C++ ABI for the Arm 64-Bit Architecture (Aarch64) Release 2020Q2

Total Page:16

File Type:pdf, Size:1020Kb

C++ ABI for the Arm 64-Bit Architecture (Aarch64) Release 2020Q2 C++ ABI FOR THE Arm 64-bit Architecture (AArch64) Release 2020Q2 Document number: IHI 0059E Arm Ltd Jun 12, 2020 Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. IHI0059E_2020Q2_00_en CONTENTS 1 Preamble 2 1.1 Abstract.............................................. 2 1.2 Keywords............................................. 2 1.3 How to find the latest release of this specification or report a defect in it .......... 2 1.4 Licence .............................................. 2 1.5 Non-Confidential Proprietary Notice .............................. 2 1.6 Contents ............................................. 3 2 About this document 5 2.1 Change Control ......................................... 5 2.2 Change History .......................................... 5 2.3 References ............................................ 5 2.4 Terms and Abbreviations .................................... 6 2.5 Your licence to use this specification .............................. 7 3 Overview 9 3.1 The Generic C++ ABI ...................................... 9 3.2 The Exception Handling ABI for the Arm architecture .................... 10 4 The C++ ABI Supplement 11 4.1 Summary of differences from and additions to the generic C++ ABI . 11 4.2 Differences in detail ....................................... 12 5 EH ABI Level I: Implementation ABI for AArch64 15 5.1 Transferring Control to a Landing Pad ............................. 15 6 EH ABI Level III: Implementation ABI for GNU Linux 16 6.1 Introduction ........................................... 16 6.2 Data Structures .......................................... 16 6.3 Standard Runtime Initialization ................................. 16 6.4 Throwing an Exception ..................................... 16 6.5 Catching an Exception ...................................... 17 I Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. IHI0059E_2020Q2_00_en C++ ABI FOR THE Arm 64-bit Architecture (AArch64), Release 2020Q2 Document number: IHI 0059E Release version: 2020Q2 CONTENTS 1 Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. IHI0059E_2020Q2_00_en CHAPTER ONE PREAMBLE 1.1 AbstrACT This document describes the C++ Application Binary Interface for the Arm 64-bit architecture. 1.2 KEYWORDS C++, Application Binary Interface, ABI, AArch64, C++ ABI, generic C++ ABI 1.3 How TO fiND THE LATEST RELEASE OF THIS SPECIfiCATION OR REPORT A DEFECT IN IT Please check the Arm Developer site (https://developer.arm.com/architectures/system-architectures/ software-standards/abi) for a later release if your copy is more than one year old. Please report defects in this specification to [email protected]. 1.4 Licence THE TERMS OF YOUR ROYALTY FREE LIMITED LICENCE TO USE THIS ABI SPECIFICATION ARE GIVEN IN Your licence to use this specification (page 7) (Arm contract reference LEC-ELA-00081 V2.0). PLEASE READ THEM CAREFULLY. BY DOWNLOADING OR OTHERWISE USING THIS SPECIFICATION, YOU AGREE TO BE BOUND BY ALL OF ITS TERMS. IF YOU DO NOT AGREE TO THIS, DO NOT DOWNLOAD OR USE THIS SPECIFICATION. THIS ABI SPECIFICATION IS PROVIDED “AS IS” WITH NO WARRANTIES (SEE Your licence to use this specification (page 7) FOR DETAILS). 1.5 Non-ConfiDENTIAL Proprietary Notice This document is protected by copyright and other related rights and the practice or implementation of the information contained in this document may be protected by one or more patents or pending patent applications. No part of this document may be reproduced in any form by any means without the express prior written permission of Arm. No license, express or implied, by estoppel or otherwise to any intellectual property rights is granted by this document unless specifically stated. Your access to the information in this document is conditional upon your acceptance that you will not use or permit others to use the information for the purposes of determining whether implementations infringe any third party patents. 