnicza PWr., 2007, www.ig.pwr.wroc.pl/minproc ISBN 978-83-7493-362-9 Contents Introduction ....................................................................................................................9 Part I Introduction to mineral processing .....................................................................13 1. From the Big Bang to mineral processing................................................................14 1.1. The formation of matter ...................................................................................14 1.2. Elementary particles.........................................................................................16 1.3. Molecules .........................................................................................................18 1.4. Solids................................................................................................................19
    [Show full text]
  • Uraninite Alteration in an Oxidizing Environment and Its Relevance to the Disposal of Spent Nuclear Fuel
    TECHNICAL REPORT 91-15 Uraninite alteration in an oxidizing environment and its relevance to the disposal of spent nuclear fuel Robert Finch, Rodney Ewing Department of Geology, University of New Mexico December 1990 SVENSK KÄRNBRÄNSLEHANTERING AB SWEDISH NUCLEAR FUEL AND WASTE MANAGEMENT CO BOX 5864 S-102 48 STOCKHOLM TEL 08-665 28 00 TELEX 13108 SKB S TELEFAX 08-661 57 19 original contains color illustrations URANINITE ALTERATION IN AN OXIDIZING ENVIRONMENT AND ITS RELEVANCE TO THE DISPOSAL OF SPENT NUCLEAR FUEL Robert Finch, Rodney Ewing Department of Geology, University of New Mexico December 1990 This report concerns a study which was conducted for SKB. The conclusions and viewpoints presented in the report are those of the author (s) and do not necessarily coincide with those of the client. Information on SKB technical reports from 1977-1978 (TR 121), 1979 (TR 79-28), 1980 (TR 80-26), 1981 (TR 81-17), 1982 (TR 82-28), 1983 (TR 83-77), 1984 (TR 85-01), 1985 (TR 85-20), 1986 (TR 86-31), 1987 (TR 87-33), 1988 (TR 88-32) and 1989 (TR 89-40) is available through SKB. URANINITE ALTERATION IN AN OXIDIZING ENVIRONMENT AND ITS RELEVANCE TO THE DISPOSAL OF SPENT NUCLEAR FUEL Robert Finch Rodney Ewing Department of Geology University of New Mexico Submitted to Svensk Kämbränslehantering AB (SKB) December 21,1990 ABSTRACT Uraninite is a natural analogue for spent nuclear fuel because of similarities in structure (both are fluorite structure types) and chemistry (both are nominally UOJ. Effective assessment of the long-term behavior of spent fuel in a geologic repository requires a knowledge of the corrosion products produced in that environment.
    [Show full text]
  • Periodic DFT Study of the Structure, Raman Spectrum and Mechanical
    Periodic DFT Study of the Structure, Raman Spectrum and Mechanical Properties of Schoepite Mineral Francisco Colmeneroa*, Joaquín Cobosb and Vicente Timóna aInstituto de Estructura de la Materia (IEM-CSIC). C/ Serrano, 113. 28006 – Madrid, Spain. bCentro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT). Avda/ Complutense, 40. 28040 – Madrid, Spain. Orcid Francisco Colmenero: https://orcid.org/0000-0003-3418-0735 Orcid Joaquín Cobos: https://orcid.org/0000-0003-0285-7617 Orcid Vicente Timón: https://orcid.org/0000-0002-7460-7572 *E-mail: [email protected] 1 ABSTRACT The structure and Raman spectrum of schoepite mineral, [(UO2)8O2(OH)12] · 12 H2O, was studied by means of theoretical calculations. The computations were carried out by using Density Functional Theory with plane waves and pseudopotentials. A norm-conserving pseudopotential specific for the uranium atom developed in a previous work was employed. Since it was not possible to locate hydrogen atoms directly from X-ray diffraction data by structure refinement in the previous experimental studies, all the positions of the hydrogen atoms in the full unit cell were determined theoretically. The structural results, including the lattice parameters, bond lengths, bond angles and X-ray powder pattern were found in good agreement with their experimental counterparts. However, the calculations performed using the unit cell designed by Ostanin and Zeller in 2007, involving half of the atoms of the full unit cell, leads to significant errors in the computed X-ray powder pattern. Furthermore, Ostanin and Zeller’s unit cell contains hydronium ions, + H3O , that are incompatible with the experimental information. Therefore, while the use of this schoepite model may be a very useful approximation requiring a much smaller amount of computational effort, the full unit cell should be used to study this mineral accurately.
