(Hdacs) Guided Novel Therapies for T-Cell Lymphomas Qing Zhang1, Shaobin Wang2, Junhui Chen1, Zhendong Yu3

Total Page:16

File Type:pdf, Size:1020Kb

(Hdacs) Guided Novel Therapies for T-Cell Lymphomas Qing Zhang1, Shaobin Wang2, Junhui Chen1, Zhendong Yu3 Int. J. Med. Sci. 2019, Vol. 16 424 Ivyspring International Publisher International Journal of Medical Sciences 2019; 16(3): 424-442. doi: 10.7150/ijms.30154 Review Histone Deacetylases (HDACs) Guided Novel Therapies for T-cell lymphomas Qing Zhang1, Shaobin Wang2, Junhui Chen1, Zhendong Yu3 1. Department of Minimally Invasive Intervention, Peking University Shenzhen Hospital, Shenzhen, Guangdong, 518036, China. 2. Health Management Center of Peking University Shenzhen Hospital, Shenzhen, Guangdong, 518036, China. 3. China Central Laboratory of Peking University Shenzhen Hospital, Shenzhen, Guangdong, 518036, China. Corresponding authors: Dr. Qing Zhang, email: zhangqing7864@163.com; Dr. Zhendong Yu, email: dongboyaa@163.com © Ivyspring International Publisher. This is an open access article distributed under the terms of the Creative Commons Attribution (CC BY-NC) license (https://creativecommons.org/licenses/by-nc/4.0/). See http://ivyspring.com/terms for full terms and conditions. Received: 2018.09.24; Accepted: 2018.12.19; Published: 2019.01.29 Abstract T-cell lymphomas are a heterogeneous group of cancers with different pathogenesis and poor prognosis. Histone deacetylases (HDACs) are epigenetic modifiers that modulate many key biological processes. In recent years, HDACs have been fully investigated for their roles and potential as drug targets in T-cell lymphomas. In this review, we have deciphered the modes of action of HDACs, HDAC inhibitors as single agents, and HDACs guided combination therapies in T-cell lymphomas. The overview of HDACs on the stage of T-cell lymphomas, and HDACs guided therapies both as single agents and combination regimens endow great opportunities for the cure of T-cell lymphomas. Key words: Histone deacetylases (HDACs), T-cell lymphomas, cutaneous T-cell lymphoma, peripheral T-cell lymphoma, combination therapy 1. Introduction patients with T-cell lymphomas usually have a poor 1.1 T-cell lymphomas prognosis and easy to relapse. T-cell lymphomas encompass a heterogeneous group of malignancies comprising 15-20% of systemic 1.2 Current therapeutic strategies for T-cell lymphomas and less than 10% non-Hodgkin lymphomas lymphomas. T-cell malignancies are endemic in East Currently, chemotherapy is the most preferred Asia, the Caribbean, intertropical Africa, the Middle treatment in patients with T-cell lymphoma. With the East, South America, and Papua New Guinea. Adult development of intensified chemotherapy, the T-cell lymphoma caused by human T-cell leukemia prognosis of T-cell leukemia/lymphoma has virus-1 is one of the most popular T-cell malignancies. gradually improved. However, due to the Up to now, there are about 5-20 million patients non-specific toxicity of current chemotherapeutic infected with HTLV-1 around world. According to compounds to normal cells, the progressive loss of WHO/EORTC classification based on the clinical quality of life is a matter of concern [2]. Besides, pathology indications, T-cell malignancies are divided patients with relapse and resistance to conventional into extra nodal T cell lymphoma, cutaneous T cell chemotherapy exhibit limited efficacy in the salvage lymphomas (Sézary syndrome and Mycosis setting. fungoides), anaplastic large cell lymphoma, and Recently, the booming targeted therapeutic angioimmunoblastic T cell lymphoma [1]. The clinical strategies have become the forefront therapeutics in performance and pathogenesis are divergent between patients with severe lymphomas and achieved different T-cell lymphomas; the therapeutic strategies promising therapeutic effects, such as immune are different but with some overlap especially in their therapies of antibodies against CTLA 4 and PD 1 early stage. However, because of the comprehensive /PDL 1 [3], B cell receptor signaling pathway pathogenesis and