Deepmind's Demis Hassabis Inspires London Schoolchildren

Total Page:16

File Type:pdf, Size:1020Kb

Deepmind's Demis Hassabis Inspires London Schoolchildren PRESS RELEASE DeepMind ’s Demis Hassabis inspires London schoolchildren John Saunders reports: Demis Hassabis, co-founder of the leading artificial intelligence company DeepMind, now part of Google ’s Alpha Group, paid a visit to UCL Academy, a secondary school in Camden, London, on 8 November to talk to the academy students about Artificial Intelligence and give a simul with a difference in which the opponents could consult a computer engine during play. Though now more famous for his pioneering work in the field of neuroscience-inspired AI, Demis Hassabis is also a chess player of some renown, having reached a rating of 2300 aged just 13 on FIDE ’s January 1990 list at a time when the only player of his age group rated higher than him was Judit Polgar. He also has a connection with UCL Academy in that he studied for his doctorate in cognitive neuro-science at University College London, which sponsors the school. Demis touched on the famous Kasparov-Deep Blue man versus machine encounters and how information from these legendary encounters had fed into his planning for a computer program to play Go. Reluctant though we die-hard chessers sometimes are to admit it, we have to acknowledge that this 3000-year-old game from China, though ostensibly simple in terms of the rules, is a quantum leap more complex to play than its 64-square rival. The Alpha Group at Google ’s London HQ had no illusions in the task they were taking on. A Go-playing program couldn ’t simply ape chess engines because it was impossible to build an evaluation function that would match the depth and complexity of the game – so AI was the only approach. The program would achieve its strength by playing games against itself, many thousands of times, and generate its own algorithms for winning, and go on doing so over time. The end result of their endeavour was named AlphaGo. The program ’s achievement in defeating the supreme human Go player Lee Sedol in 2016, by four games to one, was a bigger surprise even than Deep Blue ’s defeat of Kasparov. It was intriguing to hear of the defeated Go champion ’s positive reaction to his defeat. Far from being downhearted, Lee Sedol found his game had moved to a higher level: after the AlphaGo match he went on a three-month tournament winning streak. He was philosophical and upbeat: “I think this will bring a new paradigm to Go – I feel thankful and feel like I’ve found the reason I play Go. ” Demis Hassabis is a charismatic speaker and it was impressive to see how well he engaged with the academy students. He clearly inspired his audience and was rewarded with a barrage of thoughtful questions from them at the end of his talk. As well as UCL, the audience included pupils from five nearby schools (Royal Free Hospital Children's School, Hampstead School, Regent High School, Acland Burghley School and William Ellis School & Haverstock Schools). So much interest was created in the subject of AI so that the question and answer session carried on into the room set aside for the simul and severely impacted on the time available to play the games! Demis only had time to play ten or so moves on each board before he had to leave for his next appointment. Malcolm Pein summarised, thus: “After Demis left I took over six good positions he had achieved from the opening. But the children started to get the hang of Fritz... and the games became tougher and tougher. I won three, lost one and was cruising in the other two. A 4-2 victory was in sight until I very diplomatically, and of course involuntarily, allowed the head teacher a mate in one!! ” Yes, those students learnt fast. Here ’s the position where Malcolm (white) came unstuck... With an overwhelming position, Malcolm now played h6-h7, followed shortly by a gale of laughter having realised what he had just perpetrated. (A sneakier player like me would have kept quiet.) Co-principal of UCL Academy Robin Street could be forgiven for the smile on his face as he replied ...Rh6 mate. Demis Hassabis is grateful for the role chess has played in his life: “chess has had a remarkable impact on me, providing a fundamental and logical planning process to all areas of my life, whether in business or anything else... chess is an incredible