The Klein Quartic, the Fano Plane and Curves Representing Designs

Total Page:16

File Type:pdf, Size:1020Kb

The Klein Quartic, the Fano Plane and Curves Representing Designs The Klein quartic, the Fano plane and curves representing designs Ruud Pellikaan ∗ Dedicated to the 60-th birthday of Richard E. Blahut, in Codes, Curves and Signals: Common Threads in Communications, (A. Vardy Ed.), pp. 9-20, Kluwer Acad. Publ., Dordrecht 1998. 1 Introduction The projective plane curve with defining equation X3Y + Y 3Z + Z3X = 0. has been studied for numerous reasons since Klein [19]. It was shown by Hurwitz [16, 17] that a curve considered over the complex numbers has at most 84(g − 1) automorphims, where g is the genus and g > 1. The above curve, nowadays called the Klein quartic, has genus 3 and an automorphism group of 168 elements. So it is optimal with respect to the number of automorphisms. This curve has 24 points with coordinates in the finite field of 8 elements. This is optimal with respect to Serre’s improvement of the Hasse-Weil bound: √ N ≤ q + 1 + gb2 qc, ∗Department of Mathematics and Computing Science, Technical University of Eind- hoven , P.O. Box 513, 5600 MB Eindhoven, The Netherlands. 1 where N is the number of Fq-rational points of the curve [22]. Therefore the geometric Goppa codes on the Klein quartic have good parameters, and these were studied by many authors after [13]. R.E. Blahut challenged coding theorists to give a selfcontained account of the properties of codes on curves [3]. In particular it should be possible to explain this for codes on the Klein quartic. With the decoding algorithm by a majority vote among unknown syndromes [7] his dream became true. The elementary treatment of algebraic geometry codes [8, 9, 10, 14] is now based on the observation that: if a decoding algorithm corrects t errors, then the minimum distance of the code is at least 2t + 1. This is very much the point of view of Blahut in his book [2] where he proves the BCH bound on the minimum distance as a corollary of a decoding algorithm. When Blahut was in Eindhoven for a series of lectures on algebraic ge- ometry codes [4], he gave the above picture of the Klein quartic over F8, see 3 Figure 1. Let α be an element of F8 such that α + α + 1 = 0. Then α is an primitive element of F8. The dot at place (i, j) in the diagram denotes that (αi, αj) is a point of the Klein quartic with affine equation: X3Y + Y 3 + X = 0. We get all points with nonzero coordinates in F8 in this way. It was noted by J.J. Seidel, who was in the audience, that this diagram can be interpreted as the incidence matrix of the the Fano plane 1, that is the projective plane of order two. This means that every row has three dots. The same holds for the columns. Furthermore for every two distinct columns there is exactly one row with a dot in that row and in those given columns. This paper grew out of an attempt to understand this phenomenon. Con- sider the affine plane curve Xq with equation q+1 q+1 Fq(X, Y ) = X Y + Y + X = 0 ∗ over the finite field Fq3 . Let Pq be the cyclic subgroup of the units Fq3 of order q2 + q + 1. So ∗ q2+q+1 Pq = { x ∈ Fq3 | x = 1 } 1This refers to G. Fano (1871-1952) one of the pioneers in finite geometry, not to be confused with R.M. Fano known from information theory 2 α6 • • • α5 • • • α4 • • • α3 • • • α2 • • • α1 • • • α0 • • • α0 α1 α2 α3 α4 α5 α6 ∗2 Figure 1: The Klein quartic in F8 Define an incidence relation on Pq by x is incident with y if and only if Fq(x, y) = 0. Then this defines an incidence structure of a projective plane of order q, that is to say a 2−(q2 +q +1, q +1, 1) design. This means that there are q2 +q +1 points, that the lines By = {x ∈ Pq | Fq(x, y) = 0 } have q + 1 elements for all y ∈ Pq, that there is exactly one line incident with two distinct points, and that there is exactly one point incident with two distinct lines. For every q a power of a prime there exists a projective plane of order q, called the the Desarguesian plane and denoted by PG(2, q). Not all projec- tive planes of a given order are