2 Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. IHI0059E_2020Q2_00_en C++ ABI FOR THE Arm 64-bit Architecture (AArch64), Release 2020Q2 THIS DOCUMENT IS PROVIDED “AS IS”. ARM PROVIDES NO REPRESENTATIONS AND NO WAR- RANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY, SATISFACTORY QUALITY, NON-INFRINGEMENT OR FITNESS FOR A PARTICULAR PURPOSE WITH RESPECT TO THE DOCUMENT. For the avoidance of doubt, Arm makes no representation with respect to, and has undertaken no analysis to identify or understand the scope and content of, patents, copyrights, trade secrets, or other rights. This document may include technical inaccuracies or typographical errors. TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR ANY DAM- AGES, INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIA- BILITY, ARISING OUT OF ANY USE OF THIS DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. This document consists solely of commercial items. You shall be responsible for ensuring that any use, duplication or disclosure of this document complies fully with any relevant export laws and regulations to assure that this document or any portion thereof is not exported, directly or indirectly, in violation of such export laws. Use of the word “partner” in reference to Arm’s customers is not intended to create or refer to any partnership relationship with any other company. Arm may make changes to this document at any time and without notice. If any of the provisions contained in these terms conflict with any of the provisions of any click through or signed written agreement covering this document with Arm, then the click through or signed written agreement prevails over and supersedes the conflicting provisions of these terms. This document may be translated into other languages for convenience, and you agree that if there is any conflict between the English version of this document and any translation, the terms of the English version of the Agreement shall prevail. The Arm corporate logo and words marked with ® or ™ are registered trademarks or trademarks of Arm Limited (or its subsidiaries) in the US and/or elsewhere. All rights reserved. Other brands and names mentioned in this document may be the trademarks of their respective owners. Please follow Arm’s trademark usage guidelines at http://www.arm.com/company/policies/trademarks. Copyright © 2010-2020 Arm Limited (or its affiliates). All rights reserved. Arm Limited. Company 02557590 registered in England. 110 Fulbourn Road, Cambridge, England CB1 9NJ. LES-PRE-20349 1.6 Contents Contents • C++ Application Binary Interface Standard for the Arm® 64-bit Architecture (page ??) – Preamble (page 2) * Abstract (page 2) * Keywords (page 2) * How to find the latest release of this specification or report a defect in it (page 2) * Licence (page 2) * Non-Confidential Proprietary Notice (page 2) * Contents (page 3) 1.6. Contents 3 Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. IHI0059E_2020Q2_00_en C++ ABI FOR THE Arm 64-bit Architecture (AArch64), Release 2020Q2 – About this document (page 5) * Change Control (page 5) * Change History (page 5) * References (page 5) * Terms and Abbreviations (page 6) * Your licence to use this specification (page 7) – Overview (page 9) * The Generic C++ ABI (page 9) * The Exception Handling ABI for the Arm architecture (page 10) – The C++ ABI Supplement (page 11) * Summary of differences from and additions to the generic C++ ABI (page 11) * Differences in detail (page 12) – EH ABI Level I: Implementation ABI for AArch64 (page 15) * Transferring Control to a Landing Pad (page 15) – EH ABI Level III: Implementation ABI for GNU Linux (page 16) * Introduction (page 16) * Data Structures (page 16) * Standard Runtime Initialization (page 16) * Throwing an Exception (page 16) * Catching an Exception (page 17) 4 Chapter 1. Preamble Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. IHI0059E_2020Q2_00_en CHAPTER TWO ABOUT THIS DOCUMENT 2.1 Change Control 2.1.1 Current Status AND Anticipated Changes The following support level definitions are used by the Arm ABI specifications: Release Arm considers this specification to have enough implementations, which have received suffi- cient testing, to verify that it is correct. The details of these criteria are dependent on the scale and complexity of the change over previous versions: small, simple changes might only require one implementation, but more complex changes require multiple independent implementations, which have been rigorously tested for cross-compatibility. Arm anticipates that future changes to this specification will be limited to typographical corrections, clarifications and compatible extensions. Beta Arm considers this specification to be complete, but existing implementations do not meet the requirements for confidence in its release quality. Arm may need to make incompatible changes if issues emerge from its implementation. Alpha The content of this specification is a draft, and Arm considers the likelihood of future incompatible changes to be significant. All content in this document is at the Release quality level. 