training ground for the mind. ” The next chess fixture for Demis Hassabis is the Pro-Biz Cup, alongside Garry Kasparov, who will be making his first moves in London since retiring in 2005. ENDS NOTES TO THE EDITORS Press contact John Saunders email [email protected] Twitter @London_Chess Tel +44 (0)7777 664111 For media enquiries related to Chess in Schools and Communities, please contact: James Gwinnett Brazil Tel: +44 (0) 20 7785 7383 E: [email protected] About Chess in Schools and Communities Chess in Schools and Communities (CSC) is a UK charity whose mission is to improve children ’s educational outcomes and social development by introducing them to the game of chess. Founded in 2009, CSC now teaches in over 300 schools and supports 500 more nationwide. CSC also organises a world-class tournament, the London Chess Classic, and Yes2Chess, an international tournament for schools. For more information visit: Chessinschools.co.uk. About the London Chess Classic The London Chess Classic is the flagship annual event of Chess in Schools and Communities. As the UK ’s largest chess tournament and the concluding leg of the Grand Chess Tour, an international circuit of high-profile chess events inspired by the legendary Garry Kasparov, the event brings with it enormous prestige in the chess community. Alongside this competition amongst the world ’s best players, Chess in Schools and Communities runs a range of amateur and age-grade competitions for 1,000s of children from the charity initiative nationwide. For more information visit: Londonchessclassic.com. About DeepMind DeepMind is a neuroscience-inspired AI company which develops general-purpose learning algorithms and uses them to help tackle some of the world’s most pressing challenges. Since its founding in London in 2010, DeepMind has published over 100 peer- reviewed papers, three of them in the scientific journal Nature – an unprecedented achievement for a computer science lab. DeepMind’s groundbreaking work includes the development of deep reinforcement learning, combining the domains of deep learning and reinforcement learning. This technique underpinned AlphaGo, a computer program that defeated Go world champion Lee Sedol in 2016 – a breakthrough experts proclaimed to have arrived a decade ahead of its time. In 2014, DeepMind was acquired by Google, in their largest ever European acquisition, and is now part of the Alphabet group. .
Recommended publications
  • Lecture Note on Deep Learning and Quantum Many-Body Computation
    Lecture Note on Deep Learning and Quantum Many-Body Computation Jin-Guo Liu, Shuo-Hui Li, and Lei Wang∗ Institute of Physics, Chinese Academy of Sciences Beijing 100190, China November 23, 2018 Abstract This note introduces deep learning from a computa- tional quantum physicist’s perspective. The focus is on deep learning’s impacts to quantum many-body compu- tation, and vice versa. The latest version of the note is at http://wangleiphy.github.io/. Please send comments, suggestions and corrections to the email address in below. ∗ [email protected] CONTENTS 1 introduction2 2 discriminative learning4 2.1 Data Representation 4 2.2 Model: Artificial Neural Networks 6 2.3 Cost Function 9 2.4 Optimization 11 2.4.1 Back Propagation 11 2.4.2 Gradient Descend 13 2.5 Understanding, Visualization and Applications Beyond Classification 15 3 generative modeling 17 3.1 Unsupervised Probabilistic Modeling 17 3.2 Generative Model Zoo 18 3.2.1 Boltzmann Machines 19 3.2.2 Autoregressive Models 22 3.2.3 Normalizing Flow 23 3.2.4 Variational Autoencoders 25 3.2.5 Tensor Networks 28 3.2.6 Generative Adversarial Networks 29 3.3 Summary 32 4 applications to quantum many-body physics and more 33 4.1 Material and Chemistry Discoveries 33 4.2 Density Functional Theory 34 4.3 “Phase” Recognition 34 4.4 Variational Ansatz 34 4.5 Renormalization Group 35 4.6 Monte Carlo Update Proposals 36 4.7 Tensor Networks 37 4.8 Quantum Machine Leanring 38 4.9 Miscellaneous 38 5 hands on session 39 5.1 Computation Graph and Back Propagation 39 5.2 Deep Learning Libraries 41 5.3 Generative Modeling using Normalizing Flows 42 5.4 Restricted Boltzmann Machine for Image Restoration 43 5.5 Neural Network as a Quantum Wave Function Ansatz 43 6 challenges ahead 45 7 resources 46 BIBLIOGRAPHY 47 1 1 INTRODUCTION Deep Learning (DL) ⊂ Machine Learning (ML) ⊂ Artificial Intelli- gence (AI).