isomorphic. It was explained to me by S. Ball and A. Blokhuis [1] that the above projective plane of order q is Desarguesian. In Section 2 the notion of curves or bivariate polynomials representing t- designs is defined. It is shown that Fq(X, Y ) represents PG(2, q). In Section 3 the number of Fq3 -rational points is computed of the projective curve Xq with affine equation Fq(X, Y ) = 0. In Section 4 a general construction is given of a bivariate polynomial representing symmetric designs, starting with a univariate polynomial. A complete characterization is given of polynomials αXnY + Y n+1 + βX that represent finite projective planes. It is shown that the design of the points/hyperplanes of the projective geometry PG(m, q) is represented by a curve. 3 2 Designs represented by curves The name design comes from the design of statistical experiments. For its basic properties and its relations with coding theory the interested reader is referred to [5, 20]. Definition 2.1 Let t, v, k and λ be positive integers. Let P be a set of v elements, called points. Let B be a collection of elements, called blocks. Let I ⊂ P × B be a relation between points and blocks. We say that P is incident with B if (P, B) ∈ I. Assume that every block B ∈ B has k elements. Suppose that for every choice of t distinct points of P there are exactly λ blocks of B that are incident with the given t-set. Then the triple (P, B, I) is called a t − (v, k, λ) design. v k Let b be the number of blocks of a t − (v, k, λ) design. Then b = λ t / t . Every point is contained in the same number r = bk/v of blocks. A 2-design is called symmetric if b = v. If (P, B, I) is a symmetric 2- design, then (B, P, I−1) is also a 2-design with the same parameters, where I−1 = {(B, P )|(P, B) ∈ I}. It is called the dual design. Definition 2.2 A 2 − (n2 + n + 1, n + 1, 1) design is called a projective plane of order n. The blocks are than called lines. For properties and constructions of finite projective planes one consults [6, 15]. The standard example is the Desarguesian projective plane PG(2, q) of order q, where q is a power of a prime. A point P of PG(2, q) is a 1- 3 dimensional linear subspace of Fq, a line B of PG(2, q) is a 2-dimensional 3 linear subspace of Fq, and P is incident with B if and only if P ⊂ B. Definition 2.3 Let F ∈ Fq[X, Y ]. Let P and B be subsets of Fq. Let I be the relation on P × B defined by (x, y) ∈ I if and only if F (x, y) = 0 for x ∈ P and y ∈ B. We say that (P, B,F ) or F represents a t − (v, k, λ) design if (P, B, I) is a t − (v, k, λ) design, degX (F ) = k and degY (F ) = r is the number of blocks through a given point of this design. 4 Consider the polynomial of the introduction q+1 q+1 Fq(X, Y ) = X Y + Y + X q2+q+1 over the field Fq3 . Define Pq = {x ∈ Fq3 | x = 1}. Let Iq be the inci- dence relation on Pq × Pq defined by (x, y) ∈ Iq if and only if Fq(x, y) = 0. The following Lemma will be used several times in this paper. q+1 Lemma 2.4 The polynomial fq(T ) = T + T + 1 has q + 1 distinct zeros in Pq. q+1 Proof. Let α + α + 1 = 0 for some α in the algebraic closure of Fq. Then raising this equation to the q-th power and multiplying with α gives αq2+q+1 + αq+1 + α = 0. So αq2+q+1 = −(αq+1 + α) = 1. Hence α ∈ Pq. The polynomial fq(T ) has q + 1 distinct zeros, since its 0 q derivative fq(T ) = T + 1 has greatest common divisor 1 with fq(T ). 2 2 Proposition 2.5 The triple (Pq, Pq,Fq) represents a 2−(q +q + 1, q + 1, 1) design. Proof. See also [1]. The polynomial fq(T ) has q + 1 distinct zeros in Pq by −q Lemma 2.4. Let x ∈ Pq and let α be a zero of fq(T ). Define y = αx . Then q y ∈ Pq. Substituting α = x y in fq(T ) gives (xqy)q+1 + xqy + 1 = 0 Multiplying with x gives yq+1 + xqy + x = 0, since xq2+q+1 = 1. Hence for every x ∈ Pq there are exactly q + 1 elements y ∈ Pq such that Fq(x, y) = 0. Now let x1, x2 ∈ Pq such that Fq(x1, y) = Fq(x2, y) = 0 and x1 6= x2. Then q+1 q+1 (x1 − x2 )y − (x1 − x2) = Fq(x1, y) − Fq(x2, y) = 0 2 The order of x1/x2 divides q + q + 1 and is not one. Furthermore q + 1 and 2 q+1 q+1 q+1 q + q + 1 are relatively prime.
