Geohydrology of Comal, San Marcos, and Hueco Springs

Total Page:16

File Type:pdf, Size:1020Kb

Geohydrology of Comal, San Marcos, and Hueco Springs ~ f~~" u *~"} ~~~~~~~i/ ~~ TEXAS DEPARTMENT OF WATER RESOURCES REPORT 234 GEOHYDROLOGY OF COMAL, SAN MARCOS, AND HUECO SPRINGS By William F. Guyton & Associates June 1979 TEXAS DEPARTMENT OF WATER RESOURCES Harvey Davis, Executive Director TEXAS WATER DEVELOPMENT BOARD A. l. Black, Chairman John H. Garrett, Vice Chairman Milton Potts Glen E. Roney George W. McCleskey W. O. Bankston TEXAS WATER COMMISSION Felix McDonald, Chairman Dorsey B. Hardeman, Commissioner Joe R. Carroll, Commissioner Authorization for use or reproduction of any original material contained in this publicatiun, i.e., not obtained from other sources, is freely granted. The Department would appreciate acknowledgement. Published and distributed by the Texas Department of Water Resources Post Office Box 13087 Austin, Texas 78711 " TABLE OF CONTENTS Page SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS INTRODUCTION 3 Purpose 3 Scope 3 Area of Investigation 3 Previous Investigations 4 Acknowledgements 4 Metric Conversions 4 DESCRIPTION OF SPRINGS 7 Comal Springs. 7 San Marcos Springs 7 Hueco Springs. 7 EDWARDS (BALCONES FAULT ZONE) AQUIFER. 8 Geology. 8 Recharge 8 Natural Discharge 9 Storage . 9 Bad Water Line 9 Withdrawals of Water Through Wells 11 Effects of Withdrawals . 11 GEOLOGY IN VICINITY OF SPRINGS 15 General . 15 Stratigraphy 15 iii TABLE OF CONTENTS-Continued Page Glen Rose Formation 15 Walnut Formation 15 Edwards Group 15 Georgetown Formation. 19 Del Rio Formation 19 Buda Formation 19 Eagle Ford Group 19 Austin Group 19 Taylor Group 19 Navarro Group 19 Quaternary Alluvium 20 Structural Geology . 20 Detailed Geology of Comal, San Marcos, and Hueco Springs Localities 20 Comal Springs. 20 San Marcos Springs 25 Hueco Springs. 25 Recent Geohydrologic Subdivision of Edwards Aquifer by the U.S. Geological Survey 31 SPRING FLOW . 39 ComaI Springs. 39 San Marcos Springs 39 Hueco Springs. 46 CHEMICAL QUALITY OF WATER 46 Comal Springs. 46 San Marcos Springs 54 Hueco Springs. 54 TEMPERATURE OF WATER 54 iv TABLE OF CONTENTS-Continued Page Comal Springs. 55 San Marcos Springs 55 Hueco Springs _ 55 TRITIUM CONTENT OF WATER 55 Comal Springs. 57 San Marcos Springs 57 Hueco Springs. 57 Wells. 57 SPRING FLOW CORRELATION STUDIES. 61 Long-Term Recharge and Discharge. 61 Recent Correlations by U.S. Geological Survey 61 Study by William F. Guyton & Associates 65 Studies by U.S. Bureau of Reclamation 66 Digital Model by Texas Department of Water Resources 67 Similarity of Fluctuations in Flow of San Marcos and Hueco Springs. 68 RECHARGE AREAS FOR SPRINGS 68 Comal Springs. 71 San Marcos Springs 71 Hueco Springs. 71 Local Water Balance. 72 POSSIBILITIES OF POLLUTION 72 Present Records _ 72 Legal Control of Pollution. 72 Comal Springs. 72 San Marcos Springs 72 Hueco Springs. 79 v TABLE OF CONTENTS-CONTINUED Page EFFECTS ON SPRING FLOW CAUSED BY WITHDRAWALS FROM WELLS 79 Comal Springs. 79 San Marcos Springs 79 Hueco Springs. 80 POSSIBILITIES OF MAINTAINING COMAL AND SAN MARCOS SPRING FLOWS AT PREDETERMINED RATES 80 FUTURE STUDIES. 81 General Edwards Program 81 Special Studies Related to ComaI, San Marcos, and Hueco Springs 81 REFERENCES 83 TABLES 1. Ground-Water Recharge and Discharge, Edwards Aquifer Northeast of San Antonio. 45 2. Chemical Analyses of Water From Comal, San Marcos, and Hueco Springs 47 3. Temperature of Water From Hueco Springs , 56 4. Minor Elements in Water From Comal, San Marcos, and Hueco Springs 73 5. Nutrients and Bacteria in Water From Comal, San Marcos, and Hueco Springs. 75 6. Insecticides and Herbicides in Water From Comal and San Marcos Springs . 