    [Show full text]
  • AI Computer Wraps up 4-1 Victory Against Human Champion Nature Reports from Alphago's Victory in Seoul
    The Go Files: AI computer wraps up 4-1 victory against human champion Nature reports from AlphaGo's victory in Seoul. Tanguy Chouard 15 March 2016 SEOUL, SOUTH KOREA Google DeepMind Lee Sedol, who has lost 4-1 to AlphaGo. Tanguy Chouard, an editor with Nature, saw Google-DeepMind’s AI system AlphaGo defeat a human professional for the first time last year at the ancient board game Go. This week, he is watching top professional Lee Sedol take on AlphaGo, in Seoul, for a $1 million prize. It’s all over at the Four Seasons Hotel in Seoul, where this morning AlphaGo wrapped up a 4-1 victory over Lee Sedol — incidentally, earning itself and its creators an honorary '9-dan professional' degree from the Korean Baduk Association. After winning the first three games, Google-DeepMind's computer looked impregnable. But the last two games may have revealed some weaknesses in its makeup. Game four totally changed the Go world’s view on AlphaGo’s dominance because it made it clear that the computer can 'bug' — or at least play very poor moves when on the losing side. It was obvious that Lee felt under much less pressure than in game three. And he adopted a different style, one based on taking large amounts of territory early on rather than immediately going for ‘street fighting’ such as making threats to capture stones. This style – called ‘amashi’ – seems to have paid off, because on move 78, Lee produced a play that somehow slipped under AlphaGo’s radar. David Silver, a scientist at DeepMind who's been leading the development of AlphaGo, said the program estimated its probability as 1 in 10,000.
    [Show full text]
  • Accelerators and Obstacles to Emerging ML-Enabled Research Fields
    Life at the edge: accelerators and obstacles to emerging ML-enabled research fields Soukayna Mouatadid Steve Easterbrook Department of Computer Science Department of Computer Science University of Toronto University of Toronto [email protected] [email protected] Abstract Machine learning is transforming several scientific disciplines, and has resulted in the emergence of new interdisciplinary data-driven research fields. Surveys of such emerging fields often highlight how machine learning can accelerate scientific discovery. However, a less discussed question is how connections between the parent fields develop and how the emerging interdisciplinary research evolves. This study attempts to answer this question by exploring the interactions between ma- chine learning research and traditional scientific disciplines. We examine different examples of such emerging fields, to identify the obstacles and accelerators that influence interdisciplinary collaborations between the parent fields. 1 Introduction In recent decades, several scientific research fields have experienced a deluge of data, which is impacting the way science is conducted. Fields such as neuroscience, psychology or social sciences are being reshaped by the advances in machine learning (ML) and the data processing technologies it provides. In some cases, new research fields have emerged at the intersection of machine learning and more traditional research disciplines. This is the case for example, for bioinformatics, born from collaborations between biologists and computer scientists in the mid-80s [1], which is now considered a well-established field with an active community, specialized conferences, university departments and research groups. How do these transformations take place? Do they follow similar paths? If yes, how can the advances in such interdisciplinary fields be accelerated? Researchers in the philosophy of science have long been interested in these questions.
    [Show full text]
  • The Deep Learning Revolution and Its Implications for Computer Architecture and Chip Design
    The Deep Learning Revolution and Its Implications for Computer Architecture and Chip Design Jeffrey Dean Google Research [email protected] Abstract The past decade has seen a remarkable series of advances in machine learning, and in particular deep learning approaches based on artificial neural networks, to improve our abilities to build more accurate systems across a broad range of areas, including computer vision, speech recognition, language translation, and natural language understanding tasks. This paper is a companion paper to a keynote talk at the 2020 International Solid-State Circuits Conference (ISSCC) discussing some of the advances in machine learning, and their implications on the kinds of computational devices we need to build, especially in the post-Moore’s Law-era. It also discusses some of the ways that machine learning may also be able to help with some aspects of the circuit design process. Finally, it provides a sketch of at least one interesting direction towards much larger-scale multi-task models that are sparsely activated and employ much more dynamic, example- and task-based routing than the machine learning models of today. Introduction The past decade has seen a remarkable series of advances in machine learning (ML), and in particular deep learning approaches based on artificial neural networks, to improve our abilities to build more accurate systems across a broad range of areas [LeCun et al. 2015]. Major areas of significant advances ​ ​ include computer vision [Krizhevsky et al. 2012, Szegedy et al. 2015, He et al. 2016, Real et al. 2017, Tan ​ ​ ​ ​ ​ ​ and Le 2019], speech recognition [Hinton et al.
