Reconnaissance of the Hydrology of the Little Lost River Basin Idaho
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Big Lost River Mountain Whitefish and Other Populations of Snake River Basin Mountain Whitefish
Mountain Whitefish Conservation and Management Plan for the Big Lost River Drainage, Idaho Photos: Bart Gamett May 2007 Idaho Department of Fish and Game TABLE OF CONTENTS TABLE OF CONTENTS......................................................................................................... 2 EXECUTIVE SUMMARY....................................................................................................... 3 GOAL........................................................................................................................................ 4 PLAN OBJECTIVES............................................................................................................... 4 Population objectives .......................................................................................................................4 DRAINAGE SUMMARY......................................................................................................... 7 MOUNTAIN WHITEFISH POPULATION .......................................................................... 8 General Species Description............................................................................................................8 Origin ................................................................................................................................................9 Historical Status .............................................................................................................................10 Current Status................................................................................................................................11 -
DE-EE0002848 E Snake River Geothermal Drilling Project
DE-EE0002848 e Snake River Geothermal Drilling Project – Innovative Approaches to Geothermal Exploration Phase 1 Report Prepared by John W. Shervais Department of Geology Utah State University Logan, Utah 84322-4505 1 September 2010 Phase 1: e Snake River Geothermal Drilling Project DE-EE0002848 Phase 1 Report DE-EE0002848 e Snake River Geothermal Drilling Project – Innovative Approaches to Geothermal Exploration INTRODUCTION e Yellowstone-Snake River Plain (YSRP) volcanic province, which began ≈17 Ma under eastern Oregon and northern Nevada and is currently under the Yellowstone Plateau, is the world’s best modern example of a time-transgressive hotspot track beneath continental crust (Figure 1). Recently, a 100 km wide thermal anomaly has been imaged by seismic tomography to depths of over 1000 km beneath the Yellowstone Plateau (Waite et al 2006; Yuan and Dueker 2005; Xue and Allen, 2010; James et al 2009). e Yellowstone Plateau volcanic field consists largely of rhyolite lavas and ignimbrites, with few mantle-derived basalts (Christiansen 2001). In contrast, the Snake River Plain (SRP), which represents the track of the Yellowstone hotspot, consists of rhyolite caldera complexes that herald the onset of plume-related volcanism and basalts that are compositionally similar to ocean island basalts like Hawaii (Pierce et al 2002). e SRP preserves a record of volcanic activity that spans over 16 Ma and is still active today, with basalts as young as 200 ka in the west and 2 ka in the east. us, the Snake River volcanic province represents the world-class example of active time- transgressive intra-continental plume volcanism. e SRP is unique because it is young and relatively undisturbed tectonically, and because it contains a complete record of volcanic activity associated with passage of the hotspot (Shervais et al, 2006a). -
Late Quaternary Stratigraphy, Idaho National Laboratory, Eastern Snake River Plain, Idaho
Late Quaternary Stratigraphy, Idaho National Laboratory, Eastern Snake River Plain, Idaho Thomas V. Dechert Paul A. McDaniel Kenneth L. Pierce Anita L. Falen Maynard A. Fosberg Idaho Geological Survey Technical Report 06-1 University of Idaho ISBN 1-55765-512-X Moscow, Idaho 2006 Contents Abstract ........................................................................................................................................ 1 Introduction .................................................................................................................................. 1 Quaternary Geologic Setting ....................................................................................................... 2 Local Setting ................................................................................................................................ 5 Methodology ................................................................................................................................ 6 Stratigraphic Units ....................................................................................................................... 7 The Surface Complex ............................................................................................................ 7 The Buried Complex .............................................................................................................. 9 Discussion and Conclusions ...................................................................................................... 11 References ................................................................................................................................. -