78 FIGURES 1. Edwards (Balcones Fault Zone) Aquifer, San Antonio Region 5 2. Recharge and Discharge of the Edwards Aquifer and Discharge From Wells and Major Springs 10 3. Surface Geology of the Edwards Aquifer Area Northeast of San Antonio Showing Water-Quality Features and Locations of Springs, Observation Wells, and Test Holes 13 4. Elevation of the Top of the Glen Rose Formation, and Surface Geology of the Edwards Aquifer Area Northeast of San Antonio . 17 5. Surface Geology of ComaI Springs Locality 21 6. Geologic Cross-Section Through ComaI Springs Locality. 23 7. Surface Geology of San Marcos Springs Locality 27 vi TABLE OF CONTENTS-Continued Page 8. Geologic Cross-Section Through San Marcos Springs Locality 29 9. Surface Geology of Hueco Springs Locality 33 10. Geologic Cross-Section Through Hueco Springs Locality 35 11. Geohydrologic Subdivision of the Edwards Aquifer Northeast of San Antonio 37 12. Flow of Comal, San Marcos, and Hueco Springs, 1881-1928 41 13. Flow of Comal, San Marcos, and Hueco Springs and Precipitation at New Braunfels and San Marcos, 1928-1975. 43 14. Surface Geology of the Edwards Aquifer Area Northeast of San Antonio Showing Tritium Analyses of Water From Wells and Springs and Surface-Drainage Divides. 59 15. Relationship Between the Flow of Comal Springs and the Water Level in Well DX-68-23-302. 62 16. Relationship Between the Flow of Comal Springs and the Water Level in Well AY-68-37-203. 63 17. Comparison of Observed and Computed Annual Average Discharge of Comal Springs 63 18. Relationship Between the Flow of San Marcos Springs and the Water Level in Well LR-67-09·102 64 19. Relationship Between the Water Level in Well DX-68-23-302 and the Discharge of Regional Underflow at San Marcos Springs 65 20. Comparison of Observed and Computed Annual Average Discharge of San Marcos Springs. 65 21. Comparison of Observed and Computed Annual Average Discharge of Hueco Springs 65 22. Correlation of Year-End Water Levels in Beverly Lodges Well With Change in Storage in the Edwards Aquifer 66 23. Correlation of Average Yearly Water Levels in Beverly Lodges Well With Comal Springs Flow 67 24. Correlation of Average Yearly Water Levels in Beverly Lodges Well With Estimated San Antonio and San Pedro Springs Flow . 68 25. Comparison of Calculated and Measured Water Levels in Beverly Lodges Well, 1934-1961 69 26. Historical and Simulated Sum of Spring Flows, 1947·1971 . 70 27. Annual Flow of San Marcos Springs Versus Annual Flow of Hueco Springs, 1945-1974 70 vii GEOHYDROLOGY OF COMAL, SAN MARCOS, AND HUECO SPRINGS SUMMARY, CONCLUSIONS, AND aquifer was discharged through six major spring outlets: RECOMMENDATlONS Leona Springs along the Leona River south of Uvalde in Uvalde County, San Pedro and San Antonio Springs at Comal, San Marcos, and Hueco Springs are major San Antonio in Bexar County, Comal Springs, Hueco natural discharge points for the Edwards (Balcones Fault Springs, and San Marcos Springs. The water moved Zone) aquifer, hereafter referred to in this section as the generally from west to east, and the springs served as Edwards aquifer. Comal Springs are in the city of New natural spillways for the aquifer. Since withdrawals from Braunfels in Comal County and are the largest group of wells began, the spring flow has decreased, with the total springs in Texas. San Marcos Springs occur in the city of reduction in volume of spring flow being roughly equal San Marcos in Hays County and are the second largest to the total volume of withdrawals from wells. group of springs in Texas. Hueco Springs are a smaller group of springs near the Guadalupe River about 3 miles Estimates of storage of water in the aquifer range 3 north of New Braunfels in Comal County. All three from about 15 million acre-feet (18.5 billion m ) to 3 groups of springs occur along major faults in the about 45 