Recommended publications
  • The Group of Automorphisms of the Heisenberg Curve
    THE GROUP OF AUTOMORPHISMS OF THE HEISENBERG CURVE JANNIS A. ANTONIADIS AND ARISTIDES KONTOGEORGIS ABSTRACT. The Heisenberg curve is defined to be the curve corresponding to an exten- sion of the projective line by the Heisenberg group modulo n, ramified above three points. This curve is related to the Fermat curve and its group of automorphisms is studied. Also we give an explicit equation for the curve C3. 1. INTRODUCTION Probably the most famous curve in number theory is the Fermat curve given by affine equation n n Fn : x + y =1. This curve can be seen as ramified Galois cover of the projective line with Galois group a b Z/nZ Z/nZ with action given by σa,b : (x, y) (ζ x, ζ y) where (a,b) Z/nZ Z/nZ.× The ramified cover 7→ ∈ × π : F P1 n → has three ramified points and the cover F 0 := F π−1( 0, 1, ) π P1 0, 1, , n n − { ∞} −→ −{ ∞} is a Galois topological cover. We can see the hyperbolic space H as the universal covering space of P1 0, 1, . The Galois group of the above cover is isomorphic to the free −{ ∞} group F2 in two generators, and a suitable realization of this group in our setting is the group ∆ which is the subgroup of SL(2, Z) PSL(2, R) generated by the elements a = 1 2 1 0 ⊆ , b = and π(P1 0, 1, , x ) = ∆. Related to the group ∆ is the 0 1 2 1 −{ ∞} 0 ∼ modular group a b Γ(2) = γ = SL(2, Z): γ 1 mod2 , c d ∈ ≡ 2 H P1 which is isomorphic to I ∆ while Γ(2) ∼= 0, 1, .
    [Show full text]
  • Two Cases of Fermat's Last Theorem Using Descent on Elliptic Curves
    A. M. Viergever Two cases of Fermat's Last Theorem using descent on elliptic curves Bachelor thesis 22 June 2018 Thesis supervisor: dr. R.M. van Luijk Leiden University Mathematical Institute Contents Introduction2 1 Some important theorems and definitions4 1.1 Often used notation, definitions and theorems.................4 1.2 Descent by 2-isogeny...............................5 1.3 Descent by 3-isogeny...............................8 2 The case n = 4 10 2.1 The standard proof................................ 10 2.2 Descent by 2-isogeny............................... 11 2.2.1 C and C0 are elliptic curves....................... 11 2.2.2 The descent-method applied to E .................... 13 2.2.3 Relating the descent method and the classical proof.......... 14 2.2.4 A note on the automorphisms of C ................... 16 2.3 The method of descent by 2-isogeny for a special class of elliptic curves... 17 2.3.1 Addition formulas............................. 17 2.3.2 The method of 2-descent on (Ct; O)................... 19 2.4 Twists and φ-coverings.............................. 22 2.4.1 Twists................................... 22 2.4.2 A φ-covering................................ 25 3 The case n = 3 26 3.1 The standard proof................................ 26 3.2 Descent by 3-isogeny............................... 28 3.2.1 The image of q .............................. 28 3.2.2 The descent method applied to E .................... 30 3.2.3 Relating the descent method and the classical proof.......... 32 3.2.4 A note on the automorphisms of C ................... 33 3.3 Twists and φ-coverings.............................. 34 3.3.1 The case d 2 (Q∗)2 ............................ 34 3.3.2 The case d2 = (Q∗)2 ...........................