limited therapeutic strategies, inhibitors (e.g., ibrutinib [4]), NK cells (e.g., AFM13 http://www.medsci.org Int. J. Med. Sci. 2019, Vol. 16 425 [5]), bispecific T engager (BiTE, blinatumomab [6]), T T-cell malignancies have been investigated under the cell receptor (e.g., CART19 [7, 8]). However, all these intervention of HDAC inhibitors (Figure 1), but still gorgeous strategies mentioned above have not been not been fully elucidated. testified or not suitable in the treatment of T-cell lymphomas. Table 1. Classification of histone deacetylases (HDACs) The treatment of patients with T-cell lymphomas Cofactor Class HDAC Localization is challenging. Novel therapeutic strategies are members urgently warranted to improve the therapeutic effects Zn2+--dependent Class I HDAC 1,2,3,8 Nucleus (HDAC 8, partially in the of T-cell lymphomas. Thus new flourishing cytoplasm) Class HDAC 4,5,7,9 Nucleus/cytoplasm therapeutic targets and techniques (drugs, techniques IIA or combinational trials) would provide opportunities Class HDAC 6,10 Mainly in the cytoplasm IIB for the treatment of patients with T-cell malignancies. Class HDAC 11 Nucleus/cytoplasm HDACs, kinases, T/B cell receptors, checkpoints or IV NAD+--dependent Class SIRT 1,6,7 Nucleus other related key modulators are promising choices. III SIRT 2 Cytoplasm In this review, we will focus on the role of HDACs in SIRT 3,4,5 Mitochondria T-cell lymphomas and the potential applications as therapeutic targets for the treatment of patients with 2.2.1 Epigenetic modulation T-cell malignancies. Except for genetic mutation, chromatin 2. Histone deacetylases (HDACs) differentiation, the reversible epigenetic alterations are the main alterations for cancer initiation, 2.1 Brief profile of HDACs progression and invasion [20]. HDACs interfere with Histone deacetylases are a class of enzymes epigenetic chromatin modification by de-acetylating deacetylating the acetyl group from ε-N-acetyl lysine histones and non-histone proteins of nuclear amino acid from a histone, which lead to the tight transcription factors mediating carcinogenesis [21]. wrapping of DNA. HDACs play a key role in the Besides, HDACs participate in the mediation of homeostasis maintenances of histone acetylation oncogenes of Bcl-xL-[22], Bcl2-[23], or TCRβ [22], euchromatin and heterochromatin in living system [9, c-Myc [24], Notch3 [25]. 10]. There are 18 HDACs recognized up to now, 2.2.2 Cytokines regulation divided into HDAC I (HDAC 1, 2, and 3: mainly in the nucleus; HDAC 8: partially in the cytoplasm), HDAC Cytokines are the important participators in II (HDAC 4, 5, 6, 7, 9, and 10: shuttling in and out of immune regulation. A response rate of 30% for the nucleus), as Table 1 showed [11]. Considering the cutaneous T-cell lymphoma (CTCL) expressing high main function of the process of de-acetylation, affinity IL-2 receptor (IL-2R) was demonstrated in HDACs act as key epigenetic modulators of essential Phases I and II clinical trials of DAB (389) IL-2 by biological processes by modifying histones of inhibition of histone deacetylases (HDACs) chromatin or non-histone proteins (PTEN, interfering with 0.06 mM arginine butyrate[26]. APE1/Ref-1 (APEX1), NF-κB, aggressomes, et al.) Up-regulation of HDAC1 and HDAC6 and [12]. Besides, HDACs are involved in protein transcriptional induction of the conco-miR-21 were degradation, especially HDAC6 that was reported to found in CTCL, which was caused by excessive interfere with HSP90 via degrading HSP90-interacting autocrine secretion of IL-15 in T-cells. IL-15 mediated proteins [13, 14]. HDACs are thought to be the main inflammation was critical in CTCL, and a novel pathogenic factors to both leukemia and other solid oncogenic regulatory loop between IL-15, HDAC 1/6, tumors, such as chronic myeloid leukemia, chronic and miR-21 was discovered [27]. Besides, HDAC lymphocytic leukemia[15], pediatric acute myeloid deactivation and concomitant down regulation of leukemia, acute promyelocytic leukemia, renal cancer, CD27 were found in TEL-AML positive leukemia by colorectal and gastric cancer, breast tumors and so CD40 ligation [28]. Under the improvement of on[16]. In this review, we have focused on the role of immune surveillance by CD40 ligation in patients HDACs in T-cell lymphomas and the application of with TEL-AML, a potential increased relapse-free HDAC inhibitors as T-cell lymphomas treatments. survival was observed with the presence of other risks. 