Image-Guided Interventions Terry Peters • Kevin Cleary Editors
Total Page:16
File Type:pdf, Size:1020Kb
Image-Guided Interventions Terry Peters • Kevin Cleary Editors Image-Guided Interventions Technology and Applications Editors Terry Peters Kevin Cleary Imaging Research Laboratories Radiology Department Robarts Research Institute Imaging Science and Information University of Western Ontario Systems (ISIS) Center 100 Perth Drive 2115 Wisconsin Ave. NW, Suite 603 London, ON N6A 5K8 Washington, DC 20057 Canada USA ISBN: 978-0-387-73856-7 e-ISBN: 978-0-387-73858-1 Library of Congress Control Number: 2007943573 © 2008 Springer Science+Business Media, LLC All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden. The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights. Springer Science+Business Media, LLC or the author(s) make no warranty or representation, either express or implied, with respect to this DVD or book, including their quality, mechantability, or fitness for a particular purpose. In no event will Springer Science+Business Media, LLC or the author(s) be liable for direct, indirect, special, incidental, or consequential damages arising out of the use or inability to use the disc or book, even if Springer Science+Business Media, LLC or the author(s) has been advised of the possibility of such damages. Printed on acid-free paper 9 8 7 6 5 4 3 2 1 springer.com We would like to express our deepest gratitude to our colleague Jackie C. Williams, MA, for taking on the burden of Executive Editor of this book, for haranguing the authors, ensuring the manuscripts were delivered in time, editing them to perfection, and moulding them into the consistent format of the book. Without Jackie’s dedicated involvement and professional skills, the production of this book could not have moved forward! Foreword Technical and clinical developments in the field of image-guided interventions have reached a stage **which makes the appearance of this book particularly timely. The chapters are by leading researchers, many of whom have been important contributors to the International Conference series Medical Image Computing and Computer Assisted Interventions (MICCAI). The chapters provide excellent reviews that will be useful to a range of readers. While the material will generally be most accessible to those with a technical background (engineers, computer scientists, and physicists), books like this are increasingly important for clinical practitioners (surgeons and other interventionists) as well as clinical researchers and students with a background in medicine or biology. The field is emphatically cross- disciplinary, and close cooperation between the medical and the technical experts is critical. Constant preoccupation with high-volume patient throughput often inhibits the participation of highly trained clinicians in technically challenging research and well-written sources such as this volume, which can be used by clinicians as well as scientists, make a real contribution. During interventions where images provide guidance, the effector may of course be the hand of the surgeon, but there are many exciting developments involving remote effectors where the surgeon is distanced from the final actions. Partially autonomous robotic systems, for example, in orthopaedic surgery (Chap. 12), allow much improved reliability for certain procedures. Micromanipulators potentially allow finer-scale interventions that are increasing in importance, particularly when the effector is at the end of an endoscope. In the future, we will also see the use of effectors with no mechanical link to the outside world, and such devices have the potential to function at a microscopic scale. The strength of this book is to include radiation therapy as one of the effectors (Chaps. 16 and 17). The engineers involved in the design of all types of effectors including robots and remotely controlled devices need to remain fully engaged with image computing and clinical research in this cross-disciplinary field: whole-system integration is the key to future success. This remains a strong part of the philosophy of the MICCAI conferences. vii viii Foreword What are the key areas which determine progress and future directions? This book provides several pointers. An important limitation of image guidance arises when images acquired earlier become out-of-date before a procedure is completed, because of physiological or pathological changes in the tissue and especially because of changes brought about by the intervention itself. Some developments in intra-operative imaging that provide regularly updated imaging are covered in the book (including MRI in Chaps. 10 and 14, and ultrasound in Chap. 15), and we look forward to further significant advances in these and other modalities. Developments in modelling of tissue deformations and in non-rigid registration (Chap. 7) continue to be important. This has particular relevance for thoraco- abdominal interventions (Chap. 13). Evaluating the benefits and risks of image-guided interventions is of central importance (Chap. 18 and passim). Benefits for certain procedures has now been demonstrated in many clinical specialities. However, making the procedures available to patients in routine practice faces the huge hurdle of persuading healthcare funders of the cost-effectiveness of procedures. As healthcare costs generally increase, demonstrating improvements in the quality of care is not enough to secure support for clinical use, but quantifying benefit in economic terms, beloved by many health economists, is a very inexact process and often open to a wide range of interpretations. It is likely that in the short term image-guided systems will continue to make inroads into clinical practice only for isolated applications. Researchers need to continue to work very hard to generate quantitative and qualitative validation data. In some countries and clinical specialties, there is at present often great reluctance of funders and managers to support the introduction of new technology. But as patients and the public perception of the nature of the improvements provided by image-guided interventions continues to rise, demand will increase to a level which will greatly facilitate subsequent developments. Alan Colchester Professor of Clinical Neuroscience and Medical Image Computing, University of Kent, Canterbury, England Consultant Neurologist, Guy’s & St. Thomas’s Hospitals, London and East Kent Hospitals Trust Medical Image Computing and Computer-Assisted Intervention Board Chairman 1999–2007 and Society President 2004–2007 Preface This book had its genesis in 2003, when Dr. Lixu Gu of Shanghai Jiatong University asked whether we would consider organizing a workshop on image- guided interventions at the 2005 International Symposium on Engineering in Medicine and Biology in Shanghai, China. We agreed and our subsequent workshop included five individual speakers and covered neurological, orthopedic, and abdominal applications of image-guided interventions, with the inclusion of issues on visualization and image processing. After the symposium, Springer-Verlag approached us about editing a book on the basis of the workshop, and we decided that such a book would indeed fill a niche in the literature, but to do its justice, it would need to cover more than the original five topics. We asked Jackie Williams to take on the role of Executive Editor, and over the next six months, we received agreement from the authors represented in this book, which includes 18 chapters divided between principles and app- lications. The title, “Image-Guided Interventions” was deliberately chosen over “Image-Guided Surgery” or “Minimally-Invasive Surgery and Therapy,” as it covers the widest range of both therapeutic and surgical procedures, and reflects the recognition that the basic principles covered in the first part of the book are applicable to all such procedures. In addition, the inclusion of two chapters dealing with radiation-based therapies recognizes the convergence between sur- gery and radiation therapy in terms of the guidance technologies. This book is aimed at both the graduate student embarking on a career in medical imaging, and the practicing researcher or clinician who needs a snapshot of the state-of-the-art in both the principles and practice of this discipline. Accordingly, the book begins with a historical overview of the development of image guidance for medical procedures, and follows with discussions of the critical components of tracking technologies, visualization, augmented reality, image registration (both rigid and nonrigid) image seg- mentation, and image acquisition. A chapter on the important issue of soft- ware development for image-guided systems is also included, as is one on the equally important issue of validation. In the application section, examples are presented on the use of image guidance for focused ultrasound therapy, neurosurgery, orthopedics, abdominal surgery, prostate therapy, and cardiac applications. Finally,