    [Show full text]
  • Identification and Occurrence of Uranium and Vanadium Minerals from the Colorado Plateaus
    SpColl £2' 1 Energy I TEl 334 Identification and Occurrence of Uranium and Vanadium Minerals from the Colorado Plateaus ~ By A. D. Weeks and M. E. Thompson ~ I"\ ~ ~ Trace Elements Investigations Report 334 UNITED STATES DEPARTMENT OF THE INTERIOR GEOLOGICAL SURVEY IN REPLY REFER TO: UNITED STATES DEPARTMENT OF THE INTERIOR GEOLOGICAL SURVEY WASHINGTON 25, D. C. AUG 12 1953 Dr. PhilUp L. Merritt, Assistant Director Division of Ra1'r Materials U. S. AtoTILic Energy Commission. P. 0. Box 30, Ansonia Station New· York 23, Nei< York Dear Phil~ Transmitted herewith are six copies oi' TEI-334, "Identification and occurrence oi' uranium and vanadium minerals i'rom the Colorado Plateaus," by A , D. Weeks and M. E. Thompson, April 1953 • We are asking !41'. Hosted to approve our plan to publish this re:por t as a C.i.rcular .. Sincerely yours, Ak~f777.~ W. H. ~radley Chief' Geologist UNCLASSIFIED Geology and Mineralogy This document consists or 69 pages. Series A. UNITED STATES DEPARTMENT OF TEE INTERIOR GEOLOGICAL SURVEY IDENTIFICATION AND OCCURRENCE OF URANIUM AND VANADIUM MINERALS FROM TEE COLORADO PLATEAUS* By A• D. Weeks and M. E. Thompson April 1953 Trace Elements Investigations Report 334 This preliminary report is distributed without editorial and technical review for conformity with ofricial standards and nomenclature. It is not for public inspection or guotation. *This report concerns work done on behalf of the Division of Raw Materials of the u. s. Atomic Energy Commission 2 USGS GEOLOGY AllU MINEFALOGY Distribution (Series A) No. of copies American Cyanamid Company, Winchester 1 Argulllle National La:boratory ., ., .......
    [Show full text]
  • SIMPLE URANIUM OXIDES, HYDROXIDES U4+ + U6+, SIMPLE and COMPLEX URANYL HYDROXIDES in ORES Andrey A
    New Data on Minerals. 2011. Vol. 46 71 SIMPLE URANIUM OXIDES, HYDROXIDES U4+ + U6+, SIMPLE AND COMPLEX URANYL HYDROXIDES IN ORES Andrey A. Chernikov Fersman Mineralogical Museum, Russian Academy of Sciences, Moscow, [email protected], [email protected] The review of published and new own data of simple uranium oxides revealed that the formation of five simple oxides is probable: nasturan, sooty pitchblende, uraninite, uranothorianite, and cerianite. Among simple oxides, nasturan, sooty pitchblende, and uraninite are the most abundant in ores varied in genesis and mineralogy. Uranothorianite or thorium uraninite (aldanite) is occasional in the ores, while cerianite is believed in U-P deposits of Northern Kazakhstan. Hydrated nasturan is the most abundant among three uranium (IV+VI) hydroxides in uranium ores. Insignificant ianthinite was found in few deposits, whereas cleusonite was indentified only in one deposit. Simple uranyl hydroxides, schoepite, metaschoepite, and paraschoepite, are widespread in the oxidized ores of the near-surface part of the Schinkolobwe deposit. They are less frequent at the deeper levels and other deposits. Studtite and metastudtite are of insignificant industrial importance, but are of great inter- est to establish genesis of mineral assemblages in which they are observed, because they are typical of strongly oxidized conditions of formation of mineral assemblages and ores. The X-ray amorphous urhite associated with hydrated nasturan and the X-ray amorphous hydrated matter containing ferric iron and U6+ described for the first time at the Lastochka deposit, Khabarovsk krai, Russia are sufficiently abundant uranyl hydroxides in the oxidized uranium ores. Significant complex uranyl hydroxides with interlayer K, Na, Ca, Ba, Cu, Pb, and Bi were found basically at a few deposits: Schinkolobwe, Margnac, Wölsendorf, Sernyi, and Tulukuevo, and are less frequent at the other deposits, where quite large monomineralic segregations of nasturan and crystals of uraninite were identified.