2.2 Modes of action in T-cell lymphoma 2.2.3 Apoptosis The elaboration of HDACs in the pathogenesis, therapy and prognosis of T-cell lymphomas would HDACs mediated the pro-apoptotic response in help a lot in the treatment of patients with T-cell a decreased way and increased the apoptotic lymphomas. The precise mechanisms of HDACs in threshold in various hematological and solid http://www.medsci.org Int. J. Med. Sci. 2019, Vol. 16 426 Figure 1. Molecular functions of HDACs. This figure was adapted from Bodiford & Reddy (2014)[17], Hood & Shah (2016)[18], and Weiguo Zhu (2014)[19]. lymphomas. The inhibition of HDAC 1/2 was found correlation with an anti-apoptotic drug resistance to have a synergism effect with BCL11B (a key T-cell related molecule surviving [34], which was development regulator) in the anti-apoptosis effect in demonstrated by HDAC inhibitor SAHA in the CTCL lines [29]. HDACs promoted the acetylation of treatment of ATL cells. Considering the important the chaperone heat shock protein 90 (HSP90), leading regulation of HDAC in the downstream signal to the binding and stabilization of HSP90 client pathway and apoptotic related proteins, HDACs may proteins RASGRP1 and CRAF which activate the serve as potential drug target for T-cell malignancies mitogen-activated protein kinase pathway signaling in an apoptosis induction way. and down-regulate the pro-apoptotic BCL2 family member BIM both in vitro and in vivo. siRNA of 2.2.4 Autophagy RASGRP1, HSP90 inhibition or HDAC inhibition may Autophagy is a key self-salvage process to contribute to the cytotoxicity and apoptosis induction various stresses by degrading long-lived proteins and in lymphoid malignancies by influencing the signal damaged organelles. Except for the main function on pathway related to HSP90, RASGRP1, CRAF, and lysine de-acetylation in chromatin, HDACs also have BIM [30].
Recommended publications
  • An Overview of the Role of Hdacs in Cancer Immunotherapy
    International Journal of Molecular Sciences Review Immunoepigenetics Combination Therapies: An Overview of the Role of HDACs in Cancer Immunotherapy Debarati Banik, Sara Moufarrij and Alejandro Villagra * Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, The George Washington University, 800 22nd St NW, Suite 8880, Washington, DC 20052, USA; dbanik@email.gwu.edu (D.B.); smm236@email.gwu.edu (S.M.) * Correspondence: avillagra@gwu.edu; Tel.: +(202)-994-9547 Received: 22 March 2019; Accepted: 28 April 2019; Published: 7 May 2019 Abstract: Long-standing efforts to identify the multifaceted roles of histone deacetylase inhibitors (HDACis) have positioned these agents as promising drug candidates in combatting cancer, autoimmune, neurodegenerative, and infectious diseases. The same has also encouraged the evaluation of multiple HDACi candidates in preclinical studies in cancer and other diseases as well as the FDA-approval towards clinical use for specific agents. In this review, we have discussed how the efficacy of immunotherapy can be leveraged by combining it with HDACis. We have also included a brief overview of the classification of HDACis as well as their various roles in physiological and pathophysiological scenarios to target key cellular processes promoting the initiation, establishment, and progression of cancer. Given the critical role of the tumor microenvironment (TME) towards the outcome of anticancer therapies, we have also discussed the effect of HDACis on different components of the TME. We then have gradually progressed into examples of specific pan-HDACis, class I HDACi, and selective HDACis that either have been incorporated into clinical trials or show promising preclinical effects for future consideration.
