2015 Price List

Total Page:16

File Type:pdf, Size:1020Kb

2015 Price List 2015 Price List Block Machining Competition Head Work Clean 60.00 Competition Multi-Angle valve job 325.00 Tap oil holes & install restrictors SBC or BBC 36.50 Assemble & Set installed height 60.00 Clearance block for rods Hourly Rate Back cut valves (each) 5.00 Resize Block (up to .060) Cut for teflon seals 50.00 4 Cylinder 100.00 Cut for oversize springs diameter only 65.00 6 Cylinder 125.00 Machine for screw-in studs 165.00 8 Cylinder 150.00 canted heads 200.00 Street Finish Cylinder Honing Install bronze guides & wet hone to size 230.00 4 Cylinder 150.00 Cylinder Head Porting Price on Request 6 Cylinder 175.00 8 Cylinder 200.00 Competition Engine Services **Discount: $40 for bore and File-fit rings 75.00 hone combination Blueprinting Price on Request Side Clearance Rods Price on Request Competition Block Machining Degree Cam Price on Request Bore 8 Cylinder (up to .060) 150.00 C.C. Heads Hourly Rate Competition Hone with Plates 325.00 Custom Engine Assembly Price on Request **Discount: $40 for bore and 435.00 Check Bearing Clearances Price on Request hone combination Deck square mains with fixture 200.00 Replace Seats Install sleeve (labor) 165.00 Set up & first seat 30.00 Install cam bearings 65.00 Each Additional Seat 16.00 Install freeze plugs (each) 3.00 Line hone (touch-in) 175.00 Head Re-Surfacing includes cut caps 200.00 4 Cylinder Line hone damaged blocks Hourly Rate Cast Iron 60.00 Sonic check block 120.00 Aluminum 60.00 Set Main Bearing Clearance 60.00 Straight 6 Cylinder Cast Iron 70.00 Crankshaft Services Aluminum 70.00 Chamfer Oil Holes 50.00 V-6 or V-8 (up to .010) Magnaflux 30.00 Cast Iron 60.00 each Clean and Polish 65.00 Aluminum 60.00 each **Intake or exhaust side priced per job **Additional charge for extra set up 2015 Price List Rod and Piston Work Balancing Services Remove & replace press fit (each) 10.00 Complete Rotating Assembly 275.00 Remove & Replce non stock applications Hourly Rate Crankshaft ONLY 175.00 Check big end (each) 4.00 Pistons Hourly Rate Check big end & hone to size (each) 10.00 Rods Hourly Rate Magnaflux rods (each) 4.00 Balancing Services Rod and Piston Work Heavy Metal Installation Labor (per slug) 40.00 Pin-fit small end (each) 8.50 **Heavy metal pricing based on size and Price on Request Re-bush small end (each) Hourly Rate quantity Pin fit piston (each) 8.50 Fly-cut reliefs, dome machining, & contouring Hourly Rate Competition Engine Services Set rod clearance 60.00 File-fit rings 75.00 Blueprinting Price on Request Head Work Side Clearance Rods Price on Request Valve Job Degree Cam 75.00/hour 4 Cylinder 110.00 C.C. Heads 60.00/hour 4 Cylinder (4 Valve) 140.00 Custom engine assembly Price on Request For non-adjustable valves add 30.00 Check bearing clearances Price on Request 6 Cylinder 170.00 Flow Testing & Porting 6 Cylinder (4 Valve) 210.00 Flow single intake and exhaust 50.00 For non-adjustable valves add 40.00 Each Additional Hour 60.00 8 Cylinder 220.00 Miscellanous Cleaning Services 8 Cylinder (4 Valve) 270.00 Clean iron intake 40.00 For non-adjustable valves add 50.00 Clean & glass bead aluminum intake Starting at 75.00 Replace Valve Guides (1-4) 13.00 Clean Cylinder Heads (each) 25.00 Replace Valve Guides (5 and up) 11.00 Clean Block 60.00 Magnaflux (per head) 25.00 Clean Crankshaft 30.00 **Disassembly and assembly Rod Cleaning 3.50 each included on most applications Intake & Cylinder Head Porting Dyno Services Price on Request 600.00/day.
