The Evening Sky Map I

Total Page:16

File Type:pdf, Size:1020Kb

The Evening Sky Map I I N E D R I A C A S T N E O D I T A C L E O R N I G D S T S H A E P H M O O R C I . Z N O r n e h s t k r y o . n O T N h e e h Z t 3 s I b e C t r i a R g I n h i R O t m C s o H t d L a r , E s E r e “ t H ( i n n T F u O a H NORTH D R l i e N n M h E e A T ” X , O A f H n o o M C T r i m . I r P O N L S h E E n i Z P s o i “ b t E A N e a H l O SOUTHERN HEMISPHERE l l t M T e R . t T s Y N H n E ” o K E c ) W . S Capella e . T T h E U W T B T R h N W D e E T T W M H A The Evening Sky Map i PERSEUS JANUARY 2017 l E C k γ And O FREE* EACH MONTH FOR YOU TO EXPLORE, LEARN & ENJOY THE NIGHT SKY y S L K W AURIGA Y E a R y M . A r ( A h a S SKY MAP SHOWS HOW Get Sky Calendar on Twitter P t Algol a T s z C A y E e R l J b O Sky Calendar – January 2017 http://twitter.com/skymaps b B THE NIGHT SKY LOOKS a U a M38 i n O GEMINI N r d a L D M36 v o ANDROMEDA A NE I I n s T M37 Castor EARLY JAN PM T 10 u S m 1 Mars 0.02° South of Neptune (59° from Sun, evening sky) at 7h UT. S o E NW C a m L E p a E N ) f C LATE JAN 9 PM T Mags. 0.9 and 7.9. i e . M33 Pollux s E (Add 1 Hour For Daylight Saving) h N R t t O h ( Z a SKY MAP DRAWN FOR e J r I i U g 2 Moon near Venus (47° from Sun, evening sky) at 8h UT. Mag. –4.4. R M35 Pleiades S M a O A LATITUDE OF 35° T l s H a n A x i E SOUTH AND IS y M1 S a 3 Moon near Mars (58° from Sun) at 7h UT. Mag. 0.9. H t i Hamal Y T n n SUITABLE FOR O o S TAURUS w U CANCER c I M44 h LATITUDES UP , A 3 Quadrantid Meteor Shower peaks at 14h UT. Active E i e ARIES L c R l γ Aldebaran h C a E TO 15° NORTH Hyades R h o D between December 28 and January 12. Produces up to 120 I u W C OR SOUTH O r Cr 69 Cr I e MINOR R N 2264 S h E OF THIS CANIS meteors per hour. Radiant is in northern Boötes. u G T T n , U N s l O O Betelgeuse i u E e W t C E Procyon 4 Earth at Perihelion (closest to Sun) at 14h UT. The Sun- s L e 2244 ) . I H C P T MONOCEROS M67 D S ORION T PISCES n I O a Earth distance is 0.983309 a.u. or 147.1 million kilometers. D C o r i N k Regulus T t H A a s l E k ) l σ 2232 5 at 19:47 UT. i First Quarter Moon e H e C t T M42 s O s I M n a N o r P E Rigel Mira β M50 8 Moon near the Pleiades (evening sky) at 22h UT. e c A Z ( t S r e M48 S n D q i D a u A 9 Moon very near Aldebaran (evening sky) at 12h UT. Sirius f i I E CETUS M47 r R e e H E d h R Occultation visible from Asia. C M46 T E T t MAJOR V CANIS o I O O ERIDANUS LEPUS s M41 N γ Alphard e 10 Moon at perigee (closest to Earth) at 5:56 UT Y Circlet L e T T H i C t A (363,238 km; angular size 32.9'). E . T R I EAST A k D α P 12 Full Moon at 11:34 UT. P Y FORNAX Diphda E K HYDRA A S R Mars E 12 Venus at greatest elongation east (47.2° from S 2451 PUPPIS WEST H A T T L h Sun, evening sky) at 13h UT. Mag. –4.4. 