2.2 Change History Issue Date By Change 00bet3 15th December 2010 MGD Beta release. 1.0 22nd May 2013 RE First public release. 2018Q4 31st December 2018 OS Typographical changes. 2019Q4 30st January 2020 TS Add name mangling rules for half-precision
Recommended publications
  • Majnemer-Fuzzingclang.Pdf
    Fuzzing Clang to find ABI Bugs David Majnemer What’s in an ABI? • The size, alignment, etc. of types • Layout of records, RTTI, virtual tables, etc. • The decoration of types, functions, etc. • To generalize: anything that you need N > 1 compilers to agree upon C++: A complicated language union U { int a; int b; }; ! int U::*x = &U::a; int U::*y = &U::b; ! Does ‘x’ equal ‘y’ ? We’ve got a standard How hard could it be? “[T]wo pointers to members compare equal if they would refer to the same member of the same most derived object or the same subobject if indirection with a hypothetical object of the associated class type were performed, otherwise they compare unequal.” No ABI correctly implements this. Why does any of this matter? • Data passed across ABI boundaries may be interpreted by another compiler • Unpredictable things may happen if two compilers disagree about how to interpret this data • Subtle bugs can be some of the worst bugs Finding bugs isn’t easy • ABI implementation techniques may collide with each other in unpredictable ways • One compiler permutes field order in structs if the alignment is 16 AND it has an empty virtual base AND it has at least one bitfield member AND … • Some ABIs are not documented • Even if they are, you can’t always trust the documentation What happens if we aren’t proactive • Let users find our bugs for us • This can be demoralizing for users, eroding their trust • Altruistic; we must hope that the user will file the bug • At best, the user’s time has been spent on something they probably didn’t want to do Let computers find the bugs 1.
    [Show full text]
  • ILE C/C++ Language Reference, SC09-7852
    IBM IBM i Websphere Development Studio ILE C/C++ Language Reference 7.1 SC09-7852-02 IBM IBM i Websphere Development Studio ILE C/C++ Language Reference 7.1 SC09-7852-02 Note! Before using this information and the product it supports, be sure to read the general information under “Notices” on page 355. This edition applies to IBM i 7.1, (program 5770-WDS), ILE C/C++ compilers, and to all subsequent releases and modifications until otherwise indicated in new editions. This version does not run on all reduced instruction set computer (RISC) models nor does it run on CISC models. © Copyright IBM Corporation 1998, 2010. US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp. Contents About ILE C/C++ Language Reference Digraph characters ........... 27 (SC09-7852-01) ........... ix Trigraph sequences ........... 28 Who should read this book ......... ix Comments............... 28 Highlighting Conventions .......... x How to Read the Syntax Diagrams ....... x Chapter 3. Data objects and Prerequisite and related information ...... xii declarations ............ 31 How to send your comments ........ xii Overview of data objects and declarations .... 31 Overview of data objects ......... 31 What's new for IBM i 7.1 ....... xv Incomplete types .......... 32 Compatible and composite types ..... 32 Chapter 1. Scope and linkage ..... 1 Overview of data declarations and definitions .. 33 Tentative definitions ......... 34 Scope ................. 1 Storage class specifiers........... 35 Block/local scope ............ 2 The auto storage class specifier ....... 35 Function scope ............ 2 Storage duration of automatic variables ... 35 Function prototype scope ......... 3 Linkage of automatic variables ...... 36 File/global scope ...........