    [Show full text]
  • THE HESSE PENCIL of PLANE CUBIC CURVES 1. Introduction In
    THE HESSE PENCIL OF PLANE CUBIC CURVES MICHELA ARTEBANI AND IGOR DOLGACHEV Abstract. This is a survey of the classical geometry of the Hesse configuration of 12 lines in the projective plane related to inflection points of a plane cubic curve. We also study two K3surfaceswithPicardnumber20whicharise naturally in connection with the configuration. 1. Introduction In this paper we discuss some old and new results about the widely known Hesse configuration of 9 points and 12 lines in the projective plane P2(k): each point lies on 4 lines and each line contains 3 points, giving an abstract configuration (123, 94). Through most of the paper we will assume that k is the field of complex numbers C although the configuration can be defined over any field containing three cubic roots of unity. The Hesse configuration can be realized by the 9 inflection points of a nonsingular projective plane curve of degree 3. This discovery is attributed to Colin Maclaurin (1698-1746) (see [46], p. 384), however the configuration is named after Otto Hesse who was the first to study its properties in [24], [25]1. In particular, he proved that the nine inflection points of a plane cubic curve form one orbit with respect to the projective group of the plane and can be taken as common inflection points of a pencil of cubic curves generated by the curve and its Hessian curve. In appropriate projective coordinates the Hesse pencil is given by the equation (1) λ(x3 + y3 + z3)+µxyz =0. The pencil was classically known as the syzygetic pencil 2 of cubic curves (see [9], p.
    [Show full text]
  • The Klein Quartic in Number Theory
    The Eightfold Way MSRI Publications Volume 35, 1998 The Klein Quartic in Number Theory NOAM D. ELKIES Abstract. We describe the Klein quartic X and highlight some of its re- markable properties that are of particular interest in number theory. These include extremal properties in characteristics 2, 3, and 7, the primes divid- ing the order of the automorphism group of X; an explicit identification of X with the modular curve X(7); and applications to the class number 1 problem and the case n = 7 of Fermat. Introduction Overview. In this expository paper we describe some of the remarkable prop- erties of the Klein quartic that are of particular interest in number theory. The Klein quartic X is the unique curve of genus 3 over C with an automorphism group G of size 168, the maximum for its genus. Since G is central to the story, we begin with a detailed description of G and its representation on the 2 three-dimensional space V in whose projectivization P(V )=P the Klein quar- tic lives. The first section is devoted to this representation and its invariants, starting over C and then considering arithmetical questions of fields of definition and integral structures. There we also encounter a G-lattice that later occurs as both the period lattice and a Mordell–Weil lattice for X. In the second section we introduce X and investigate it as a Riemann surface with automorphisms by G. In the third section we consider the arithmetic of X: rational points, relations with the Fermat curve and Fermat’s “Last Theorem” for exponent 7, and some extremal properties of the reduction of X modulo the primes 2, 3, 7 dividing #G.
    [Show full text]
  • Generalized Fermat Curves
    ARTICLE IN PRESS JID:YJABR AID:12369 /FLA [m1G; v 1.77; Prn:15/01/2009; 8:13] P.1 (1-18) JournalofAlgebra••• (••••) •••–••• 1 Contents lists available at ScienceDirect 1 2 2 3 3 4 Journal of Algebra 4 5 5 6 6 7 www.elsevier.com/locate/jalgebra 7 8 8 9 9 10 10 11 11 12 Generalized Fermat curves 12 13 13 a,∗,1 b,2 c 14 Gabino González-Diez ,RubénA.Hidalgo , Maximiliano Leyton 14 15 15 a Departamento de Matemáticas, UAM, Madrid, Spain 16 16 b Departamento de Matemáticas, Universidad Técnica Federico Santa María, Valparaíso, Chile 17 c Institut Fourier-UMR5582, Université Joseph Fourier, France 17 18 18 19 19 article info abstract 20 20 21 21 Article history: 22 A closed Riemann surface S is a generalized Fermat curve of type 22 Received 12 November 2007 k n if it admits a group of automorphisms H =∼ Zn such that the 23 ( , ) k 23 Available online xxxx quotient O = S/H is an orbifold with signature (0,n + 1;k,...,k), 24 Communicated by Corrado de Concini 24 that is, the Riemann sphere with (n + 1) conical points, all of same 25 25 order k.ThegroupH is called a generalized Fermat group of type 26 Keywords: 26 Riemann surfaces (k,n) and the pair (S, H) is called a generalized Fermat pair of 27 27 Fuchsian groups type (k,n). We study some of the properties of generalized Fermat 28 Automorphisms curves and, in particular, we provide simple algebraic curve real- 28 29 ization of a generalized Fermat pair (S, H) in a lower-dimensional 29 30 projective space than the usual canonical curve of S so that the 30 31 normalizer of H in Aut(S) is still linear.