    [Show full text]
  • Thermodynamic Properties of Uranyl Containing Materials Based On
    Thermodynamic Properties of Uranyl Containing Materials Based on Density Functional Theory Francisco Colmeneroa*, Ana María Fernándezb, Joaquín Cobosb and Vicente Timóna aInstituto de Estructura de la Materia (CSIC). C/ Serrano, 113. 28006 – Madrid, Spain. bCentro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT). Avda/ Complutense, 40. 28040 – Madrid, Spain. Orcid Francisco Colmenero: https://orcid.org/0000-0003-3418-0735 Orcid Ana María Fernández: https://orcid.org/0000-0002-8392-0165 Orcid Joaquín Cobos: https://orcid.org/0000-0003-0285-7617 Orcid Vicente Timón: https://orcid.org/0000-0002-7460-7572 *E-mail: [email protected] 1 ABSTRACT The thermodynamic properties of uranyl containing materials, including dehydrated schoepite, metastudtite, studtite, soddyite, rutherfordine and γ − UO3 were studied. These materials are among the most important secondary phases arising from corrosion of spent nuclear fuel under the final geological disposal conditions, and γ − UO3 is the main oxide of hexavalent uranium. The crystal structures of the dehydrated schoepite and metastudtite were determined by means of density functional theory using a new norm-conserving pseudopotential for uranium atom. The resulting structural properties and X-Ray powder patterns were found to be in very good agreement with the experimental data. By using the optimized structures of these materials, as well as of those obtained in previous works for studtite and soddyite, the thermodynamic properties of dehydrated schoepite, metastudtite, studtite and soddyite were determined, including specific heats, entropies, enthalpies and Gibbs free energies. Finally, the computed thermodynamic properties of these materials together with those reported previously for rutherfordine and γ − UO3 were used to determine their enthalpies and free energies of formation, and their variation with temperature.
    [Show full text]
  • Becquerelite Mineral Phase: Crystal Structure and Thermodynamic and Mechanical Stability by Using Periodic
    RSC Advances View Article Online PAPER View Journal | View Issue Becquerelite mineral phase: crystal structure and thermodynamic and mechanical stability by using Cite this: RSC Adv.,2018,8, 24599 periodic DFT† a b a Francisco Colmenero, * Ana Mar´ıa Fernandez,´ Vicente Timon´ and Joaquin Cobos b The structure, thermodynamic and mechanical properties of becquerelite mineral, Ca(UO2)6O4(OH)6$8H2O, were studied by means of theoretical solid-state calculations based on density functional theory using plane waves and pseudopotentials. The positions of the hydrogen atoms in the unit cell of becquerelite mineral were optimized theoretically since it was not possible to determine them from X-ray diffraction data by structure refinement. The structural results, including the lattice parameters, bond lengths and X-ray powder pattern, were found to be in excellent agreement with their experimental counterparts. The fundamental thermodynamic properties of becquerelite mineral, Creative Commons Attribution-NonCommercial 3.0 Unported Licence. including specific heat, entropy, enthalpy and Gibbs free energy, were then computed by performing phonon calculations at the computed optimized structure. Since the experimental values of these properties are unknown, their values were predicted. The values obtained for the isobaric specific heat and entropy of becquerelite at the temperature of 298.15 K were 148.4 and 172.3 J KÀ1 molÀ1, respectively. The computed thermodynamic properties were combined with those of the corresponding elements in order to obtain the enthalpy and Gibbs free energy of formation as a function of temperature. The availability of these thermodynamic properties of formation allowed to determine the enthalpies and free energies and associated reaction constants of a series of reactions involving becquerelite and other uranyl containing materials.