Recommended publications
  • Where the Rubber Meets the Road ……. Part III the Cylinder Head by Dave Barnett Vintage MG Club of Southern California
    Where the Rubber Meets the Road ……. Part III The Cylinder Head By Dave Barnett Vintage MG Club of Southern California "The Torque Output of an The inherent design characteristics of Engine is limited by just how a stock XPAG cylinder head effectively we can make it There is no question that the cylinder Breathe" David Vizard 1985 head is where the power is made, it is in fact the "Heart and Soul" of the engine. The design of the XPAG head dates back to September of 1939 and was first used on the TB. There are two basic design types. The "early" "Banana Head" with short 1/2-inch spark plugs. Then starting with XPAG/TD2/22735 a round water hole head with used with longer-reach 3/4-inch plugs. The thickness of a stock TC head is 76.65mm (3.018-inches) TD and TF XPAG 75.16mm (2.959-inch) TF XPEG 76.75mm (3.021-inch) (Source: MG Racers News Letter Code 106 by Mike Lewis, Bayou Racing) This month I will cover the XPAG Understanding that in its simplest form, cylinder head. We will examine stock and the XPAG engine is nothing more or less than modified heads, to increase power, reliability an air pump. A useful step toward appreciating and yes even economy. For most of us, an engines ultimate power limitation is air flow. rebuilding and modifying the cylinder head When an engines ability to draw in more air should be left up to experienced engine with increasing R.P.M. ceases, so does the rise builders.
    [Show full text]
  • Executive Order D-425-50 Toyota Racing Development
    State of California AIR RESOURCES BOARD EXECUTIVE ORDER D—425—50 Relating to Exemptions Under Section 27156 of the California Vehicle Code Toyota Racing Development TRD Supercharger System Pursuant to the authority vested in the Air Resources Board by Section 27156 of the Vehicle Code; and Pursuant to the authority vested in the undersigned by Section 39515 and Section 39516 of the Health and Safety Code and Executive Order G—14—012; IT IS ORDERED AND RESOLVED: That the installation of the TRD Supercharger System, manufactured and marketed by Toyota Racing Development, 19001 South Western Avenue, Torrance, California, has been found not to reduce the effectiveness of the applicable vehicle pollution control systems and, therefore, is exempt from the prohibitions of Section 27156 of the Vehicle Code for the following Toyota truck applications: Part No. Model Year Engine Disp. Model PTR29—34070 2007 to 2013 5.7L (3UR—FE) Tundra PTR29—00140 2014 to 2015 5.7L (3UR—FE) Tundra PTR29—34070 2008 to 2013 5.7L (3UR—FE) Sequoia PTR29—00140 2014 to 2015 5.7L (3UR—FE) Sequoia PTR29—60140 2008 to 2015 5.7L (3UR—FE) Land Cruiser/LX570 PTR29—35090 2005 to 2015 4.0L (1GR—FE) Tacoma PTR29—35090 2007 to 2009 4.0L (1GR—FE) FJ Cruiser PTR29—35090 2003 to 2009 4.0L (1GR—FE) 4—Runner PTR29—00130 2010 to 2014 4.0L (1GR—FE) FJ Cruiser PTR29—00130 2010 to 2015 4.0L (1GR—FE) 4—Runner The 5.7L Supercharger System includes a Magnuson supercharger (rated at a maximum boost of 8.5 psi.) with a 2.45 inch diameter supercharger pulley and the stock crankshaft pulley, high flow injectors to replace the stock injectors, a new ECU calibration, intercooler, intake manifold, an air bypass valve, and a new replacement fuel pump which is located in the fuel tank.