    [Show full text]
  • The Power and Promise of Computers That Learn by Example
    Machine learning: the power and promise of computers that learn by example MACHINE LEARNING: THE POWER AND PROMISE OF COMPUTERS THAT LEARN BY EXAMPLE 1 Machine learning: the power and promise of computers that learn by example Issued: April 2017 DES4702 ISBN: 978-1-78252-259-1 The text of this work is licensed under the terms of the Creative Commons Attribution License which permits unrestricted use, provided the original author and source are credited. The license is available at: creativecommons.org/licenses/by/4.0 Images are not covered by this license. This report can be viewed online at royalsociety.org/machine-learning Cover image © shulz. 2 MACHINE LEARNING: THE POWER AND PROMISE OF COMPUTERS THAT LEARN BY EXAMPLE Contents Executive summary 5 Recommendations 8 Chapter one – Machine learning 15 1.1 Systems that learn from data 16 1.2 The Royal Society’s machine learning project 18 1.3 What is machine learning? 19 1.4 Machine learning in daily life 21 1.5 Machine learning, statistics, data science, robotics, and AI 24 1.6 Origins and evolution of machine learning 25 1.7 Canonical problems in machine learning 29 Chapter two – Emerging applications of machine learning 33 2.1 Potential near-term applications in the public and private sectors 34 2.2 Machine learning in research 41 2.3 Increasing the UK’s absorptive capacity for machine learning 45 Chapter three – Extracting value from data 47 3.1 Machine learning helps extract value from ‘big data’ 48 3.2 Creating a data environment to support machine learning 49 3.3 Extending the lifecycle
    [Show full text]
  • ARCHITECTS of INTELLIGENCE for Xiaoxiao, Elaine, Colin, and Tristan ARCHITECTS of INTELLIGENCE
    MARTIN FORD ARCHITECTS OF INTELLIGENCE For Xiaoxiao, Elaine, Colin, and Tristan ARCHITECTS OF INTELLIGENCE THE TRUTH ABOUT AI FROM THE PEOPLE BUILDING IT MARTIN FORD ARCHITECTS OF INTELLIGENCE Copyright © 2018 Packt Publishing All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, without the prior written permission of the publisher, except in the case of brief quotations embedded in critical articles or reviews. Every effort has been made in the preparation of this book to ensure the accuracy of the information presented. However, the information contained in this book is sold without warranty, either express or implied. Neither the author, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to have been caused directly or indirectly by this book. Packt Publishing has endeavored to provide trademark information about all of the companies and products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy of this information. Acquisition Editors: Ben Renow-Clarke Project Editor: Radhika Atitkar Content Development Editor: Alex Sorrentino Proofreader: Safis Editing Presentation Designer: Sandip Tadge Cover Designer: Clare Bowyer Production Editor: Amit Ramadas Marketing Manager: Rajveer Samra Editorial Director: Dominic Shakeshaft First published: November 2018 Production reference: 2201118 Published by Packt Publishing Ltd. Livery Place 35 Livery Street Birmingham B3 2PB, UK ISBN 978-1-78913-151-2 www.packt.com Contents Introduction ........................................................................ 1 A Brief Introduction to the Vocabulary of Artificial Intelligence .......10 How AI Systems Learn ........................................................11 Yoshua Bengio .....................................................................17 Stuart J.
    [Show full text]
  • Technology Innovation and the Future of Air Force Intelligence Analysis
    C O R P O R A T I O N LANCE MENTHE, DAHLIA ANNE GOLDFELD, ABBIE TINGSTAD, SHERRILL LINGEL, EDWARD GEIST, DONALD BRUNK, AMANDA WICKER, SARAH SOLIMAN, BALYS GINTAUTAS, ANNE STICKELLS, AMADO CORDOVA Technology Innovation and the Future of Air Force Intelligence Analysis Volume 2, Technical Analysis and Supporting Material RR-A341-2_cover.indd All Pages 2/8/21 12:20 PM For more information on this publication, visit www.rand.org/t/RRA341-2 Library of Congress Cataloging-in-Publication Data is available for this publication. ISBN: 978-1-9774-0633-0 Published by the RAND Corporation, Santa Monica, Calif. © Copyright 2021 RAND Corporation R® is a registered trademark. Cover: U.S. Marine Corps photo by Cpl. William Chockey; faraktinov, Adobe Stock. Limited Print and Electronic Distribution Rights This document and trademark(s) contained herein are protected by law. This representation of RAND intellectual property is provided for noncommercial use only. Unauthorized posting of this publication online is prohibited. Permission is given to duplicate this document for personal use only, as long as it is unaltered and complete. Permission is required from RAND to reproduce, or reuse in another form, any of its research documents for commercial use. For information on reprint and linking permissions, please visit www.rand.org/pubs/permissions. The RAND Corporation is a research organization that develops solutions to public policy challenges to help make communities throughout the world safer and more secure, healthier and more prosperous. RAND is nonprofit, nonpartisan, and committed to the public interest. RAND’s publications do not necessarily reflect the opinions of its research clients and sponsors.