    [Show full text]
  • Fermat Curves and the Reciprocity Law on Cyclotomic Units
    Fermat curves and the reciprocity law on cyclotomic units Tomokazu Kashio∗ April 26, 2018 Abstract We define a “period ring-valued beta function” and give a reciprocity law on its special values. The proof is based on some results of Rohrlich and Coleman con- cerning Fermat curves. We also have the following application. Stark’s conjecture implies that the exponential of the derivatives at s = 0 of partial zeta functions are algebraic numbers which satisfy a reciprocity law under certain conditions. It follows from Euler’s formulas and properties of cyclotomic units when the base field is the rational number field. In this paper, we provide an alternative (and partial) proof by using the reciprocity law on the period ring-valued beta function. In other words, the reciprocity law given in this paper is a refinement of the reciprocity law on cyclotomic units. 1 Introduction We first recall the rank 1 abelian Stark conjecture. Let K/F be an abelian extension of number fields with G := Gal(K/F ). Let S be a finite set of places of F containing all infinite places and all ramifying places. Then the partial zeta function associated to S, σ G is defined by ∈ arXiv:1502.04397v2 [math.NT] 10 Mar 2015 s ζS(s, σ) := Na− . a ,(a,S)=1, K/F =σ ⊂OF X( a ) Here a runs over all integral ideals of F relatively prime to all primes in S whose image under the Artin symbol ( K/F ) is equal to σ. This series converges when Re(s) > 1 and has a meromorphic continuation∗ to the whole complex s-plane.
    [Show full text]
  • Algebraic Geometry I
    GEIR ELLINGSRUD NOTES FOR MA4210— ALGEBRAIC GEOMETRY I Contents 1 Algebraic sets and the Nullstellensatz 7 Fields and the affine space 8 Closed algebraic sets 8 The Nullstellensatz 11 Hilbert’s Nullstellensatz—proofs 13 Figures and intuition 15 A second proof of the Nullstellensatz 16 2 Zariski topolgies 21 The Zariski topology 21 Irreducible topological spaces 23 Polynomial maps between algebraic sets 31 3 Sheaves and varities 37 Sheaves of rings 37 Functions on irreducible algebraic sets 40 The definition of a variety 43 Morphisms between prevarieties 46 The Hausdorff axiom 48 Products of varieties 50 4 Projective varieties 59 The projective spaces Pn 60 The projective Nullstellensatz 68 2 Global regular functions on projective varieties 70 Morphisms from quasi projective varieties 72 Two important classes of subvarieties 76 The Veronese embeddings 77 The Segre embeddings 79 5 Dimension 83 Definition of the dimension 84 Finite polynomial maps 88 Noether’s Normalization Lemma 93 Krull’s Principal Ideal Theorem 97 Applications to intersections 102 Appendix: Proof of the Geometric Principal Ideal Theorem 105 6 Rational Maps and Curves 111 Rational and birational maps 112 Curves 117 7 Structure of maps 127 Generic structure of morhisms 127 Properness of projectives 131 Finite maps 134 Curves over regular curves 140 8 Bézout’s theorem 143 Bézout’s Theorem 144 The local multiplicity 145 Proof of Bezout’s theorem 148 8.3.1 A general lemma 150 Appendix: Depth, regular sequences and unmixedness 152 Appendix: Some graded algebra 158 3 9 Non-singular varieties 165 Regular local rings 165 The Jacobian criterion 166 9.2.1 The projective cse 167 CONTENTS 5 These notes ere just informal extensions of the lectures I gave last year.