    [Show full text]
  • F69ATC Multi Purpose CNC Maching Center with Automatic Tool Changer
    F69ATC Multi Purpose CNC Maching Center with Automatic Tool Changer Machining Equipment Created for Performance Racing & Engine Remanufacturing. So Advanced, It’s Simple. F69ATC MULTI-PURPOSE CNC MACHING CENTER Windows Operating System Rottler uses Windows Touch Screen Technology through 19” (483mm) touch panel. The Windows software has many advantages such as a common user reduces operator learning curve. Touch Screen Control Automatic Tool Changer INDUSTRY EXCLUSIVE The 24 Space Automatic Tool Changer Two Operating Systems! for CAT40 Taper can handle up to a 10" 1: Rottler System for simple, fast and easy (250mm)diameter tool weighing programming of common jobs such as boring, 15.5 lbs (7kgs). surfacing and line boring. Anyone can learn in a few hours! Spindle 2: Rottler CAM System for advanced CNC Super hard finish resists wear for years of programming for making parts, engraving operation. 0-5000 RPM Spindle Rotation names, and much more. with quick change CAT40 Taper. Electronic Hand Wheel Vertical Box Way Offers operator infinite control of machine Precision Ground, Hardened Box Way movement in all axes for quick and easy Slideways are 28" (700mm) wide for setup. Also controls variable feed rate during increased rigidity and years of heavy duty automatic cycles. production machining. Brushless Servo Motors with Sliding Side Doors BISS Encoders Side doors slide up for access, reducing The F69ATC has the latest technology servo footprint. motors with BISS encoders offering 100 times finer resolution compared to previous models. Chip Auger These new Servo motors give maximum Automatically removes chips from enclosure torque and performance throughout the RPM and deposits chips in wheeled disposal cart.
    [Show full text]
  • Poppet Valve
    POPPET VALVE A poppet valve is a valve consisting of a hole, usually round or oval, and a tapered plug, usually a disk shape on the end of a shaft also called a valve stem. The shaft guides the plug portion by sliding through a valve guide. In most applications a pressure differential helps to seal the valve and in some applications also open it. Other types Presta and Schrader valves used on tires are examples of poppet valves. The Presta valve has no spring and relies on a pressure differential for opening and closing while being inflated. Uses Poppet valves are used in most piston engines to open and close the intake and exhaust ports. Poppet valves are also used in many industrial process from controlling the flow of rocket fuel to controlling the flow of milk[[1]]. The poppet valve was also used in a limited fashion in steam engines, particularly steam locomotives. Most steam locomotives used slide valves or piston valves, but these designs, although mechanically simpler and very rugged, were significantly less efficient than the poppet valve. A number of designs of locomotive poppet valve system were tried, the most popular being the Italian Caprotti valve gear[[2]], the British Caprotti valve gear[[3]] (an improvement of the Italian one), the German Lentz rotary-cam valve gear, and two American versions by Franklin, their oscillating-cam valve gear and rotary-cam valve gear. They were used with some success, but they were less ruggedly reliable than traditional valve gear and did not see widespread adoption. In internal combustion engine poppet valve The valve is usually a flat disk of metal with a long rod known as the valve stem out one end.
    [Show full text]
  • 24 -Cylinder Sleeve- Valve Unit of 3,500 BMP
    24 - cylinder Sleeve - valve Unit of 3,500 BMP. ' ITH what may well prove to be the last of the civil aircraft—particularly in view of the airscrew-turbine very high-powered piston engines Rolls-Royce position. have resurrected one of their most famous type In general terms composition of the Eagle may be sum- names—Eagle—and on examination there is no marized as consisting of twelve cylinders on each side reason to believe that this latest Derby creation formed in monobloc castings, through-bolted with the will not carry to new heights the lustre vertically split crankcase. Each row of six cylinders is bequeathed by its famous namesake. served by its own induction manifold which, in turn, is The new Eagle is a twin-crank flat-H sleeve-valve engine fed from an individual aftercooler. Exhaust is through aspirated with a two-stage two-speed supercharger, and, paired ejector stacks mounted in a • central row between in Mk 22 form, is equipped to drive an eight-blade contra- the upper and lower banks of cylinders. The reduc- rotating airscrew. It is the first Rolls-Royce production tion gearing is powered equally by both crankshafts, and sleeve-valve engine, although the company extensively with it is incorporated the contra-rotation gear for airscrew investigated the potentials of sleeve valves as a part of drive. In this particular instance—i.e., the Mk 22—the their normal research programme in the early 1930s. In nose-length requirements of the aircraft in which the point of fact, although it is not generally known, Rolls engine is first to be installed have called for an extended produced an air-cooled 22-litre sleeve-valve 24-cylinder snout bousing forward of the reduction gear, but for other engine of X-form which, called the "Exe," first flew in installations this might not apply, and the overall length September, 1938, in a Fairey Battle.