    [Show full text]
  • Chidamide, a Histone Deacetylase Inhibitor, Induces Growth Arrest and Apoptosis in Multiple Myeloma Cells in a Caspase‑Dependent Manner
    ONCOLOGY LETTERS 18: 411-419, 2019 Chidamide, a histone deacetylase inhibitor, induces growth arrest and apoptosis in multiple myeloma cells in a caspase‑dependent manner XIANG-GUI YUAN*, YU-RONG HUANG*, TENG YU, HUA-WEI JIANG, YANG XU and XIAO-YING ZHAO Department of Hematology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China Received August 1, 2018; Accepted March 29, 2019 DOI: 10.3892/ol.2019.10301 Abstract. Chidamide, a novel histone deacetylase (HDAC) Introduction inhibitor, induces antitumor effects in various types of cancer. The present study aimed to evaluate the cytotoxic effect of Multiple myeloma (MM) is the second most frequent hemato- chidamide on multiple myeloma and the underlying mecha- logical neoplasm in the USA in 2018 (1) and is characterized nisms involved. Viability of multiple myeloma cells upon by the infiltration of clonal plasma cells in the bone marrow, chidamide treatment was determined by the Cell Counting secretion of monoclonal immunoglobulins and end organ Kit-8 assay. Apoptosis induction and cell cycle alteration were damage (2). Over the last decade, the introduction of protea- detected by flow cytometry. Specific apoptosis-associated some inhibitors [bortezomib (BTZ) and carfilzomib] and proteins and cell cycle proteins were evaluated by western immunomodulatory drugs (thalidomide and lenalidomide), blot analysis. Chidamide suppressed cell viability in a time- combined with autologous stem cell transplantation, have and dose-dependent manner. Chidamide treatment markedly significantly improved the prognosis of patients with MM. suppressed the expression of type I HDACs and further The 5-year overall survival (OS) rate of patients diagnosed induced the acetylation of histones H3 and H4.
    [Show full text]
  • Histone Deacetylase Inhibitors: a Prospect in Drug Discovery Histon Deasetilaz İnhibitörleri: İlaç Keşfinde Bir Aday
    Turk J Pharm Sci 2019;16(1):101-114 DOI: 10.4274/tjps.75047 REVIEW Histone Deacetylase Inhibitors: A Prospect in Drug Discovery Histon Deasetilaz İnhibitörleri: İlaç Keşfinde Bir Aday Rakesh YADAV*, Pooja MISHRA, Divya YADAV Banasthali University, Faculty of Pharmacy, Department of Pharmacy, Banasthali, India ABSTRACT Cancer is a provocative issue across the globe and treatment of uncontrolled cell growth follows a deep investigation in the field of drug discovery. Therefore, there is a crucial requirement for discovering an ingenious medicinally active agent that can amend idle drug targets. Increasing pragmatic evidence implies that histone deacetylases (HDACs) are trapped during cancer progression, which increases deacetylation and triggers changes in malignancy. They provide a ground-breaking scaffold and an attainable key for investigating chemical entity pertinent to HDAC biology as a therapeutic target in the drug discovery context. Due to gene expression, an impending requirement to prudently transfer cytotoxicity to cancerous cells, HDAC inhibitors may be developed as anticancer agents. The present review focuses on the basics of HDAC enzymes, their inhibitors, and therapeutic outcomes. Key words: Histone deacetylase inhibitors, apoptosis, multitherapeutic approach, cancer ÖZ Kanser tedavisi tüm toplum için büyük bir kışkırtıcıdır ve ilaç keşfi alanında bir araştırma hattını izlemektedir. Bu nedenle, işlemeyen ilaç hedeflerini iyileştirme yeterliliğine sahip, tıbbi aktif bir ajan keşfetmek için hayati bir gereklilik vardır. Artan pragmatik kanıtlar, histon deasetilazların (HDAC) kanserin ilerleme aşamasında deasetilasyonu arttırarak ve malignite değişikliklerini tetikleyerek kapana kısıldığını ifade etmektedir. HDAC inhibitörleri, ilaç keşfi bağlamında terapötik bir hedef olarak HDAC biyolojisiyle ilgili kimyasal varlığı araştırmak için, çığır açıcı iskele ve ulaşılabilir bir anahtar sağlarlar.