    [Show full text]
  • Machine Learning Conference Report
    Part of the conference series Breakthrough science and technologies Transforming our future Machine learning Conference report Machine learning report – Conference report 1 Introduction On 22 May 2015, the Royal Society hosted a unique, high level conference on the subject of machine learning. The conference brought together scientists, technologists and experts from across academia, industry and government to learn about the state-of-the-art in machine learning from world and UK experts. The presentations covered four main areas of machine learning: cutting-edge developments in software, the underpinning hardware, current applications and future social and economic impacts. This conference is the first in a new series organised This report is not a verbatim record, but summarises by the Royal Society, entitled Breakthrough Science the discussions that took place during the day and the and Technologies: Transforming our Future, which will key points raised. Comments and recommendations address the major scientific and technical challenges reflect the views and opinions of the speakers and of the next decade. Each conference will focus on one not necessarily that of the Royal Society. Full versions technology and cover key issues including the current of the presentations can be found on our website at: state of the UK industry sector, future direction of royalsociety.org/events/2015/05/breakthrough-science- research and the wider social and economic implications. technologies-machine-learning The conference series is being organised through the Royal Society’s Science and Industry programme, which demonstrates our commitment to reintegrate science and industry at the Society and to promote science and its value, build relationships and foster translation.
    [Show full text]
  • Arxiv:1709.02779V1 [Quant-Ph] 8 Sep 2017 I
    Machine learning & artificial intelligence in the quantum domain Vedran Dunjko Institute for Theoretical Physics, University of Innsbruck, Innsbruck 6020, Austria Max Planck Institute of Quantum Optics, Garching 85748, Germany Email: [email protected] Hans J. Briegel Institute for Theoretical Physics, University of Innsbruck Innsbruck 6020, Austria Department of Philosophy, University of Konstanz, Konstanz 78457, Germany Email: [email protected] Abstract. Quantum information technologies, on the one side, and intelligent learning systems, on the other, are both emergent technologies that will likely have a transforming impact on our society in the future. The respective underlying fields of basic research { quantum information (QI) versus machine learning and artificial intelligence (AI) { have their own specific questions and challenges, which have hitherto been investigated largely independently. However, in a growing body of recent work, researchers have been prob- ing the question to what extent these fields can indeed learn and benefit from each other. QML explores the interaction between quantum computing and machine learning, inves- tigating how results and techniques from one field can be used to solve the problems of the other. In recent time, we have witnessed significant breakthroughs in both directions of influence. For instance, quantum computing is finding a vital application in providing speed-ups for machine learning problems, critical in our \big data" world. Conversely, machine learning already permeates many cutting-edge technologies, and may become instrumental in advanced quantum technologies. Aside from quantum speed-up in data analysis, or classical machine learning optimization used in quantum experiments, quan- tum enhancements have also been (theoretically) demonstrated for interactive learning tasks, highlighting the potential of quantum-enhanced learning agents.