Big Lost Mountain Whitefish PROSOPIUM WILLIAMSONI Rev
Conservation Success Index: Big Lost Mountain Whitefish PROSOPIUM WILLIAMSONI Rev. 2.0 - 7/2009 SPECIES SUMMARY Idaho has several sinks river drainages that infiltrate completely into the porous volcanic geology of the northern Snake River Plain and, hence, are disconnected from other surface waters. The Big Lost River, the largest of the sinks drainages, has lacked a surface connection to other rivers for at least 10,000 years. Although the Big Lost River formally terminates at the Big Lost River Sinks, the river also loses water at several natural sinks that form a complex subsurface and groundwater system throughout the valley. The mountain whitefish Prosopium williamsoni is native to western North America, including the Big Lost River in northeastern Idaho. It was first described by Charles Girard in 1891. Recent research at the University of Montana determined the mountain whitefish in the Big Lost River to be genetically divergent from other populations, including its parent population in the upper Snake River; genetic isolation times are estimated to be around 166,000 to 330,000 years. Current Populations and Historic Range Map The mountain whitefish in the Big Lost River has experienced drastic declines from its historical distribution and abundance. According to the 2005 Mountain Whitefish Conservation and Management Plan, it occupied only 24% of its historical range, and abundance was 1.5% of historical estimates. Although the mountain whitefish is considered to be a large river fish, little is known about its habitat requirements. As a result, it remains unknown whether the ecology of mountain whitefish in the Big Lost River differs from other populations. -
Geologic Map of the Butte City 7.5' Quadrangle, Butte County, Idaho
IDAHO GEOLOGICAL SURVEY TECHNICAL REPORT 20-04 BOISE-MOSCOW IDAHOGEOLOGY.ORG HELMUTH AND OTHERS CORRELATION OF MAP UNITS EXPLANATION of MAP UNITS Paleozoic strata of the southern Arco Hills Scot Peak Formation (upper Mississippian)–Medium gray, silty, sandy, with gray to orange Geologic Map of the Butte City 7.5' Quadrangle, Butte County, Idaho Names, unit abbreviations, and unit colors have been adopted from the previously published maps, “Geologic Msp map of the Craters of the Moon 30'x60' quadrangle, Idaho”: USGS Scientific Investigations Map I-2969, scale chert, thin- to thick-bedded, ledge- to cliff-forming limestone; weathers light gray with scalloped by Alluvial and Colluvial Deposits 1:100,000, by Kuntz, M.A., Betty Skipp, D.E. Champion, P.B. Gans, and D.P. Van Sistine, 2007, and “Geologic texture. Abundant fossils include crinoids and rugose corals among fossil hash. Gradationally 1 1 2 3 Map of the Arco 30'×60' quadrangle, south-central Idaho”, by Skipp, Betty, L.G . Snider, S.U. Janecke, and M.A. underlain by the Middle Canyon Formation; estimated thickness of 150 m in the southern Arco Samuel L. Helmuth , Evan J. Martin , Mary K.V. Hodges , and Duane E. Champion Lava Field, Cones, Kuntz, 2009, Idaho Geological Survey Geologic Map G M-47, map scale 1:100,000. Names for lava fields are Hills (Skipp and others, 2009). and Eruptive-Fissure derived from titled vents and buttes on the 1:24,000-scale topographic base map or from named vents on 1 National Association of Geoscience Teachers/U.S. Geological Deposits adjacent quadrangles. -
Eology of the Southern Part )F the Lemhi Range, Idaho
:;eology of the Southern Part )f the Lemhi Range, Idaho 'y CLYDE P. ROSS :oNTRIBUTIONS TO GENERAL GEOLOGY ~EOLOGICAL SURVEY BULLETIN 1081-F NITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1961 UNITED STATES DEPARTMENT OF THE INTERIOR FRED A. SEATON, Secretary GEOLOGICAL SURVEY Thomas B. Nolan, Director For sale by the Superintendent of Documents, U.S. Government Printing Office Washin!1ton 25, D.C. CONTENTS Page Abstract--------------------------------------------------------- 189 Introduction------------------------------------------------------ 189 Location and scope of the report________________________________ 189 Acknowledgments--------------------------------------------- 191 TopographY------------------------------------------------------ 192 LemhiRange_________________________________________________ 192 Valley of Birch Creek__________________________________________ 193 Valley of Little Lost River_ _ _ _ __ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 193 Stratigraphy and petrography __________________________ ------------_ 194 Generalfeatures----------------------------------------------- 194 Precambrianrocks--------------------------------------------- 195 Swauger quartzite_ _ __ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 195 Lower Paleozoic rocks ___ -------________________________________ 201 Kinnikinic quartzite_ _ __ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 201 Saturday Mountain formation and overlying dolomite__________ 203 Three Forks limestone -