    [Show full text]
  • Application Binary Interface for the ARM Architecture
    ABI for the ARM Architecture (Base Standard) Application Binary Interface for the ARM® Architecture The Base Standard Document number: ARM IHI 0036B, current through ABI release 2.10 Date of Issue: 10th October 2008, reissued 24th November 2015 Abstract This document describes the structure of the Application Binary Interface (ABI) for the ARM architecture, and links to the documents that define the base standard for the ABI for the ARM Architecture. The base standard governs inter-operation between independently generated binary files and sets standards common to ARM- based execution environments. Keywords ABI for the ARM architecture, ABI base standard, embedded ABI How to find the latest release of this specification or report a defect in it Please check the ARM Information Center (http://infocenter.arm.com/) for a later release if your copy is more than one year old (navigate to the ARM Software development tools section, ABI for the ARM Architecture subsection). Please report defects in this specification to arm dot eabi at arm dot com. Licence THE TERMS OF YOUR ROYALTY FREE LIMITED LICENCE TO USE THIS ABI SPECIFICATION ARE GIVEN IN SECTION 1.4, Your licence to use this specification (ARM contract reference LEC-ELA-00081 V2.0). PLEASE READ THEM CAREFULLY. BY DOWNLOADING OR OTHERWISE USING THIS SPECIFICATION, YOU AGREE TO BE BOUND BY ALL OF ITS TERMS. IF YOU DO NOT AGREE TO THIS, DO NOT DOWNLOAD OR USE THIS SPECIFICATION. THIS ABI SPECIFICATION IS PROVIDED “AS IS” WITH NO WARRANTIES (SEE SECTION 1.4 FOR DETAILS). Proprietary notice ARM, Thumb, RealView, ARM7TDMI and ARM9TDMI are registered trademarks of ARM Limited.
    [Show full text]
  • Application Binary Interface Compatability Through A
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by The University of Utah: J. Willard Marriott Digital Library APPLICATION BINARY INTERFACE COMPATIBILITY THROUGH A CUSTOMIZABLE LANGUAGE by Kevin Jay Atkinson A dissertation submitted to the faculty of The University of Utah in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Computer Science School of Computing The University of Utah December 2011 Copyright c Kevin Jay Atkinson 2011 All Rights Reserved The University of Utah Graduate School STATEMENT OF DISSERTATION APPROVAL The dissertation of Kevin Jay Atkinson has been approved by the following supervisory committee members: Matthew Flatt , Chair 11/3/2011 Date Approved Gary Lindstrom , Member 11/17/2011 Date Approved Eric Eide , Member 11/3/2011 Date Approved Robert Kessler , Member 11/3/2011 Date Approved Olin Shivers , Member 11/29/2011 Date Approved and by Al Davis , Chair of the Department of School of Computing and by Charles A. Wight, Dean of The Graduate School. ABSTRACT ZL is a C++-compatible language in which high-level constructs, such as classes, are defined using macros over a C-like core language. This approach is similar in spirit to Scheme and makes many parts of the language easily customizable. For example, since the class construct can be defined using macros, a programmer can have complete control over the memory layout of objects. Using this capability, a programmer can mitigate certain problems in software evolution such as fragile ABIs (Application Binary Interfaces) due to software changes and incompatible ABIs due to compiler changes.
    [Show full text]
  • Linkers and Loaders Do?
    Linkers & Loaders by John R. Levine Table of Contents 1 Table of Contents Chapter 0: Front Matter ........................................................ 1 Dedication .............................................................................................. 1 Introduction ............................................................................................ 1 Who is this book for? ......................................................................... 2 Chapter summaries ............................................................................. 3 The project ......................................................................................... 4 Acknowledgements ............................................................................ 5 Contact us ........................................................................................... 6 Chapter 1: Linking and Loading ........................................... 7 What do linkers and loaders do? ............................................................ 7 Address binding: a historical perspective .............................................. 7 Linking vs. loading .............................................................................. 10 Tw o-pass linking .............................................................................. 12 Object code libraries ........................................................................ 15 Relocation and code modification .................................................... 17 Compiler Drivers .................................................................................