    [Show full text]
  • Jacobi Sums, Fermat Jacobians, and Ranks of Abelian Varieties Over Towers of Function Fields
    JACOBI SUMS, FERMAT JACOBIANS, AND RANKS OF ABELIAN VARIETIES OVER TOWERS OF FUNCTION FIELDS DOUGLAS ULMER 1. Introduction Given an abelian variety A over a function field K = k(C) with C an absolutely irreducible, smooth, proper curve over a field k, it is natural to ask about the behavior of the Mordell-Weil group of A in the layers of a tower of fields over K. The simplest case, which is already very interesting, is when A is an elliptic curve, K = k(t) is a rational function field, and one considers the towers k(t1/d) or k(t1/d) as d varies through powers of a prime or through all integers not divisible by the characteristic of k. When k = Q or more generally a number field, several authors (e.g., [Shi86], [Sti87], [Fas97], [Sil00], [Sil04], and [Ell06]) have considered this question and given bounds on the rank of A over Q(t1/d) or Q(t1/d). In some interesting cases it can be shown that A has rank bounded independently of d in the tower Q(t1/d). Of course no example is yet known of an elliptic curve over Q(t) with unbounded ranks in the tower Q(t1/d), nor of an elliptic curve over Q(t) with non-constant j-invariant and unbounded ranks in the tower Q(t1/d). When k is a finite field, examples of Shioda and the author show that there are non-isotrivial elliptic curves over Fp(t) with unbounded ranks in the towers 1/d 1/d Fp(t ) [Shi86, Remark 10] and Fp(t ) [Ulm02, 1.5].
    [Show full text]
  • On the Variety of the Inflection Points of Plane Cubic Curves
    ON THE VARIETY OF THE INFLECTION POINTS OF PLANE CUBIC CURVES VIK.S. KULIKOV Abstract. In the paper, we investigate properties of the nine-dimensional variety of the inflection points of the plane cubic curves. The description of local mon- odromy groups of the set of inflection points near singular cubic curves is given. Also, it is given a detailed description of the normalizations of the surfaces of the inflection points of plane cubic curves belonging to general two-dimensional linear systems of cubic curves, The vanishing of the irregularity a smooth manifold bira- tionally isomorphic to the variety of the inflection points of the plane cubic curves is proved. 0. Introduction The study of the properties of inflection points of plane nonsingular cubic curves has a rich and long history. Already in the middle of the 19th century, O. Hesse ([8], [9]) proved that nine inflection points of a nonsingular plane cubic is a projectively rigid configuration of points, i.e. 9-tuples of inflection points of the nonsingular plane cubic curves constitute an orbit with respect to the action of the group P GL(3, C) on the set of 9-tuples of the points of the projective plane. A subgroup Hes in P GL(3, C) of order 216 leaving invariant the set of the inflection points of Fermat cubic, given in P2 3 3 3 by z1 + z2 + z3 = 0, was defined by K. Jordan ([11]) and named by him the Hesse group. The invariants of the group Hes were described by G. Mashke in [18].