    [Show full text]
  • State of California AIR RESOURCES BOARD EXECUTIVE ORDER D-493
    (Page 1 of 2) State of California AIR RESOURCES BOARD EXECUTIVE ORDER D-493 Relating to Exemptions Under Section 27156 of the Vehicle Code DOWNING/ATLANTA, INC. BMW SUPERCHARGER KIT Pursuant to the authority vested in the Air Resources Board by Section 27156 of the Vehicle Code; and Pursuant to the authority vested in the undersigned by Section 39515 and Section 39516 of the Health and Safety Code and Executive Order G-45-9; IT IS ORDERED AND RESOLVED: That the installation of the BMW Supercharger Kit, manufactured and marketed by Downing/Atlanta, Inc., 5096 Peachtree Road, Atlanta, Georgia 30341 has been ound not to reduce the effectiveness of the applicable vehicle pollution control system and, therefore, is exempt from the prohibitions of Section 27156 of the Vehicle Code for 1999 and older BMW vehicles equipped with a four cylinder fuel injected engine. The BMW Supercharger Kit includes the following main components: Eaton M-62 supercharger, intake manifold, fuel regulator, and an open element air cleaner. The stock air cleaner may also be retained. No changes are made to the stock ignition system. The kit includes a 3.7" diameter supercharger pulley and uses the stock crankshaft pulley. Maximum boost is limited to 7.5 psi. This Executive Order is valid provided that the installation instructions for the BMW Supercharger Kit will not recommend tuning the vehicle to specifications different from those of the vehicle manufacturer. This Executive Order shall not apply to any Downing/Atlanta, Inc. BMW Supercharger Kit advertised, offered for sale, or sold with or installed on, a motor vehicle prior to or concurrent with transfer to an ultimate purchaser.
    [Show full text]
  • Chevrolet Cars and Trucks Get More with Less by Breathing Right
    Chevrolet Cars and Trucks Get More With Less by Breathing Right x Continuously variable valve timing (VVT) available on most Chevrolet models x Four-, six- and eight-cylinder engines continuously adjust air flow for best economy and lowest emissions PONTIAC, Mich. – Athletes understand that proper breathing is critical to maintaining peak performance under all conditions, and so do Chevrolet powertrain engineers. Getting air in and exhaust gases out of the combustion chamber under all speeds and driving conditions are essential to providing outstanding driveability and fuel efficiency with low emissions. “Whether powered by four, six or eight cylinders, virtually every current Chevrolet car and truck – from the compact Cruze to the full-size Suburban – features continuously variable valve timing (VVT) on its engine to optimize its breathing,” said Sam Winegarden, executive director, Global Engine Engineering. With VVT, camshafts are driven by chains from the crankshaft to keep the valve opening in sync with the motion of the pistons in the cylinders. The VVT-equipped Cruze Eco, with EPA-estimated highway fuel economy of 42 mpg, is the most fuel-efficient gasoline-fueled vehicle in America. VVT also contributes to the full-size Silverado XFE’s segment-best 22 mpg highway. Chevrolet’s VVT system uses electro-hydraulic actuators between the drive sprocket and camshaft to twist the cam relative to the crankshaft position. Adjusting the cam phasing in this manner allows the valves that are actuated by that camshaft to be opened and closed earlier or later. On dual overhead cam engines such as the Ecotec inline-four and the 3.6-liter V-6, the intake and exhaust cams can be adjusted independently, allowing the valve overlap (the time that intake and exhaust valves are both open) to be varied as well.