2477 F O e Venus O N 253 . l S T G θ e o 3242 R g u T 13 Moon near Beehive cluster (morning sky) at 13h UT. i L A H t 2 Canopus R P h E e o E B r t H 15 Moon very near Regulus (morning sky) at 3h UT. n O r T T C AQUARIUS a S T r n 2547 I O o r Occultation visible from southern South America. s e M PHOENIX P s h A CRATER CARINA c O ( C IC 2391 A M F 19 Moon near Jupiter (morning sky) at 7h UT. Mag. –2.1. r u 2516 E T m H x 3132 H o ) SCULPTOR T E r f 19 (morning sky) at 10h UT. i LMC ζ F Moon near Spica s M y O A l Achernar a o 2070 P R w Fomalhaut w E 19 Mercury at greatest elongation west (24° from Sun, I 7293 s T S i t n i N E T R β s H t C morning sky) at 10h UT. Mag. –0.1. h 3114 2808 d E e 3293 n E i S s H A w T o SMC M u GRUS , . 19 Last Quarter Moon at 22:13 UT. t y S E h g E A - IC 2602 47 Tuc o e 3372 l M S 3532 o I a T 22 Moon at apogee (farthest from Earth) at 0h UT (distance s h T t t H e TUCANA y D E r PISCIS N n m 404,914 km; angular size 29.5'). D A s k I k 3918 MUSCA SCP e S R y AUSTRINUS e E E Alnair r T C b G A 24 Moon near Saturn (54° from Sun, morning sky) at 11h UT. Mag. 0.5. T u CRUX D I t n O i N N w Acrux r I Symbols i e A T ll Coalsack iv T 26 Moon near Mercury (23° from Sun, evening sky) at 0h UT. Mag. –0.2. H c r R A l E T i a C Galaxy m 4755 , Y b CENTAURUS s N O u 28 at 0:07 UT. Start of lunation 1164. U h SE n O New Moon i a S Double Star F g d R A h SW i A C e Er E E r P 31 Moon near Venus (45° from Sun, evening sky) at 17h UT. Mag. –4.6. in TRIANGULUM n P Variable Star B io A E co AUSTRALE PAVO t G m lla IT IN i ω e S Diffuse Nebula 31 Moon, Venus and Mars within a 5.5° circle (evening sky) at 22h UT. n Cen β Cen κ st A B g n Y m 5128 o N U o c ZO SI nt he I Planetary Nebula N hs α Cen T OR More sky events and links at http://Skymaps.com/skycalendar/ G . H TH 6752 O- Open Star Cluster E -T SK ON All times in Universal Time (UT). (Australian Eastern Summer Time = UT + 11 hours.) Y IZ MA 5822 OR Globular Star Cluster P T 6025 H O F OM FIN rom FR SAVE ON RECOMMENDED PRODUCTS • http://Skymaps.com/store D so ). KY A B uth SCP T S RIG ern le ( IGH Star Magnitudes HT latit SOUTH al Po E N -1 0 1 2 3 4 • Star Atlases & Planispheres • Star Charts & Astro Posters STA udes, elesti TIR R PA stars ap South C E EN TTER pear to rotate around the S TH Copyright © 2000–2016 Kym Thalassoudis. All Rights Reserved. • Books for Sky Watchers • Telescopes & Binoculars N IN T SHOW HE SKY. KY MAP Help support the production and free distribution of The Evening Sky Map INSTRUCTIONS: THE S * TERMS OF USE: FREE FOR NON-COMMERCIAL EDUCATIONAL USE. ASTRONOMY EDUCATION GROUPS MAY FREELY DISTRIBUTE PRINTED HANDOUTS. FULL DETAILS AT http://Skymaps.com/terms.html About the Celestial Objects Easily Seen with the Naked Eye Listed on this page are several of the brighter, more interesting celestial objects Capella Aur The 6th brightest star. Appears yellowish in color. Spectroscopic binary. Dist=42 ly. visible in the evening sky this month (refer to the monthly sky map). The objects are Sirius CMa The brightest star in the sky. Also known as the "Dog Star". Dist=8.6 ly. Procyon CMi Greek name meaning "before the dog" - rises before Sirius (northern latitudes).