    [Show full text]
  • Artificial Intelligence and Big Data – Innovation Landscape Brief
    ARTIFICIAL INTELLIGENCE AND BIG DATA INNOVATION LANDSCAPE BRIEF © IRENA 2019 Unless otherwise stated, material in this publication may be freely used, shared, copied, reproduced, printed and/or stored, provided that appropriate acknowledgement is given of IRENA as the source and copyright holder. Material in this publication that is attributed to third parties may be subject to separate terms of use and restrictions, and appropriate permissions from these third parties may need to be secured before any use of such material. ISBN 978-92-9260-143-0 Citation: IRENA (2019), Innovation landscape brief: Artificial intelligence and big data, International Renewable Energy Agency, Abu Dhabi. ACKNOWLEDGEMENTS This report was prepared by the Innovation team at IRENA’s Innovation and Technology Centre (IITC) with text authored by Sean Ratka, Arina Anisie, Francisco Boshell and Elena Ocenic. This report benefited from the input and review of experts: Marc Peters (IBM), Neil Hughes (EPRI), Stephen Marland (National Grid), Stephen Woodhouse (Pöyry), Luiz Barroso (PSR) and Dongxia Zhang (SGCC), along with Emanuele Taibi, Nadeem Goussous, Javier Sesma and Paul Komor (IRENA). Report available online: www.irena.org/publications For questions or to provide feedback: [email protected] DISCLAIMER This publication and the material herein are provided “as is”. All reasonable precautions have been taken by IRENA to verify the reliability of the material in this publication. However, neither IRENA nor any of its officials, agents, data or other third- party content providers provides a warranty of any kind, either expressed or implied, and they accept no responsibility or liability for any consequence of use of the publication or material herein.
    [Show full text]
  • Machine Theory of Mind
    Machine Theory of Mind Neil C. Rabinowitz∗ Frank Perbet H. Francis Song DeepMind DeepMind DeepMind [email protected] [email protected] [email protected] Chiyuan Zhang S. M. Ali Eslami Matthew Botvinick Google Brain DeepMind DeepMind [email protected] [email protected] [email protected] Abstract 1. Introduction Theory of mind (ToM; Premack & Woodruff, For all the excitement surrounding deep learning and deep 1978) broadly refers to humans’ ability to rep- reinforcement learning at present, there is a concern from resent the mental states of others, including their some quarters that our understanding of these systems is desires, beliefs, and intentions. We propose to lagging behind. Neural networks are regularly described train a machine to build such models too. We de- as opaque, uninterpretable black-boxes. Even if we have sign a Theory of Mind neural network – a ToM- a complete description of their weights, it’s hard to get a net – which uses meta-learning to build models handle on what patterns they’re exploiting, and where they of the agents it encounters, from observations might go wrong. As artificial agents enter the human world, of their behaviour alone. Through this process, the demand that we be able to understand them is growing it acquires a strong prior model for agents’ be- louder. haviour, as well as the ability to bootstrap to Let us stop and ask: what does it actually mean to “un- richer predictions about agents’ characteristics derstand” another agent? As humans, we face this chal- and mental states using only a small number of lenge every day, as we engage with other humans whose behavioural observations.
    [Show full text]
  • Efficiently Mastering the Game of Nogo with Deep Reinforcement
    electronics Article Efficiently Mastering the Game of NoGo with Deep Reinforcement Learning Supported by Domain Knowledge Yifan Gao 1,*,† and Lezhou Wu 2,† 1 College of Medicine and Biological Information Engineering, Northeastern University, Liaoning 110819, China 2 College of Information Science and Engineering, Northeastern University, Liaoning 110819, China; [email protected] * Correspondence: [email protected] † These authors contributed equally to this work. Abstract: Computer games have been regarded as an important field of artificial intelligence (AI) for a long time. The AlphaZero structure has been successful in the game of Go, beating the top professional human players and becoming the baseline method in computer games. However, the AlphaZero training process requires tremendous computing resources, imposing additional difficulties for the AlphaZero-based AI. In this paper, we propose NoGoZero+ to improve the AlphaZero process and apply it to a game similar to Go, NoGo. NoGoZero+ employs several innovative features to improve training speed and performance, and most improvement strategies can be transferred to other nonspecific areas. This paper compares it with the original AlphaZero process, and results show that NoGoZero+ increases the training speed to about six times that of the original AlphaZero process. Moreover, in the experiment, our agent beat the original AlphaZero agent with a score of 81:19 after only being trained by 20,000 self-play games’ data (small in quantity compared with Citation: Gao, Y.; Wu, L. Efficiently 120,000 self-play games’ data consumed by the original AlphaZero). The NoGo game program based Mastering the Game of NoGo with on NoGoZero+ was the runner-up in the 2020 China Computer Game Championship (CCGC) with Deep Reinforcement Learning limited resources, defeating many AlphaZero-based programs.
    [Show full text]