million acre·feet (55.5 billion m ). Balcones Fault Zone. The first substantial withdrawals of water from The formations comprising the Edwards aquifer in wells penetrating the aquifer were in the late 1800's. In the area of the three groups of springs, from top to 1934, the total withdrawal from wells was about 3 bottom, are the Georgetown Formation, the Person and 100,000 acre·feet (123 million m ). Withdrawals Kainer Formations of the Edwards Group, 'and the reached their maximum in 1971, when they were 3 Walnut Formation. The aquifer considered in this report 407,000 acre·feet (502 million m ). In 1974, 3 occurs in an area about 5 to 30 miles (8.0 to 48.3 km) withdrawals were 364,000 acre-feet (449 million m ). wide and 175 miles (282 km) long extending from a The primary effects of the withdrawals have been ground-water divide at Brackettville in Kinney County reductions in spring flows during periods of drought. on the west through parts of Uvalde, Medina, Atascosa, Comal Springs were dry, for the first time on record, for Bexar, Guadalupe, and Comal Counties to a about 5 months from July 1956 to November 1956. The ground-water divide northeast of Kyle in Hays County. lowest recorded flow for San Marcos Springs also The formations range in total thickness in this area from occurred at that time. about 400 to 1,000 feet (122 to 305 mi. The daily average flow reported for Comal Springs The Edwards aquifer is recharged principally by has ranged from a minimum of zero in 1956 to a seepage of water from streams crossing its outcrop, and maximum of 534 cubic feet per second (15.1 m 3 /s) in by direct infiltration of precipitation falling on its 1973. Prior to 1948, the lowest daily average flow outcrop areas. Average recharge for the period 1934-73 reported was 245 cubic feet per second (6.9 m 3 /s) in is estimated at slightly less than 600,000 acre·feet (740 1939. The average annual discharge for Comal Springs 3 million m ) per year. Annual recharge during this period during the period 1945·73 was 184,000 acre·feet (227 3 ranged between a minimum of less than 50,000 acre-feet million m ) per year.
Recommended publications
  • USGS Water-Resources Investigations Report 97-4133
    HYDROGEOLOGIC FRAMEWORK AND GEOCHEMISTRY OF THE EDWARDS AQUIFER SALINE-WATER ZONE, SOUTH-CENTRAL TEXAS U.S. GEOLOGICAL SURVEY Water-Resources Investigations Report 97–4133 FRESHWATER ZONE SALINE-WATER ZONE Prepared in cooperation with the EDWARDS AQUIFER AUTHORITY and SAN ANTONIO WATER SYSTEM HYDROGEOLOGIC FRAMEWORK AND GEOCHEMISTRY OF THE EDWARDS AQUIFER SALINE-WATER ZONE, SOUTH-CENTRAL TEXAS By George E. Groschen and Paul M. Buszka U.S. GEOLOGICAL SURVEY Water-Resources Investigations Report 97–4133 Prepared in cooperation with the EDWARDS AQUIFER AUTHORITY and SAN ANTONIO WATER SYSTEM Austin, Texas 1997 U.S. DEPARTMENT OF THE INTERIOR BRUCE BABBITT, Secretary U.S. GEOLOGICAL SURVEY Gordon P. Eaton, Acting Director Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government. For additional information write to: Copies of this report can be purchased from: District Chief U.S. Geological Survey U.S. Geological Survey Branch of Information Services 8011 Cameron Rd. Box 25286 Austin, TX 78754–3898 Denver, CO 80225–0286 ii CONTENTS Abstract ................................................................................................................................................................................ 1 Introduction .......................................................................................................................................................................... 1 Purpose and Scope ...................................................................................................................................................