    [Show full text]
  • Codewarrior Development Studio for Starcore 3900FP Dsps Application Binary Interface (ABI) Reference Manual
    CodeWarrior Development Studio for StarCore 3900FP DSPs Application Binary Interface (ABI) Reference Manual Document Number: CWSCABIREF Rev. 10.9.0, 06/2015 CodeWarrior Development Studio for StarCore 3900FP DSPs Application Binary Interface (ABI) Reference Manual, Rev. 10.9.0, 06/2015 2 Freescale Semiconductor, Inc. Contents Section number Title Page Chapter 1 Introduction 1.1 Standards Covered............................................................................................................................................................ 7 1.2 Accompanying Documentation........................................................................................................................................ 8 1.3 Conventions...................................................................................................................................................................... 8 1.3.1 Numbering Systems............................................................................................................................................. 8 1.3.2 Typographic Notation.......................................................................................................................................... 9 1.3.3 Special Terms.......................................................................................................................................................9 Chapter 2 Low-level Binary Interface 2.1 StarCore Architectures......................................................................................................................................................11
    [Show full text]
  • N2761=08-0271 Date: 2008-09-18 Project: Programming Language C++, Core Working Group Reply-To: Michael Wong ([email protected]) Revision: 6
    Towards support for attributes in C++ (Revision 6) Jens Maurer, Michael Wong [email protected] [email protected] Document number: N2761=08-0271 Date: 2008-09-18 Project: Programming Language C++, Core Working Group Reply-to: Michael Wong ([email protected]) Revision: 6 General Attributes for C++ 1 Overview The idea is to be able to annotate some entities in C++ with additional information. Currently, there is no means to do that short of inventing a new keyword and augmenting the grammar accordingly, thereby reserving yet another name of the user's namespace. This proposal will survey existing industry practice for extending the C++ syntax, and presents a general means for such annotations, including its integration into the C++ grammar. Specific attributes are not introduced in this proposal. It does not obviate the ability to add or overload keywords where appropriate, but it does reduce such need and add an ability to extend the language. This proposal will allow many C++0x proposals to move forward. A draft form of this proposal was presented in Oxford and received acceptance in EWG to proceed to wording stage. This proposal integrates suggestions and comments from the Oxford presentation, and email conversations post-Oxford. It addresses many of the controversial aspects from the Oxford presentation and includes comprehensive Standard wordings. Specifically, it adds: Sept 15, 2008, Revision 6 • Updated based on latest draft N2723 • Added support for late-specified return type attributes in 8.1p1 and 8.3.5p2 • Added support
    [Show full text]
  • C++ ABI: the Only Thing That Is More Important Than Performance Icsc 2020
    C++ ABI: the only thing that is more important than performance iCSC 2020 Nis Meinert German Aerospace Center Reading x86-64 Assembly …for fun and profit Function Prologue & Epilogue → Few lines of code at the beginning (prologue) and end (epilogue) of a function, which prepares (and eventually restores) → the stack and → registers → Not part of assembly: convention (defined & interpreted differently by different OS and compilers) Prologue Epilogue 1 push rbp ; rbp: frame pointer 1 mov rsp, rbp 2 mov rbp, rsp ; rsp: stack pointer 2 pop rbp 3 sub rsp, N 3 ret alternatively alternatively 1 enter N, 0 1 leave 2 ret (reserve N bytes on stack for local use) C++ ABI: the only thing that is more important than performance – Reading x86-64 Nis Meinert – German Aerospace Center Assembly 2 / 29 Stack frame for function call ┌──────────────┐ │ ... │ │ 8th Argument │ (rbp + 24) │ 7th Argument │ (rbp + 16) → CALL = PUSH address of next ├──────────────┤ instruction + JMP target │ rip │ (return address) → RET pops return address and │ rbp │ (rbp) transfers control there ├──────────────┤ → pass arguments 1 …6 in │ rbx │ registers (rsi, rdx, …) │ r12 │ │ r13 │ (rsp) └──────────────┘ (stack frame for function call with 8 arguments and local registers rbx, r12 and r13) C++ ABI: the only thing that is more important than performance – Reading x86-64 Nis Meinert – German Aerospace Center Assembly 3 / 29 Reading assembly for fun and profit 1 int f(int x, int y, int z) { # g92 -O0 2 int sum = x + y + z; | _Z1fiii: 3 return sum; 1| push rbp 4 } 1| mov rbp, rsp
    [Show full text]
  • Fivos Kefallonitis