    [Show full text]
  • Small Molecule HDAC Inhibitors Promising Agents for Breast Cancer
    Bioorganic Chemistry 91 (2019) 103184 Contents lists available at ScienceDirect Bioorganic Chemistry journal homepage: www.elsevier.com/locate/bioorg Small molecule HDAC inhibitors: Promising agents for breast cancer T treatment ⁎ ⁎ Meiling Huanga,1, Jian Zhangb,1, Changjiao Yana, Xiaohui Lic, Juliang Zhanga, , Rui Linga, a Department of Thyroid, Breast and Vascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi’an 710032, PR China b Department of Burns and Cutaneous Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, PR China c School of Life Science and Biotechnology, Dalian University of Technology, Dalian 116024, PR China ARTICLE INFO ABSTRACT Keywords: Breast cancer, a heterogeneous disease, is the most frequently diagnosed cancer and the second leading cause of HDACs cancer-related death among women worldwide. Recently, epigenetic abnormalities have emerged as an im- HDAC inhibitors portant hallmark of cancer development and progression. Given that histone deacetylases (HDACs) are crucial to Anticancer drug chromatin remodeling and epigenetics, their inhibitors have become promising potential anticancer drugs for Breast cancer research. Here we reviewed the mechanism and classification of histone deacetylases (HDACs), association Clinical trials between HDACs and breast cancer, classification and structure–activity relationship (SAR) of HDACIs, phar- macokinetic and toxicological properties of the HDACIs, and registered clinical studies for breast cancer treat- ment. In conclusion, HDACIs have shown desirable effects on breast cancer, especially when they are usedin combination with other anticancer agents. In the coming future, more multicenter and randomized Phase III studies are expected to be conducted pushing promising new therapies closer to the market. In addition, the design and synthesis of novel HDACIs are also needed.
    [Show full text]
  • Chidamide Increases the Sensitivity of Non-Small Cell Lung Cancer to Crizotinib by Decreasing C-MET Mrna Methylation
    bioRxiv preprint doi: https://doi.org/10.1101/2020.03.28.012971; this version posted March 30, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Chidamide increases the sensitivity of non-small cell lung cancer to crizotinib by decreasing c-MET mRNA methylation Nan Ding, Abin You, Wei Tian, Liankun Gu, Dajun Deng* Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Division of Etiology, Peking University Cancer Hospital & Institute, Fu-Cheng-Lu #52, Haidian District, Beijing, 100142, China Corresponding author: Professor Dajun Deng, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Division of Etiology, Peking University Cancer Hospital & Institute, Fu-Cheng-Lu #52, Haidian District, Beijing, 100142, China. Phone: +8610-8816-96752; Fax: +8610-88122437; E-mail: dengdajun@bjmu.edu.cn Running title: Chidamide increases crizotinib sensitivity of cancer Total number of figures and tables: 6 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.03.28.012971; this version posted March 30, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. ABSTRACT Introduction: Crizotinib is a kinase inhibitor targeting c-MET/ALK/ROS1 used as the first-line chemical for the treatment of non-small cell lung cancer (NSCLC) with ALK mutations.