    [Show full text]
  • Late Cretaceous and Tertiary Burial History, Central Texas 143
    A Publication of the Gulf Coast Association of Geological Societies www.gcags.org L C T B H, C T Peter R. Rose 718 Yaupon Valley Rd., Austin, Texas 78746, U.S.A. ABSTRACT In Central Texas, the Balcones Fault Zone separates the Gulf Coastal Plain from the elevated Central Texas Platform, comprising the Hill Country, Llano Uplift, and Edwards Plateau provinces to the west and north. The youngest geologic for- mations common to both regions are of Albian and Cenomanian age, the thick, widespread Edwards Limestone, and the thin overlying Georgetown, Del Rio, Buda, and Eagle Ford–Boquillas formations. Younger Cretaceous and Tertiary formations that overlie the Edwards and associated formations on and beneath the Gulf Coastal Plain have no known counterparts to the west and north of the Balcones Fault Zone, owing mostly to subaerial erosion following Oligocene and Miocene uplift during Balcones faulting, and secondarily to updip stratigraphic thinning and pinchouts during the Late Cretaceous and Tertiary. This study attempts to reconstruct the burial history of the Central Texas Platform (once entirely covered by carbonates of the thick Edwards Group and thin Buda Limestone), based mostly on indirect geological evidence: (1) Regional geologic maps showing structure, isopachs and lithofacies; (2) Regional stratigraphic analysis of the Edwards Limestone and associated formations demonstrating that the Central Texas Platform was a topographic high surrounded by gentle clinoform slopes into peripheral depositional areas; (3) Analysis and projection
    [Show full text]
  • Map Showing Geology and Hydrostratigraphy of the Edwards Aquifer Catchment Area, Northern Bexar County, South-Central Texas
    Map Showing Geology and Hydrostratigraphy of the Edwards Aquifer Catchment Area, Northern Bexar County, South-Central Texas By Amy R. Clark1, Charles D. Blome2, and Jason R. Faith3 Pamphlet to accompany Open-File Report 2009-1008 1Palo Alto College, San Antonio, TX 78224 2U.S. Geological Survey, Denver, CO 80225 3U.S. Geological Survey, Stillwater, OK 74078 U.S. DEPARTMENT OF THE INTERIOR U.S. GEOLOGICAL SURVEY U.S. Department of the Interior DIRK KEMPTHORNE, Secretary U.S. Geological Survey Mark D. Myers, Director U.S. Geological Survey, Denver, Colorado: 2009 For product and ordering information: World Wide Web: http://www.usgs.gov/pubprod Telephone: 1-888-ASK-USGS For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment: World Wide Web: http://www.usgs.gov Telephone: 1-888-ASK-USGS Suggested citation: Clark, A.R., Blome, C.D., and Faith, J.R, 2009, Map showing the geology and hydrostratigraphy of the Edwards aquifer catchment area, northern Bexar County, south- central Texas: U.S. Geological Survey Open-File Report 2009-1008, 24 p., 1 pl. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government Although this report is in the public domain, permission must be secured from the individual copyright owners to reproduce any copyrighted material contained within this report. 2 Contents Page Introduction……………………………………………………………………….........……..…..4 Physical Setting…………………………………………………………..………….….….….....7 Stratigraphy……………..…………………………………………………………..….…7 Structural Framework………………...……….……………………….….….…….……9 Description of Map Units……………………………………………………….…………...….10 Summary……………………………………………………………………….…….……….....21 References Cited………………………………………….…………………………...............22 Figures 1.