    1 Name mangling demystified 29/10/07 Fivos Kefallonitis [email protected] http://www.int0x80.gr/papers/name_mangling.pdf Copyright © Fivos Kefallonitis 2007 2 Contents Introduction Other examples of name mangling Mixing C and C++ Mangling I. GCC II. MSVC Demangling I. GCC II. MSVC Taking advantage of name mangling Case I Case II Case III Source Code References & Further Reading Introduction This paper will discuss name mangling, also known as name decoration. Name mangling is the process of generating unique names. Name mangling is applied in several areas, although it's primarily used for generating unique (unambiguous) names for identifiers in a computer programming language. Programming languages that deal with function/method overloading have compilers that implement some name mangling scheme. Some examples are C++ (most people mean C++ when they address name mangling), C#, Java, Python, Objective C and Fortran. Name mangling is highly compiler-dependent and it may also vary from one version to another of the same compiler. The mangled name contains all the necessary information that the linker needs, such as linkage type, scope, calling convention, number of arguments, type of arguments etc. Name mangling applies primarily to overloaded functions overloaded operators and variables. Name mangling allows the linker to distinguish between the different overloaded functions that have the same identifier but different parameter lists. Name demangling in programming context is the exact opposite, the process of changing the internal representation of identifiers back to their original source names. Other examples of name mangling Name mangling can be used to achieve "security through obscurity". Name mangling is a very important aspect of code obfuscators.
    [Show full text]
  • Nvidia Hpc Compilers Reference Guide
    NVIDIA HPC COMPILERS REFERENCE GUIDE PR-09861-001-V20.9 | September 2020 TABLE OF CONTENTS Preface..........................................................................................................................................................ix Audience Description...............................................................................................................................ix Compatibility and Conformance to Standards.......................................................................................ix Organization.............................................................................................................................................. x Hardware and Software Constraints......................................................................................................xi Conventions.............................................................................................................................................. xi Terms.......................................................................................................................................................xii Chapter 1. Fortran, C++ and C Data Types................................................................................................ 1 1.1. Fortran Data Types........................................................................................................................... 1 1.1.1. Fortran Scalars.........................................................................................................................
    [Show full text]
  • ARM Optimizing C/C++ Compiler V20.2.0.LTS User's Guide (Rev. V)
    ARM Optimizing C/C++ Compiler v20.2.0.LTS User's Guide Literature Number: SPNU151V January 1998–Revised February 2020 Contents Preface ........................................................................................................................................ 9 1 Introduction to the Software Development Tools.................................................................... 12 1.1 Software Development Tools Overview ................................................................................. 13 1.2 Compiler Interface.......................................................................................................... 15 1.3 ANSI/ISO Standard ........................................................................................................ 15 1.4 Output Files ................................................................................................................. 15 1.5 Utilities ....................................................................................................................... 16 2 Using the C/C++ Compiler ................................................................................................... 17 2.1 About the Compiler......................................................................................................... 18 2.2 Invoking the C/C++ Compiler ............................................................................................. 18 2.3 Changing the Compiler's Behavior with Options ......................................................................
    [Show full text]
  • Reference Guide for X86-64 Cpus
    REFERENCE GUIDE FOR X86-64 CPUS Version 2018 TABLE OF CONTENTS Preface............................................................................................................. xi Audience Description.......................................................................................... xi Compatibility and Conformance to Standards............................................................ xi Organization....................................................................................................xii Hardware and Software Constraints...................................................................... xiii Conventions....................................................................................................xiii Terms............................................................................................................xiv Related Publications.......................................................................................... xv Chapter 1. Fortran, C, and C++ Data Types................................................................ 1 1.1. Fortran Data Types....................................................................................... 1 1.1.1. Fortran Scalars.......................................................................................1 1.1.2. FORTRAN 77 Aggregate Data Type Extensions.................................................. 3 1.1.3. Fortran 90 Aggregate Data Types (Derived Types)............................................. 4 1.2. C and C++ Data Types..................................................................................
    [Show full text]