    [Show full text]
  • Preclinical Evaluation of a Regimen Combining Chidamide and ABT-199
    Chen et al. Cell Death and Disease (2020) 11:778 https://doi.org/10.1038/s41419-020-02972-2 Cell Death & Disease ARTICLE Open Access Preclinical evaluation of a regimen combining chidamide and ABT-199 in acute myeloid leukemia Kai Chen 1,2,3, Qianying Yang4, Jie Zha2,ManmanDeng2, Yong Zhou2,GuofengFu4, Silei Bi2, Liying Feng2, Zijun Y. Xu-Monette5,XiaoLeiChen 4,GuoFu 4,YunDai6, Ken H. Young5 and Bing Xu1,2 Abstract Acute myeloid leukemia (AML) is a heterogeneous myeloid neoplasm with poor clinical outcome, despite the great progress in treatment in recent years. The selective Bcl-2 inhibitor venetoclax (ABT-199) in combination therapy has been approved for the treatment of newly diagnosed AML patients who are ineligible for intensive chemotherapy, but resistance can be acquired through the upregulation of alternative antiapoptotic proteins. Here, we reported that a newly emerged histone deacetylase inhibitor, chidamide (CS055), at low-cytotoxicity dose enhanced the anti-AML activity of ABT-199, while sparing normal hematopoietic progenitor cells. Moreover, we also found that chidamide showed a superior resensitization effect than romidepsin in potentiation of ABT-199 lethality. Inhibition of multiple HDACs rather than some single component might be required. The combination therapy was also effective in primary AML blasts and stem/progenitor cells regardless of disease status and genetic aberrance, as well as in a patient-derived xenograft model carrying FLT3-ITD mutation. Mechanistically, CS055 promoted leukemia suppression through DNA double-strand break and altered unbalance of anti- and pro-apoptotic proteins (e.g., Mcl-1 and Bcl-xL downregulation, and Bim upregulation).
    [Show full text]
  • The Combination of Chidamide with the CHOEP Regimen in Previously
    Cancer Biol Med 2021. doi: 10.20892/j.issn.2095-3941.2020.0413 ORIGINAL ARTICLE The combination of chidamide with the CHOEP regimen in previously untreated patients with peripheral T-cell lymphoma: a prospective, multicenter, single arm, phase 1b/2 study Wei Zhang1, Liping Su2, Lihong Liu3, Yuhuan Gao3, Quanshun Wang4, Hang Su5, Yuhuan Song6, Huilai Zhang7, Jing Shen8, Hongmei Jing9, Shuye Wang10, Xinan Cen11, Hui Liu12, Aichun Liu13, Zengjun Li14, Jianmin Luo15, Jianxia He16, Jingwen Wang17, O. A. O’Connor18, Daobin Zhou1 1Department of Hematology, Peking Union Medical College Hospital, Beijing 100730, China; 2Department of Hematology, Shanxi Provincial Cancer Hospital, Taiyuan 030013, China; 3Department of Hematology, Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, China; 4Department of Hematology, Chinese PLA General Hospital, Beijing 100039, China; 5Department of Lymphoma, the 307 Hospital of PLA, Beijing 100071, China; 6Department of Lymphoma, Peking University Cancer Hospital and Institute, Beijing 100142, China; 7Department of Lymphoma, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin’s Clinical Research Center for Cancer, Tianjin 300060, China; 8Department of Hematology, Beijing Friendship Hospital, Beijing 100050, China; 9Department of Hematology, Peking University Third Hospital, Beijing 100191, China; 10Department of Hematology, the First Affiliated Hospital of Harbin Medical University,
    [Show full text]
  • Why ACE—Overview of the Development of the Subtype-Selective Histone Deacetylase Inhibitor Chidamide in Hormone Receptor Positive Advanced Breast Cancer
    11 Review Article Page 1 of 11 Why ACE—overview of the development of the subtype-selective histone deacetylase inhibitor chidamide in hormone receptor positive advanced breast cancer Zhiqiang Ning Shenzhen Chipscreen Biosciences Ltd., Shenzhen 518057, China Correspondence to: Zhiqiang Ning. Shenzhen Chipscreen Biosciences Ltd., Bio-Incubator 2-601, 1st Ave. of Gaoxin Road, Hi-Tech Industrial Park, Shenzhen 518057, China. Email: zqning@chipscreen.com. Abstract: ACE stands for “A Phase III Trial of Chidamide in Combination with Exemestane in Patients with Hormone Receptor-Positive Advanced Breast Cancer”. Chidamide, or by its International Nonproprietary Name (INN), tucidinostat, is an oral