    [Show full text]
  • Analysis of the Influences of Piston Crankshaft Offset on Piston Secondary Movements Yan Hongwei*, Yang Jin and Zhang Baocheng
    Send Orders for Reprints to [email protected] The Open Mechanical Engineering Journal, 2015, 9, 933-937 933 Open Access Analysis of the Influences of Piston Crankshaft Offset on Piston Secondary Movements Yan Hongwei*, Yang Jin and Zhang Baocheng School of Mechanical and Power Engineering, North University of China, Taiyuan, Shanxi, 030051, P.R. China Abstract: This paper takes dynamics analysis on the piston and the dynamic lubrication theory on the skirt and the ring of piston as the basis. Using AVL Glide software, through the establishment of the analysis model of the piston secondary movements, this study focuses on the effects of the crankshaft bias on piston secondary movements’ characteristics. This paper takes 5 different offsets, by comparing the piston lateral displacement, transverse movement speed, transverse acceleration, swinging angle, swing angular velocity and angular acceleration, finds out the relationships between crank offset value and the piston “slap”, piston impact energy and piston skirt friction loss, thus, provides the basis for the design of internal combustion engines. Keywords: Crank offset, piston, piston impact energy, secondary movement. 1. INTRODUCTION liner, piston stiffness matrices’ calculation, the confirmation of the mass of piston group, confirmation of inertia and data The piston secondary movements are some small preparation [6]. Other needed data mainly includes movements exist in the processes of the reciprocating work parameters of the piston and cylinder liner piston structure of internal combustion engines. They specifically refer to, size, the mass of all parts of the group and inertia and under the pressure of the gas deflagration, inertia force, the crankshaft connecting rod size [7].
    [Show full text]
  • Part Number 8120
    WEIAND BBC “TRACK WARRIOR” INTAKE MANIFOLD P/N 7620 - Oval Port, 4150 Square Bore Carb P/N 7621 - Oval Port, 4500 Dominator™ Carb P/N 7622 - Rectangle Port, 4150 Square Bore Carb P/N 7623 - Rectangle Port, 4500 Dominator™ Carb INTAKE MANIFOLD INSTALLATION INSTRUCTIONS – 199R10374 APPLICATIONS: WEIAND TRACK WARRIOR intake manifolds 7620-7623 are designed for Mark IV-VI, 396-502 cid Big Block Chevrolet engines equipped with standard Oval (7620 & 7621) or Rectangle (7622 & 7623) port cylinder heads with standard deck height applications for both 4150 square bore and 4500 Dominator™ carburetor configurations. These manifolds will also work with any BBC equipped with aftermarket cylinder heads, as long as they have standard Oval or Rectangle port flange openings and bolt hole locations. These single-plane intake manifolds are designed for high-performance engine applications up to 540 cubic inch displacement and maximum engine speeds of 7000-8000 rpm, depending on the engine combinations. TRACK WARRIOR intake manifolds are intended for maximum performance applications and may not accept stock components and hardware. They may not fit under an unmodified hood for many vehicle applications. EMISSIONS EQUIPMENT: TRACK WARRIOR intake manifolds do not accept any emission-control devices, hot-air, or divorced chokes. This part is not legal for sale or use for motor vehicles with pollution-controlled equipment. DIMENSIONS: A-B Height – A – 5.96” (front), B - 5.96” (rear). NOTE: Measured from front and rear manifold end seal surfaces. Oval Port Size – 1.87” High x 1.60” Wide Rectangular Port Size – 2.28” High x 1.48” Wide BEFORE YOU BEGIN INSTALLATION: The following installation instructions must be carefully read and understood before you begin installation.