    [Show full text]
  • The Crystal Structure of Uranyl-Oxide Mineral Schoepite
    Journal of Geosciences, 63 (2018), 65–73 DOI: 10.3190/jgeosci.252 Original paper The crystal structure of uranyl-oxide mineral schoepite, [(UO2)4O(OH)6](H2O)6, revisited Jakub PlášIl Institute of Physics, Academy of Sciences of the Czech Republic v.v.i, Na Slovance 2, 182 21 Prague 8, Czech Republic; [email protected] New single-crystal X-ray diffraction experiments have revealed that the crystal structure of schoepite, one of the more common U-oxide minerals, is centrosymmetric, rather than acentric as reported in the past. Schoepite is orthorhombic, space group Pbca, a = 16.7810(5), b = 14.7044(4), c = 14.2985(5) Å, with V = 3528.22(19) Å3 and Z = 8. Its structure was solved by charge-flipping algorithm and refined to an agreement index (R) of 4.7 % for 4662 unique reflections collected using microfocus X-ray source. Schoepite structure, in line with its previous determination, is based upon U–O–OH sheets of the fourmarierite topology and an interlayer filled only by molecular H2O. The complexity calcu- lations show that the difference in complexity values between schoepite, [(UO2)4O(OH)6](H2O)6, and metaschoepite, [(UO2)4O(OH)6](H2O)5, are much smaller (about 100 bits/cell) then considered previously (about 1000 bits/cell). Such small difference is in line with the easy transformation of schoepite to metaschoepite under ambient conditions and a joint occurrence of both minerals. Keywords: schoepite, uranyl-oxide mineral, crystal structure, centrosymmetric Received: 10 January 2018; accepted: 5 April 2018; handling editor: F. Laufek The online version of this article (doi: 10.3190/jgeosci.252) contains supplementary electronic material.
    [Show full text]
  • Refinement of the Crystal Structure of Rutherfordine
    929 The Canadian Mineralogist Vol. 37, pp.929-938 (1999) REFINEMENTOF THE CRYSTAL STRUCTURE OF RUTHERFORDINE ROBERT J. FINCH$, MARK A. COOPER ANDFRANK C. HAWTHORNE* Departmentof GeologicalSciences, University of Manitoba,Winnipeg, Manitoba R3T 2N2, Canacla RODNEY C EWING Department of Nuclear Engineering and Radiological Sciences,University of Michigan, Ann Arbor, Michigan 48109, U.S.A Aesrnacr Rutherford:ine,UO2CO3, is orthorhombic,a 4 540(1),b 9.273(2),c 4.298(I) A, v tSZ.SOIZ)Ar, spacegroup 1m m2, Z = 2.The structure was refined to an R index of 2.2% onthebasis of 306 unique data lFol/o(lFnl) > 5l measuredwith MoKo X-radiation on a single-crystal diffractometer. The structure consists of neutral sheetsof edge- and corner-sharing (UOs) hexagonal bipyramids and (COr) triangles, as originally proposed by Christ et al. (1955); our refinement, however, shows that (CO3) groups in altemate layers have the same orientation, not opposite orientations as originally reponed. The refined value of the U-O(uranyl) distance is strongly affected by the details of the absorption corection, ranging from 1.71 to 1.80 A as a function of the plate-glancing angle used in an empirical psi-scan absorption correction and as a function of the type of weighting schemeused in the refine- ment. The Gaussian-quadraturemethod ofintegration also shows similar problems, but they are less extreme. The preferred value for the U-O(uranyl) distance in rutherfordine is -1.745 A; as rutherfordine contains no H atoms, the O(uranyl) atom is [1]- coordinated, and should have the-shortest U-O(uranyl) distance stereochemically possible.