subtype-selective histone deacetylase (HDAC) inhibitor with unique epigenetic modulating mechanisms for anti-cancer treatment. Chidamide has been approved in China for the indications of relapsed or refractory peripheral T-cell lymphoma, and hormone receptor-positive (HR+) advanced breast cancer. In the current review, epigenetic regulations and HDACs, the potential roles of epigenetic aberrations in disease progression and resistance to endocrine therapy in HR+ breast cancer, and the development of HDAC inhibitors as a promising therapeutic strategy in the field are overlooked. Then the review focuses on the ACE study in its rationale, trial design and results that led to the first-in-disease approval of chidamide in the epigenetic modulating drug class in breast cancer. Keywords: Chidamide/Tucidinostat; selective histone deacetylase inhibitor (selective HDAC inhibitor); breast cancer; endocrine therapy resistance Received: 03 March 2020; Accepted: 24 March 2020; Published: 10 April 2020. doi: 10.21037/tbcr.2020.03.06 View this article at: http://dx.doi.org/10.21037/tbcr.2020.03.06 Introduction therapies.
    [Show full text]
  • Improving Drug Discovery Using Image-Based Multiparametric Analysis of Epigenetic Landscape
    bioRxiv preprint doi: https://doi.org/10.1101/541151; this version posted February 5, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Improving drug discovery using image-based multiparametric analysis of epigenetic landscape. Chen Farhy1, Luis Orozco1, Fu-Yue Zeng1, Ian Pass1, Jarkko Ylanko2, Santosh Hariharan2, Chun-Teng Huang1, David Andrews2,3, and Alexey V. Terskikh1*. 1Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA 2Biological Sciences Platform, Sunnybrook Research Institute. 3Departments of Biochemistry and Medical Biophysics, University of Toronto, Ontario, Canada. *Correspondence should be addressed to A.V.T. (terskikh@sbpdiscovery.org). Abstract With the advent of automatic cell imaging and machine learning, high-content phenotypic screening has become the approach of choice for drug discovery due to its ability to extract drug specific multi- layered data and compare it to known profiles. In the field of epigenetics such screening approaches has suffered from the lack of tools sensitive to selective epigenetic perturbations. Here we describe a novel approach Microscopic Imaging of Epigenetic Landscapes (MIEL) that captures patterns of nuclear staining of epigenetic marks (e.g. acetylated and methylated histones) and employs machine learning to accurately distinguish between such patterns (1). We demonstrated that MIEL has superior resolution compared to conventional intensity thresholding techniques and enables efficient detection of epigenetically active compounds, function-based classification, flagging possible off-target effects and even predict novel drug function. We validated MIEL platform across multiple cells lines and using dose-response curves to insure the robustness of this approach for the high content high throughput drug discovery.
    [Show full text]
  • WO 2016/070089 A2 6 May 2016 (06.05.2016) W P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2016/070089 A2 6 May 2016 (06.05.2016) W P O P C T (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every C07K 16/28 (2006.01) A61K 31/00 (2006.01) kind of national protection available): AE, AG, AL, AM, A61K 47/48 (2006.01) A61P 35/00 (2006.01) AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, (21) International Application Number: DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, PCT/US2015/058389 HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, (22) International Filing Date: KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, 30 October 2015 (30.10.201 5) MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, (25) Filing Language: English SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, (26) Publication Language: English TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (30) Priority Data: (84) Designated States (unless otherwise indicated, for every 62/073,824 31 October 2014 (3 1. 10.2014) US kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, (71) Applicant: ABBVIE BIOTHERAPEUTICS INC.