    [Show full text]
  • A RECREATIONAL USE SURVEY of the SAN MARCOS RIVER Thesis
    A RECREATIONAL USE SURVEY OF THE SAN MARCOS RIVER Thesis Presented to the Graduate Council of Southwest Texas State University in Partial Fulfillment of the Requirements For the Degree of MASTER OF SCIENCE By David D Bradsby San Marcos, Texas May 1994 - A RECREATIONAL USE SURVEY OF THE SAN MARCOS RIVER Approved: B. G. Whiteside, Chairman Approved: TABLE OF CONTENTS List of Figures . i v List of Tables . vi Acknowledgements . vi i Introduction . 1 Recreational Literature Review . 2 San Marcos River . 6 Threatened and Endangered Species . 2 4 Methods . 27 Results.................................... 35 Discussion . 5 4 Conclusions . 6 9 Literature Cited . 7 2 iii LIST OF FIGURES Figure Page 1 . Map of the upper San Marcos River from Spring Lake to the Blanco River confluence ................ 7 2. Detailed map of the upper San Marcos River showing study areas ...... .... ..... ..... .. ... .. ....... ... .. ..... ......... ...... ... 9 3. Pepper's study area on the San Marcos River looking upstream .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. ... .. .. .. .. .. 1 1 4. Sewell Park study area on the San Marcos River looking downstream............................................................... 1 3 5. City Park study area on the San Marcos River ............ 1 5 6. Rio Vista Annex study area on the San Marcos River ........... ......... .... .... .... ......... ........ .... ......... ....... 1 7 7. Rio Vista Park study area on the San Marcos River ................ ......... ....... ..... .... ........ .... ........
    [Show full text]
  • MEXICO Las Moras Seco Creek K Er LAVACA MEDINA US HWY 77 Springs Uvalde LEGEND Medina River
    Cedar Creek Reservoir NAVARRO HENDERSON HILL BOSQUE BROWN ERATH 281 RUNNELS COLEMAN Y ANDERSON S HW COMANCHE U MIDLAND GLASSCOCK STERLING COKE Colorado River 3 7 7 HAMILTON LIMESTONE 2 Y 16 Y W FREESTONE US HW W THE HIDDEN HEART OF TEXAS H H S S U Y 87 U Waco Lake Waco McLENNAN San Angelo San Angelo Lake Concho River MILLS O.H. Ivie Reservoir UPTON Colorado River Horseshoe Park at San Felipe Springs. Popular swimming hole providing relief from hot Texas summers. REAGAN CONCHO U S HW Photo courtesy of Gregg Eckhardt. Y 183 Twin Buttes McCULLOCH CORYELL L IRION Reservoir 190 am US HWY LAMPASAS US HWY 87 pasas R FALLS US HWY 377 Belton U S HW TOM GREEN Lake B Y 67 Brady iver razos R iver LEON Temple ROBERTSON Lampasas Stillhouse BELL SAN SABA Hollow Lake Salado MILAM MADISON San Saba River Nava BURNET US HWY 183 US HWY 190 Salado sota River Lake TX HWY 71 TX HWY 29 MASON Buchanan N. San G Springs abriel Couple enjoying the historic mill at Barton Springs in 1902. R Mason Burnet iver Photo courtesy of Center for American History, University of Texas. SCHLEICHER MENARD Y 29 TX HW WILLIAMSON BRAZOS US HWY 83 377 Llano S. S an PECOS Gabriel R US HWY iver Georgetown US HWY 163 Llano River Longhorn Cavern Y 79 Sonora LLANO Inner Space Caverns US HW Eckert James River Bat Cave US HWY 95 Lake Lyndon Lake Caverns B. Johnson Junction Travis CROCKETT of Sonora BURLESON 281 GILLESPIE BLANCO Y KIMBLE W TRAVIS SUTTON H GRIMES TERRELL S U US HWY 290 US HWY 16 US HWY P Austin edernales R Fredericksburg Barton Springs 21 LEE Somerville Lake AUSTIN Pecos
    [Show full text]
  • Habitat and Phenology of the Endangered Riffle Eetle, Heterelmis
    Arch. Hydrobiol. 156 3 361-383 Stuttgart, February 2003 Habitat and phenology of the endangered riffle beetle Heterelmis comalensis and a coexisting species, Microcylloepus pusillus, (Coleoptera: Elmidae) at Comal Springs, Texas, USA David E. Bowles1 *, Cheryl B. Barr2 and Ruth Stanford3 Texas Parks and Wildlife Department, University of California, Berkeley, and United States Fish and Wildlife Service With 5 figures and 4 tables Ab tract: Habitat characteristics and seasonal distribution of the riffle beetles Herere/­ mis comalensis and Microcylloepu pusillus were studied at Comal Springs, Texas, during 1993-1994, to aid in developing sound reconunendations for sustaining their natural popu1atioas. Comal Springs consists of four major spring cutlers and spring­ runs. The four spring-runs are dissimilar in size, appearance, canopy and riparian cover, substrate composition, and aquatic macrophyte composition. Habitat conditions associated with the respective popuJatioos of riffle beetles, including physical-chemi­ cal measurements, water depth, and currenc velocity, were relatively unifom1 and var­ ied lHUe among sampling dates and spring-runs. However, the locations of the beetles in the respective spri ng-runs were not well correlated to current velocity, water depth, or distance from primary spring orifices. Factors such as substrate size and availability and competition are proposed as possibly influencing lheir respective distributions. Maintaining high-quality spring-flows and protection of Lhe physical habitat of Here· re/mis comalensis presently are the only means by which to ensure the survival of this endemic species. Key words: Conservation, habitat conditions, substrate availability, competition. 1 Authors' addresses: Texas Parks and Wildlife Department, 4200 Smith School Road, Austin, Texas 78744, USA.