Recommended publications
  • Arxiv:2012.09981V1 [Astro-Ph.SR] 17 Dec 2020 2 O
    Contrib. Astron. Obs. Skalnat´ePleso XX, 1 { 20, (2020) DOI: to be assigned later Flare stars in nearby Galactic open clusters based on TESS data Olga Maryeva1;2, Kamil Bicz3, Caiyun Xia4, Martina Baratella5, Patrik Cechvalaˇ 6 and Krisztian Vida7 1 Astronomical Institute of the Czech Academy of Sciences 251 65 Ondˇrejov,The Czech Republic(E-mail: [email protected]) 2 Lomonosov Moscow State University, Sternberg Astronomical Institute, Universitetsky pr. 13, 119234, Moscow, Russia 3 Astronomical Institute, University of Wroc law, Kopernika 11, 51-622 Wroc law, Poland 4 Department of Theoretical Physics and Astrophysics, Faculty of Science, Masaryk University, Kotl´aˇrsk´a2, 611 37 Brno, Czech Republic 5 Dipartimento di Fisica e Astronomia Galileo Galilei, Vicolo Osservatorio 3, 35122, Padova, Italy, (E-mail: [email protected]) 6 Department of Astronomy, Physics of the Earth and Meteorology, Faculty of Mathematics, Physics and Informatics, Comenius University in Bratislava, Mlynsk´adolina F-2, 842 48 Bratislava, Slovakia 7 Konkoly Observatory, Research Centre for Astronomy and Earth Sciences, H-1121 Budapest, Konkoly Thege Mikl´os´ut15-17, Hungary Received: September ??, 2020; Accepted: ????????? ??, 2020 Abstract. The study is devoted to search for flare stars among confirmed members of Galactic open clusters using high-cadence photometry from TESS mission. We analyzed 957 high-cadence light curves of members from 136 open clusters. As a result, 56 flare stars were found, among them 8 hot B-A type ob- jects. Of all flares, 63 % were detected in sample of cool stars (Teff < 5000 K), and 29 % { in stars of spectral type G, while 23 % in K-type stars and ap- proximately 34% of all detected flares are in M-type stars.
    [Show full text]
  • Messier Objects
    Messier Objects From the Stocker Astroscience Center at Florida International University Miami Florida The Messier Project Main contributors: • Daniel Puentes • Steven Revesz • Bobby Martinez Charles Messier • Gabriel Salazar • Riya Gandhi • Dr. James Webb – Director, Stocker Astroscience center • All images reduced and combined using MIRA image processing software. (Mirametrics) What are Messier Objects? • Messier objects are a list of astronomical sources compiled by Charles Messier, an 18th and early 19th century astronomer. He created a list of distracting objects to avoid while comet hunting. This list now contains over 110 objects, many of which are the most famous astronomical bodies known. The list contains planetary nebula, star clusters, and other galaxies. - Bobby Martinez The Telescope The telescope used to take these images is an Astronomical Consultants and Equipment (ACE) 24- inch (0.61-meter) Ritchey-Chretien reflecting telescope. It has a focal ratio of F6.2 and is supported on a structure independent of the building that houses it. It is equipped with a Finger Lakes 1kx1k CCD camera cooled to -30o C at the Cassegrain focus. It is equipped with dual filter wheels, the first containing UBVRI scientific filters and the second RGBL color filters. Messier 1 Found 6,500 light years away in the constellation of Taurus, the Crab Nebula (known as M1) is a supernova remnant. The original supernova that formed the crab nebula was observed by Chinese, Japanese and Arab astronomers in 1054 AD as an incredibly bright “Guest star” which was visible for over twenty-two months. The supernova that produced the Crab Nebula is thought to have been an evolved star roughly ten times more massive than the Sun.
    [Show full text]
  • April 2020 Page 1 of 11
    Pretoria Centre ASSA April 2020 Page 1 of 11 NEWSLETTER APRIL 2020 Dear member In the light of the current situation and based upon advice from a virologist at one of the leading pathology laboratories, we regret to have to cancel the March and April viewing evenings and meetings of the Pretoria Centre of ASSA. The situation will be reviewed in time for the May activities and members will be informed of any changes. This decision was not taken lightly, but we believe the health of our members is important and we would not like to be the reason one of our members should fall victim to the virus. We apologize for the inconvenience and trust the skies will be clear wherever you wish to spend time under the stars. Bosman Olivier Chairman TABLE OF CONTENTS Astronomy-related articles on the Internet 2 Astronomy basics: Galaxies 3 Feature of the month: Biggest explosion seen since the Big Bang 3 Astronomy-related images and video clips on the Internet 3 Astronomy basics: Galaxies 3 Observing: A different star cluster - by Magda Streicher 4 NOTICE BOARD 5 Pretoria Centre committee 5 Open Star Clusters with Superimposed Planetary Nebulae: 6 M46/NGC 2438 and NGC 2818/2818A Pretoria Centre ASSA April 2020 Page 2 of 11 Astronomy-related articles on the Internet Is bright Comet ATLAS disintegrating? https://earthsky.org/space/how-to-see-bright- comet-c-2019-y4-atlas?utm_source=EarthSky+News&utm_campaign=11f7198ca6- EMAIL_CAMPAIGN_2018_02_02_COPY_01&utm_medium=email&utm_term=0_c64394 5d79-11f7198ca6-394671529 Meet the giant exoplanet where it rains iron. The temperatures on the day side of giant exoplanet WASP-76b are scorching, high enough for metals to be vapourized.