    [Show full text]
  • The Timeline of Epigenetic Drug Discovery: from Reality to Dreams A
    Ganesan et al. Clinical Epigenetics (2019) 11:174 https://doi.org/10.1186/s13148-019-0776-0 REVIEW Open Access The timeline of epigenetic drug discovery: from reality to dreams A. Ganesan1, Paola B. Arimondo2, Marianne G. Rots3, Carmen Jeronimo4,5 and María Berdasco6,7* Abstract The flexibility of the epigenome has generated an enticing argument to explore its reversion through pharmacological treatments as a strategy to ameliorate disease phenotypes. All three families of epigenetic proteins—readers, writers, and erasers—are druggable targets that can be addressed through small-molecule inhibitors. At present, a few drugs targeting epigenetic enzymes as well as analogues of epigenetic modifications have been introduced into the clinic use (e.g. to treat haematological malignancies), and a wide range of epigenetic-based drugs are undergoing clinical trials. Here, we describe the timeline of epigenetic drug discovery and development beginning with the early design based solely on phenotypic observations to the state-of-the-art rational epigenetic drug discovery using validated targets. Finally, we will highlight some of the major aspects that need further research and discuss the challenges that need to be overcome to implement epigenetic drug discovery into clinical management of human disorders. To turn into reality, researchers from various disciplines (chemists, biologists, clinicians) need to work together to optimise the drug engineering, read-out assays, and clinical trial design. Keywords: Epigenetics, DNA methylation, Histone modifications, Epidrugs, Therapy Background regions so as to register, signal, or perpetuate altered ac- Seventy-five years ago, the British biologist Conrad tivity states. Waddington coined the term epigenetics to describe the At the molecular level, epigenetics involves a highly com- mechanisms by which an organism stably adapts its plex and dynamically reversible set of structural modifica- phenotype to the environment [1].
    [Show full text]
  • Chidamide Increases the Sensitivity of Refractory Or Relapsed Acute Myeloid
    Wang et al. Journal of Experimental & Clinical Cancer Research (2020) 39:278 https://doi.org/10.1186/s13046-020-01792-8 RESEARCH Open Access Chidamide increases the sensitivity of refractory or relapsed acute myeloid leukemia cells to anthracyclines via regulation of the HDAC3 -AKT-P21-CDK2 signaling pathway Hao Wang1†, Yu-chen Liu1†, Cheng-ying Zhu1†, Fei Yan2, Meng-zhen Wang1, Xiao-su Chen3, Xiao-kai Wang4, Bao-xu Pang5, Yong-hui Li1, Dai-hong Liu1*, Chun-ji Gao1*, Shu-jun Liu6* and Li-ping Dou1* Abstract Background: Induction therapy for acute myeloid leukemia (AML) is an anthracycline-based chemotherapy regimen. However, many patients experience a relapse or exhibit refractory disease (R/R). There is an urgent need for more effective regimens to reverse anthracycline resistance in these patients. Methods: In this paper, Twenty-seven R/R AML patients with anthracycline resistance consecutively received chidamide in combination with anthracycline-based regimen as salvage therapy at the Chinese PLA General Hospital. Results: Of the 27 patients who had received one course of salvage therapy, 13 achieved a complete response and 1 achieved a partial response. We found that the HDAC3-AKT-P21-CDK2 signaling pathway was significantly upregulated in anthracycline-resistant AML cells compared to non-resistant cells. AML patients with higher levels of HDAC3 had lower event-free survival (EFS) and overall survival (OS) rates. Moreover, anthracycline-resistant AML cells are susceptible to chidamide, a histone deacetylase inhibitor which can inhibit cell proliferation, increase cell apoptosis and induce cell-cycle arrest in a time- and dose-dependent manner. Chidamide increases the sensitivity of anthracycline-resistant cells to anthracycline drugs, and these effects are associated with the inhibition of the HDAC3-AKT-P21-CDK2 signaling pathway.
    [Show full text]