    [Show full text]
  • Albian Rudist Biostratigraphy (Bivalvia), Comanche Shelf to Shelf Margin, Texas
    Carnets Geol. 16 (21) Albian rudist biostratigraphy (Bivalvia), Comanche shelf to shelf margin, Texas Robert W. SCOTT 1, 2 2 Yulin WANG 2 Rachel HOJNACKI Yulin WANG 3 Xin LAI 4 Highlights • Barremian-Albian caprinids biostratigraphic zones are revised and integrated with ammonites and benthic foraminifers. • New caprinid rudist species are the key to revising long-held correlations of Albian strata on the Co- manche shelf, Texas. • On the San Marcos Arch, central Texas, the shallow shelf Person Formation is the upper unit of the Fredericksburg Group. • The Person underlies the basal Washita Group sequence boundary Al Sb Wa1 and the Georgetown Formation. Abstract: Rudists were widespread and locally abundant carbonate producers on the Early Cretaceous Comanche Shelf from Florida to Texas, and on Mexican atolls. As members of the Caribbean Biogeogra- phic Province, their early ancestors emigrated from the Mediterranean Province and subsequently evol- ved independently. Comanchean rudists formed biostromes and bioherms on the shelf interior and at the shelf margin. Carbonate stratigraphic units of the Comanche Shelf record rudist evolution during the Barremian through the Albian ages and an established zonal scheme is expanded. This study documents new Albian rudist occurrences from the Middle-Upper Albian Fredericksburg and Washita groups in Central and West Texas. Rudists in cores at and directly behind the shelf margin southeast of Austin and San Antonio, Texas, complement the rudist zonation that is integrated with ammonites and foraminifers. These new rudist data test long-held correlations of the Edwards Group with both the Fredericksburg and Washita groups based solely on lithologies. Rudist and foraminifer biostratigraphy indicate that the Edwards Group is coeval with the Fredericksburg not the Washita Group.
    [Show full text]
  • Comal County Regional Habitat Conservation Plan Environmental Impact Statement
    Draft Comal County Regional Habitat Conservation Plan Environmental Impact Statement Prepared for: Comal County, Texas Comal County Commissioners Court Prepared by: SWCA Environmental Consultants Smith, Robertson, Elliott, Glen, Klein & Bell, L.L.P. Prime Strategies, Inc. Texas Perspectives, Inc. Capital Market Research, Inc. April 2010 SWCA Project Number 12659-139-AUS DRAFT COMAL COUNTY REGIONAL HABITAT CONSERVATION PLAN ENVIRONMENTAL IMPACT STATEMENT April 2010 Type of Action: Administrative Lead Agency: U.S. Department of the Interior Fish and Wildlife Service Responsible Official: Adam Zerrenner Field Supervisor U.S. Fish and Wildlife Service 10711 Burnet Road, Suite 200 Austin, Texas For Information: Bill Seawell Fish and Wildlife Biologist U.S. Fish and Wildlife Service 10711 Burnet Road, Suite 200 Austin, Texas Tele: 512-490-0057 Abstract: Comal County, Texas, is applying for an incidental take permit (Permit) under section 10(a)(1)(B) of the Endangered Species Act of 1973, as amended 16 U.S.C. § 1531, et seq. (ESA), to authorize the incidental take of two endangered species, the golden-cheeked warbler (Dendroica chrysoparia) and the black-capped vireo (Vireo atricapilla), referred to collectively as the “Covered Species.” In support of the Permit application, the County has prepared a regional habitat conservation plan (Proposed RHCP), covering a 30-year period from 2010 to 2040. The Permit Area for the Proposed RHCP and the area of potential effect for this Environmental Impact Statement (EIS) is Comal County in central Texas. The requested Permit would authorize the following incidental take and mitigation for the golden-cheeked warbler: Take: As conservation credits are created through habitat preservation, authorize up to 5,238 acres (2,120 hectares) of golden-cheeked warbler habitat to be impacted over the 30-year life of the Proposed RHCP.