Estimated 100-Year Peak Flows and Flow Volumes in the Big Lost River and Birch Creek at the Idaho National Engineering Laboratory, Idaho
Estimated 100-Year Peak Flows and Flow Volumes in the Big Lost River and Birch Creek at the Idaho National Engineering Laboratory, Idaho By L.C. Kjelstrom and Charles Berenbrock U.S. GEOLOGICAL SURVEY Water-Resources Investigations Report 96-4163 Prepared in Cooperation with the U.S. Department of Energy Boise, Idaho 1996 U.S. DEPARTMENT OF THE INTERIOR BRUCE BABBITT, Secretary U.S. GEOLOGICAL $URVEY Gordon P. Eaton, Director For additional information write to: Copies of this report can be purchased from: District Chief U.S. Geological Survey U.S. Geological Survey Information Services 230 Collins Road Box 25286 Boise, ID 83702-4520 Federal Center Denver, CO 80225 CONTENTS Abstract................................................................................................................................................................................ 1 Introduction ..................................................................................................................................................................^ 1 Purpose and scope......................................................................................................................................................... 3 Description of study area.............................................................................................................................................. 3 Previous investigations ................................................................................................................................................ -
Capturing Women Farmers' Experiences in Idaho, United States and Victoria, Australia
Utah State University DigitalCommons@USU All Graduate Theses and Dissertations Graduate Studies 12-2019 The Farm as Place in a Changing Climate: Capturing Women Farmers' Experiences in Idaho, United States and Victoria, Australia Tagen Towsley Baker Utah State University Follow this and additional works at: https://digitalcommons.usu.edu/etd Part of the Environmental Sciences Commons Recommended Citation Baker, Tagen Towsley, "The Farm as Place in a Changing Climate: Capturing Women Farmers' Experiences in Idaho, United States and Victoria, Australia" (2019). All Graduate Theses and Dissertations. 7675. https://digitalcommons.usu.edu/etd/7675 This Dissertation is brought to you for free and open access by the Graduate Studies at DigitalCommons@USU. It has been accepted for inclusion in All Graduate Theses and Dissertations by an authorized administrator of DigitalCommons@USU. For more information, please contact [email protected]. THE FARM AS PLACE IN A CHANGING CLIMATE: CAPTURING WOMEN FARMERS’ EXPERIENCES IN IDAHO, UNITED STATES AND VICTORIA, AUSTRALIA by Tagen Towsley Baker A dissertation submitted in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY in Environment and Society Approved: ______________________ ____________________ Claudia Radel, Ph.D. Roslynn G.H. Brain McCann, Ph.D. Major Professor Committee Member ______________________ ____________________ Christopher Conte, Ph.D. Peter D. Howe, Ph.D. Committee Member Committee Member ______________________ ____________________ Hal Crimmel, Ph.D. Richard S. Inouye, Ph.D. Committee Member Vice Provost for Graduate Studies UTAH STATE UNIVERSITY Logan, Utah 2019 ii Copyright © Tagen Towsley Baker 2019 All Rights Reserved iii ABSTRACT The Farm as Place in a Changing Climate: Capturing Women Farmers’ Experiences in Idaho, United States and Victoria, Australia by Tagen Towsley Baker Utah State University, 2019 Major Professor: Dr. -
Little Lost River Subbasin TMDL
Little Lost River Subbasin TMDL August 2000 An Allocation of Nonpoint Source Pollutants in the Water Quality Limited Watersheds of the Little Lost River Valley Idaho Department of Environmental Quality 1410 North Hilton Boise, ID 83706 Table of Contents EXECUTIVE SUMMARY .................................................................................................1 1.0 INTRODUCTION .......................................................................................................3 Total Maximum Daily Load ........................................................................................3 History .........................................................................................................................4 Issues of Concern.........................................................................................................5 2.0 WATERSHED ASSESSMENT ..................................................................................6 2.1 WATERSHED DESCRIPTION..........................................................................6 Climate................................................................................................................6 Hydrology ...........................................................................................................6 Geology...............................................................................................................8 Soils ....................................................................................................................8 Geomorphic -
