A new two-variable generalization of the chromatic polynomial Klaus Dohmen, André Poenitz, Peter Tittmann To cite this version: Klaus Dohmen, André Poenitz, Peter Tittmann. A new two-variable generalization of the chromatic polynomial. Discrete Mathematics and Theoretical Computer Science, DMTCS, 2003, 6 (1), pp.69-90. hal-00958990 HAL Id: hal-00958990 https://hal.inria.fr/hal-00958990 Submitted on 13 Mar 2014 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Discrete Mathematics and Theoretical Computer Science 6, 2003, 069–090 A new two-variable generalization of the chromatic polynomial Klaus Dohmen, Andre´ Ponitz,¨ Peter Tittmann Department of Mathematics, Mittweida University of Applied Sciences, 09648 Mittweida, Germany E-mail:
[email protected],
[email protected],
[email protected] received July 31, 2002, revised February 20, 2003, May 15, 2003, June 12, 2003, accepted June 16, 2003. Let P(G;x,y) be the number of vertex colorings φ : V → {1,...,x} of an undirected graph G =(V,E) such that for all edges {u,v}∈ E the relations φ(u) ≤ y and φ(v) ≤ y imply φ(u) 6= φ(v). We show that P(G;x,y) is a polynomial in x and y which is closely related to Stanley’s chromatic symmetric function, and which simultaneously generalizes the chromatic polynomial, the independence polynomial, and the matching polynomial of G.