    [Show full text]
  • Greensteam Report: Valve Actuation Systems & Further Research Tae Rugh, Summer 2020
    Greensteam Report: Valve Actuation Systems & Further Research Tae Rugh, Summer 2020 Valve Actuation Systems Greensteam aims to design a modern steam engine that maximizes simplicity and frugality while maintaining high energy efficiency. The valve actuation mechanism presents one of the most important design challenges in achieving this objective. A number of potential options have been designed, each with its advantages and drawbacks. Cam/Poppet The classic option--a staple for internal combustion engines--is the cam/poppet valve system. Unlike internal combustion engines which typically have a separate belt-driven camshaft, we can simply attach the cam to the crankshaft to reduce complexity. As the crankshaft rotates, the cam’s asymmetric shape pushes the cam follower rod up which opens a poppet valve to allow inlet steam to enter the cylinder. This system has superior sealing qualities and reliability. The drawbacks are that it can be complex to manufacture (high precision is required for the poppet head, poppet seat, and cam), it requires a heavy spring to maintain contact between the follower and cam (which reduces efficiency), and a separate poppet valve is necessary for each cylinder (meaning more moving parts). The cam shape determines the engine’s timing, but it is constrained by a number of variables. The first constraint is cutoff (cutoff is the percentage of the powerstroke duration in which steam is allowed to enter). For a 20% cutoff, the incline and decline must occur within 38° of the cam’s rotation. The second constraint is that the height offset must be sufficient for the desired inlet flow rate.
    [Show full text]
  • Numerical Analysis of the Forces on the Components of a Direct Diesel Engine
    applied sciences Article Numerical Analysis of the Forces on the Components of a Direct Diesel Engine Dung Viet Nguyen and Vinh Nguyen Duy * Modelling and Simulation Institute—Viettel Research and Development Institute, 100000 Hanoi, Vietnam; [email protected] * Correspondence: [email protected]; Tel.: +84-985-814-118 Received: 16 April 2018; Accepted: 8 May 2018; Published: 11 May 2018 Abstract: This research introduces a method to model the operation of internal combustion engines in order to analyze the forces on the rod, crankshaft, and piston of the test engine. To complete this research, an experiment was conducted to measure the in-cylinder pressure profile. In addition, this research also modelled the friction forces caused by the piston and piston-ring movements inside the cylinder for calculating the net forces experienced by the test engine. The results showed that the net forces change according to the crank angle and reach a maximum value near the top dead center. Consequently, we needed to concentrate on analyzing the stress of the crankshaft, rod, and piston at these positions. The research results are the foundation for optimizing the design of these components and provide a method for extending the operating lifetime of internal combustion engines in real operating experiments. Keywords: internal combustion engine; mechanical stress; fine element method; friction force; in-cylinder pressure 1. Introduction In the operation of internal combustion engines, the rod, crankshaft, and piston play crucial roles as they are considered the heart of engines. However, these components always operate in critical operating conditions, such as under very high thermal and mechanical stresses [1–5].
    [Show full text]
  • Wärtsilä Safestart a Slow Turning System That Detects Hydrolock
    Engine services Wärtsilä SafeStart A slow turning system that detects hydrolock Hydrolock occurs when a cylinder is completely or partially filled with an incompressible fluid. In the worst case, hydrolock can damage the connecting rod and crankshaft. Slow turning reduces these risks significantly. In order to further reduce the risks of hydrolock during start up, we developed the Wärtsilä SafeStart slow turning system. The system is a standard feature in our newly built engines and is also available as an upgrade for Wärtsilä 16V34SG and 20V34SG engines manufactured before 2009 as well as Wärtsilä 32 engines. STARTING AN ENGINE USING SLOW TURNING When starting an engine using slow turning, the slow turning After a successful slow turn, the start air valve opens and the valve is activated first. The goal is to rotate the engine at a engine starts. If the slow turning procedure fails, a failure alarm lower speed to prevent any possible damage. Slow turning is will sound and engine start up will be aborted. The engine should completed when the engine has rotated through the configured then be inspected to determine the cause of the failure. number of revolutions in a pre-determined amount of time. TECHNICAL CONCEPT Implementing Wärtsilä SafeStart requires: — At minimum a UNIC engine control system — A solenoid valve for slow turning — A start improvement set for Wärtsilä 32 engines, if not existing SafeStart also includes a start improvement function for Wärtsilä 32 engines where cranking revolutions are increased during the start sequence, significantly improving start reliability. The volume of control air in the air block channel is reduced by installing pipe inserts, improving the accuracy of air injection during a start.
    [Show full text]