    [Show full text]
  • San Marcos Recovery Plan
    ~""'.- San Marcos Recovery Plan U. • Fish & Wildlife Service Albu,querque, New Mexico .-1-934--- The San Marcos Recovery Plan FOR San Hareqs River, Endangered and Threatened Species San ,Marcos Gambusia (Gambusia georgei) Hubbs and Peden ~ountainDarter (Etheostoma fonticola) (Jordan and Gilbert) San Marcos Salamander (Eurycea nana) Bish~p Te1,Ca s Wildr ice" (Z.tzaniatexana}Hitchcock PREPARED BY THE SAN MARIDS REIDVERY TEAM Dr. Robert J. Edwards, Leader, Pan American University, Edinburg, Texas 78539 Mr. Harold E. Beaty, 3414 Forest Trail, Temple, Texas 76502 Dr. Glenn Longley, Southwest Texas State University, San Marcos, Texas 78666 Mr. David H. Riskind, Texas Parks and Wildlife Department, Austin, Texas 78744 Dr. Dianna D.Tupa, center for Research and Water Resources, Unlvers1tyof Texas Balcones Research' Center, Austin, Texas 78758 Dr. Bobby G.Whites ide, Southwes t Texas State University, San Marcos, Texas 78666 OONSULTANTS Mr. Harry Bishop, USFWS, Fish Cult. & Develop. Res. Center, San Marcos, Texas 78666 Dr. W. H. P. Emery, South~est Texas State University, San Marcos, Texas 7e666 (Member 1981-82) Mr. Russell L. Masters, Edwards Underground Water District, San AntoniO, Texas 78205 Mr. William McPherson, Soil Conservation Service, Bastrop, Texas 78602 Mr. Floyd E. Potter, Jr., Texas Parks and lHl(,ili~~ Department, Austin, Texas 78759 i;:'y' , . // i f ,It . '1 ,/.' "V- Approved: '. ~ /-, j;t Regtaff'a i or, Region 2 U.S. Fi h, .. ' 'Wildlife Service Date: '/ .f --------~~~~~--------------------- SUMMARY 1 •. GOAL: Secure the survival and eventual recovery of the San Marcos .. gambusia, f01.nltain darter, San Marcos salamander, and Texas wildrice through protection of their natural ecosystem, the . San Marcos River.
    [Show full text]
  • Flowing, but Slowing
    Published: May 17, 2008 03:53 pm Flowing, but slowing River signals need for rain – and conservation By Anita Miller News Editor San Marcos — You can see it at Sewell Park, where the stand of endangered Texas wild rice pokes above the moving stream. Those who visit the San Marcos River regularly see it at all their favorite spots: Stream flow is falling. To newcomers, the lower river level might seem an aberration, as plentiful rains in the first part of 2007 pushed flow to near-record levels. But the truth is, despite sporadic rains, drought in the region continues and as it does, residents may be facing mandatory water conservation measures. “It’s not too early to start taking steps to conserve,” said Jan Klein, water conservation coordinator for the city of San Marcos. “Any conservation measures now voluntarily taken can possibly prolong that period” before Stage I rules would have to be invoked. The city’s rules were rewritten in 2006, Klein said, but the 2007 Texas Legislature wrote its own. According to the new legislation, Stage I rules go into effect when the Edwards Aquifer J-17 Index Well at Fort Sam Houston in San Antonio falls below 660 feet above mean sea level or the flow at San Marcos Springs drops below 96 cubic feet per second (cfs) over a period of 10 days. On Tuesday, the J-17 well measured 673.9, which is 7.5 feet above the historic average for May. The last 10-day average was 674.1. During spring irrigation season, as well as hot summer days, the J-17 well has been known to drop a foot a day.