    [Show full text]
  • Projective Plane Curves Whose Automorphism Groups Are Simple and Primitive
    Projective plane curves whose automorphism groups are simple and primitive Yusuke Yoshida Abstract We study complex projective plane curves with a given group of auto- morphisms. Let G be a simple primitive subgroup of PGL(3, C), which is isomorphic to A6, A5 or PSL(2, F7). We obtain a necessary and sufficient condition on d for the existence of a nonsingular projective plane curve of degree d invariant under G. We also study an analogous problem on integral curves. 1 Introduction Automorphism groups of algebraic curves have long been studied. For example, Hurwitz found an upper bound on the order of the automorphism group of a curve of a given genus ([Hurwitz]). In the case of plane curves, there are more detailed studies on automorphism groups. One important fact here is that an automorphism of a smooth projective plane curve of degree greater than or equal to 4 uniquely extends to an automorphism of the projective plane. Hence, the automorphism group of such a curve is isomorphic to a subgroup of PGL(3, C). Recently, Harui obtained the following result concerning the classification of automorphism groups of smooth plane curves. Theorem 1.1. [Harui, Theorem 2.3] Let C be a smooth plane curve of degree d 4, and G a subgroup of Aut C. Then one of the following holds: ≥ (a-i) G fixes a point on C, and G is cyclic. (a-ii) G fixes a point not lying on C, and up to conjugation there is a commu- tative diagram π 1 / C× / PBD(2, 1) / PGL(2, C) / 1 arXiv:2008.13427v1 [math.AG] 31 Aug 2020 S S S 1 / N / G / G′ / 1 with exact rows where the subgroup PBD(2, 1) of PGL(3, C) is defined by A O PBD(2, 1) := PGL(3, C) A GL(2, C), α C× , O α ∈ ∈ ∈ N is cyclic and G′ is isomorphic to a cyclic group Z/mZ, a dihedral group m, the tetrahedral group A , the octahedral group S or the icosahedral D2 4 4 group A5.
    [Show full text]
  • Twists of Genus Three Curves Over Finite Fields
    ARTICLE IN PRESS YFFTA:775 JID:YFFTA AID:775 /FLA [m1G; v 1.42; Prn:17/06/2010; 11:22] P.1 (1-22) Finite Fields and Their Applications ••• (••••) •••–••• Contents lists available at ScienceDirect Finite Fields and Their Applications www.elsevier.com/locate/ffa Twists of genus three curves over finite fields ∗ Stephen Meagher a, Jaap Top b, a Albert-Ludwigs-Universität Freiburg, Mathematisches Institut, Eckerstraße 1, D-79104 Freiburg, Germany b Johann Bernoulli Institute, Rijksuniversiteit Groningen, Nijenborgh 9, 9747 AG Groningen, The Netherlands article info abstract Article history: In this article we recall how to describe the twists of a curve Received 13 July 2009 over a finite field and we show how to compute the number of Revised 10 March 2010 rational points on such a twist by methods of linear algebra. We Available online xxxx illustrate this in the case of plane quartic curves with at least Communicated by H. Stichtenoth 16 automorphisms. In particular we treat the twists of the Dyck– MSC: Fermat and Klein quartics. Our methods show how in special cases 11G20 non-Abelian cohomology can be explicitly computed. They also 14G15 show how questions which appear difficult from a function field 14H25 perspective can be resolved by using the theory of the Jacobian 14H45 variety. 14H50 © 2010 Elsevier Inc. All rights reserved. 14G15 14K15 Keywords: Curve Jacobian Twist Klein quartic Dyck–Fermat quartic Non-Abelian Galois cohomology 1. Introduction n 1.1. Let p be a prime, let q := p be an integral power of p and let Fq be a field with q elements.
    [Show full text]
  • The ABC's of Number Theory
    The ABC's of Number Theory The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Elkies, Noam D. 2007. The ABC's of number theory. The Harvard College Mathematics Review 1(1): 57-76. Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:2793857 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA FACULTY FEATURE ARTICLE 6 The ABC’s of Number Theory Prof. Noam D. Elkies† Harvard University Cambridge, MA 02138 [email protected] Abstract The ABC conjecture is a central open problem in modern number theory, connecting results, techniques and questions ranging from elementary number theory and algebra to the arithmetic of elliptic curves to algebraic geometry and even to entire functions of a complex variable. The conjecture asserts that, in a precise sense that we specify later, if A, B, C are relatively prime integers such that A + B = C then A, B, C cannot all have many repeated prime factors. This expository article outlines some of the connections between this assertion and more familiar Diophantine questions, following (with the occasional scenic detour) the historical route from Pythagorean triples via Fermat’s Last Theorem to the formulation of the ABC conjecture by Masser and Oesterle.´ We then state the conjecture and give a sample of its many consequences and the few very partial results available.
    [Show full text]