Replacement Capability for Disposal of Remote-Handled Low-Level Radioactive Waste Generated at the Department of Energy’S Idaho Site
Draft Environmental Assessment for the Replacement Capability for Disposal of Remote-Handled Low-Level Radioactive Waste Generated at the Department of Energy’s Idaho Site August 2011 DOE/EA-1793 Draft Environmental Assessment for the Replacement Capability for Disposal of Remote-Handled Low-Level Radioactive Waste Generated at the Department of Energy's Idaho Site August 2011 EXECUTIVE SUMMARY The U.S. Department of Energy (DOE) proposes to provide replacement capability for disposal of remote-handled low-level radioactive waste (LLW) generated at the Idaho National Laboratory (INL) site beginning in October 2017. Historically, INL has disposed of this LLW onsite. However, the existing disposal area located within the INL Radioactive Waste Management Complex will undergo closure as part of ongoing cleanup of INL and will not be available after 2017. The proposed project to establish replacement capability is not a DOE Environmental Management Idaho Cleanup Project activity. DOE is preparing this draft environmental assessment to evaluate potential environmental impacts related to replacement capability options for the disposal of remote-handled LLW generated on the INL site. DOE will continue to dispose of contact–handled LLW (waste having lower levels of radiation) off-site at acceptable disposal facilities. DOE developed the following selection criteria to determine a range of reasonable alternatives that would meet DOE’s need for replacement disposal capability: Provide dependable and predictable disposal capacity in support of continued -
Salmon-Challis NF Fire Plan
SALMON/CHALLIS NATIONAL FOREST 2014 FIRE MANAGEMENT PLAN Nez Perce Fire 2013 Interagency Federal fire policy requires that every area with burnable vegetation must have a Fire Management Plan (FMP). This FMP provides information about the fire management planning process for the Salmon/Challis National Forest and compiles guidance from existing sources such as but not limited to, the Salmon and Challis National Forest Land and Resource Management Plans, (Salmon: 1/1988, Challis: 6/1987) national policy, and national and regional directives. The potential consequences to firefighter and public safety and welfare, natural and cultural resources, and values to be protected help determine the appropriate management response (AMR) during a fire. Firefighter and public safety are the first consideration and are always the priority during every response. The following chapters discuss broad forest and specific Fire Management Unit (FMU) characteristics and guidance. Chapter 1 introduces the area covered by the FMP, includes a map of the Salmon/Challis National Forest, addresses the agencies involved, and states why the forest is developing the FMP. Reviewed and Updated by: Todd Baumer Forest AFMO Date: 02/24/14 Salmon/Challis National Forest Fire Management Plan Chapter 2 establishes the link between higher-level planning documents, legislation, and policies and the actions described in FMP. Chapter 3 articulates specific goals, objectives, standards, guidelines, and/or desired future condition(s), as established in the forest’s LRMP, which apply to all the forest’s FMUs and those that are unique to the forest’s individual FMUs. Salmon/Challis National Forest Fire Management Plan Chapter 1. -
Carey Act Projects and Company Names
About the Project Introduction Historical Overview Scope and Content Note Container List Carey Act Projects and Company Names Sources of Additional Information Links © 2004 Idaho State Historical Society Design By Edward Steffler ABOUT THE PROJECT Welcome to the Idaho State Historical Society’s Carey Act in Idaho website. The staff of the ISHS Library and Archives (L&A) is pleased to present the results of this year-long project, funded in part by a grant from the National Park Service’s “Save America’s Treasures” program. Our goal here is to provide an overview of this important collection of over 3,700 maps and drawings documenting the development of irrigation in early twentieth-century Idaho. The Carey Act maps and drawings are part of the Idaho Department Front cover of promotional booklet of Reclamation records (AR 20) held by the L&A, in its capacity as the published by Twin Falls North Side State Archives. These materials were transferred to the L&A in the Land & Water Company, 1909. late 1950s and early 1960s. Additional records were received from Source: MS544-Idaho Travel and Tour- ism Collection, box 3/30. the Department (now known as Department of Water Resources) in 2003. Water, especially its allocation and distribution, is important to the history of Idaho. Without irrigation systems, much of the southern part of the state would have remained desert land. Beautiful, yes, but generally uninhabitable and unproductive--at least by early twentieth-century standards. Because they document not only irrigation projects that were successful but also those that failed, the staff of the L&A felt it important to preserve, catalog and provide access to the Carey Act maps and drawings.