    [Show full text]
  • Direct Investigations of the Immobilization of Radionuclides in the Alteration Phases of Spent Nuclear Fuel Lead Principal Investigator: Peter C
    Project Number: 73691 Project Title: Direct Investigations of the Immobilization of Radionuclides in the Alteration Phases of Spent Nuclear Fuel Lead Principal Investigator: Peter C. Burns, Department of Civil Engineering and Geological Sciences, University of Notre Dame, Notre Dame, IN 46556, (219) 631-7380, [email protected] Co-Principal Investigator: Robert J. Finch, Chemical Technology Division, Argonne National Laboratory, 9700 South Cass Av., Argonne, IL 60439, (630) 252-9829, [email protected] Co-Principal Investigator: David J. Wronkiewicz, Department of Geology and Geophysics, University of Missouri-Rolla, Rolla, MO 65409, (573) 341-4679, [email protected] Number of Graduate Students Involved: 5 RESEARCH OBJECTIVES In a moist oxidizing environment, such as in the proposed geological repository at Yucca Mountain, rapid alteration rates are expected for spent nuclear fuel. Laboratory simulations and studies of natural analogues demonstrate that the dominant alteration products of spent fuel under repository conditions will be uranyl phases. There is an inadequate database concerning the effects of the alteration products on the release of radionuclides, but this information is essential to provide a radionuclide-release estimate. It is likely that many of the radionuclides contained in the spent fuel will be incorporated into the uranyl phases that form during alteration, potentially with a profound impact on the future mobility of radionuclides in the repository. Our objective is to develop a theoretically founded and experimentally verified understanding of the incorporation of radionuclides into uranyl phases under repository conditions. The research will permit a more realistic estimate of the release rates of the radionuclides from the near-field environment.
    [Show full text]
  • Identification and Occurrence of Uranium and Vanadium Minerals from the Colorado Plateaus
    Identification and Occurrence of Uranium and Vanadium Minerals From the Colorado Plateaus GEOLOGICAL SURVEY BULLETIN 1009-B IDENTIFICATION AND OCCURRENCE OF URANIUM AND VANADIUM MINERALS FROM THE COLORADO PLATEAUS By A. D. WEEKS and M. E. THOMPSON ABSTRACT This report, designed to make available to field geologists and others informa­ tion obtained in recent investigations by the Geological Survey on identification and occurrence of uranium minerals of the Colorado Plateaus, contains descrip­ tions of the physical properties, X-ray data, and in some instances results of chem­ ical and spectrographic analysis of 48 uranium and vanadium minerals. Also included is a list of locations of mines from which the minerals have been identified. INTRODUCTION AND ACKNOWLEDGMENTS The 48 uranium and vanadium minerals described in this report are those studied by the writers and their colleagues during recent mineralogic investigation of uranium ores from the Colorado Plateaus. This work is part of a program undertaken by the Geological Survey on behalf of the Division of Raw Materials of the U. S. Atomic Energy Commission. Thanks are due many members of the Geological Survey who have worked on one or more phases of the study, including chemical, spec­ trographic, and X-ray examination,' as well as collecting of samples. The names of these Survey members are given in the text where the contribution of each is noted. The writers are grateful to George Switzer of the U. S. National Museum and to Clifford Frondel of Harvard University who kindly lent type mineral specimens and dis­ cussed various problems. PURPOSE The purpose of this report is to make available to field geologists and others who do not have extensive laboratory facilities, information obtained in recent investigations by the Geological Survey on the identification and occurrence of the uranium and vanadium minerals of ores from the plateaus.
    [Show full text]