    [Show full text]
  • Barton Springs Segment of the Edwards (Balcones Fault Zone) Aquifer, Central Texas
    OLD G The Geological Society of America Memoir 215 OPEN ACCESS Barton Springs segment of the Edwards (Balcones Fault Zone) Aquifer, central Texas Brian B. Hunt Brian A. Smith Barton Springs/Edwards Aquifer Conservation District, Austin, Texas 78748, USA Nico M. Hauwert Balcones Canyonland Preserve, City of Austin, Austin Water, Wildland Conservation Division, Austin, Texas 78738, USA ABSTRACT The Barton Springs segment of the Edwards (Balcones Fault Zone) Aquifer is a prolifi c karst aquifer system containing the fourth largest spring in Texas, Barton Springs. The Barton Springs segment of the Edwards Aquifer supplies drinking water for ~60,000 people, provides habitat for federally listed endangered salamanders, and sustains the iconic recreational Barton Springs pool. The aquifer is composed of Lower Cretaceous carbonate strata with porosity and permeability controlled by dep- ositional facies, diagenesis, structure, and karstifi cation creating a triple permeability system (matrix, fractures, and conduits). Groundwater fl ow is rapid within an inte- grated network of conduits discharging at the springs. Upgradient watersheds pro- vide runoff to the recharge zone, and the majority of recharge occurs in the streams crossing the recharge zone. The remainder is direct recharge from precipitation and other minor sources (infl ows from Trinity Group aquifers, the San Antonio segment, the bad-water zone, and anthropogenic sources). The long-term estimated mean water budget is 68 ft3/s (1.93 m3/s). The Barton Springs/Edwards Aquifer Conserva- tion District developed rules to preserve groundwater supplies and maximize spring fl ow rates by preserving at least 6.5 ft3/s (0.18 m3/s) of spring fl ow during extreme drought.
    [Show full text]
  • Geologic Summary
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE G 4032 provided by UT Digital Repository T3 cs 2005 C6 GEOL MAPS Miscellaneous Map No. 43 eologic Map of the West Half of the Taylor, Texas, 30 x 60 Minute Quadrangle: Central Texas Urban Corridor, Encompassing Round Rock, Georgetown, Salado, Briggs, Liberty Hill, and Leander Edward W. Collins ;;;;;;;;;;;;;;; -!!!!!!!!!!!!!!! Ill - Q. < - :::E ;;;;;;;;;;;;;;; CJ .J - 0 rn w ;;;;;;;;;;;;;;; er c(J -;;;;;;;;;;;;;;; " c(J U) c(J 0 = c() Ill ;;;;;;;;;;;;;;; ::r 0 ~ ...-'! 0 - ru N Ill 0 ;;;;;;;;;;;;;;; M - I- N = M 0 - 'It' -!!!!!!!!!!!!!!! - " Bureau of Economic Geology Scott W. Tinker, Director John A. and Katherine G. Jackson School of Geosciences The University of Texas at Austin Austin, Texas 78713-8924 2005 Miscellaneous Map No. 43 Geologic Map of the West Half of the Taylor, Texas, 30 x 60 Minute Quadrangle: Central Texas Urban Corridor, Encompassing Round Rock, Georgetown, Salado, Briggs, Liberty Hill, and Leander Edward W. Collins Bureau of Economic Geology Scott W. Tinker, Director John A. and Katherine G. Jackson School of Geosciences The University of Texas at Austin Austin, Texas 78713-8924 2005 ( CONTENTS ABSTRACT ....................................................................................................................... l INTRODUCTION ............................................................................................................ 1 Methods .....................................................................................................................
    [Show full text]