    [Show full text]
  • Li Abundances in F Stars: Planets, Rotation, and Galactic Evolution,
    A&A 576, A69 (2015) Astronomy DOI: 10.1051/0004-6361/201425433 & c ESO 2015 Astrophysics Li abundances in F stars: planets, rotation, and Galactic evolution, E. Delgado Mena1,2, S. Bertrán de Lis3,4, V. Zh. Adibekyan1,2,S.G.Sousa1,2,P.Figueira1,2, A. Mortier6, J. I. González Hernández3,4,M.Tsantaki1,2,3, G. Israelian3,4, and N. C. Santos1,2,5 1 Centro de Astrofisica, Universidade do Porto, Rua das Estrelas, 4150-762 Porto, Portugal e-mail: [email protected] 2 Instituto de Astrofísica e Ciências do Espaço, Universidade do Porto, CAUP, Rua das Estrelas, 4150-762 Porto, Portugal 3 Instituto de Astrofísica de Canarias, C/via Lactea, s/n, 38200 La Laguna, Tenerife, Spain 4 Departamento de Astrofísica, Universidad de La Laguna, 38205 La Laguna, Tenerife, Spain 5 Departamento de Física e Astronomía, Faculdade de Ciências, Universidade do Porto, Portugal 6 SUPA, School of Physics and Astronomy, University of St. Andrews, St. Andrews KY16 9SS, UK Received 28 November 2014 / Accepted 14 December 2014 ABSTRACT Aims. We aim, on the one hand, to study the possible differences of Li abundances between planet hosts and stars without detected planets at effective temperatures hotter than the Sun, and on the other hand, to explore the Li dip and the evolution of Li at high metallicities. Methods. We present lithium abundances for 353 main sequence stars with and without planets in the Teff range 5900–7200 K. We observed 265 stars of our sample with HARPS spectrograph during different planets search programs. We observed the remaining targets with a variety of high-resolution spectrographs.
    [Show full text]
  • Planetary Nebulae
    Planetary Nebulae A planetary nebula is a kind of emission nebula consisting of an expanding, glowing shell of ionized gas ejected from old red giant stars late in their lives. The term "planetary nebula" is a misnomer that originated in the 1780s with astronomer William Herschel because when viewed through his telescope, these objects appeared to him to resemble the rounded shapes of planets. Herschel's name for these objects was popularly adopted and has not been changed. They are a relatively short-lived phenomenon, lasting a few tens of thousands of years, compared to a typical stellar lifetime of several billion years. The mechanism for formation of most planetary nebulae is thought to be the following: at the end of the star's life, during the red giant phase, the outer layers of the star are expelled by strong stellar winds. Eventually, after most of the red giant's atmosphere is dissipated, the exposed hot, luminous core emits ultraviolet radiation to ionize the ejected outer layers of the star. Absorbed ultraviolet light energizes the shell of nebulous gas around the central star, appearing as a bright colored planetary nebula at several discrete visible wavelengths. Planetary nebulae may play a crucial role in the chemical evolution of the Milky Way, returning material to the interstellar medium from stars where elements, the products of nucleosynthesis (such as carbon, nitrogen, oxygen and neon), have been created. Planetary nebulae are also observed in more distant galaxies, yielding useful information about their chemical abundances. In recent years, Hubble Space Telescope images have revealed many planetary nebulae to have extremely complex and varied morphologies.
    [Show full text]
  • Southern Sky.Pdf
    R E A I N S D N I O C I A T T C E E D R I A D L O S S N A G P T M H O E C . H N O O R Z m a r w I i e t h h t I t Z s h t e c i R O g p o e l d O N d t e a n H h C t f l e E I n e o R c i H e t C T a l f L l r o e E D t m s N ( n G NORTH F o A r c O e e M t R H k n T O i E m I a f X N C y A t a . E h Z M s o S i l P E o s P L g e H i SOUTHERN HEMISPHERE E y r A T . A “ N M N E O Capella E Y R W T K T H E S ” B . ) . D O W T E r U i T The Evening Sky Map o W R A n N C DECEMBER 2002 , W . O T T e L l h FREE* EACH MONTH FOR YOU TO EXPLORE, LEARN & ENJOY THE NIGHT SKY H a e E γ E M31 h R H w S AURIGA Algol A u K r n Y S o t T SKY MAP SHOWS HOW r e M C e r E t A , s J P i n s B o A O Sky Calendar – December 2002 t THE NIGHT SKY LOOKS M38 h R m L e O PERSEUS a A U b I e r N s T NE ANDROMEDA i S l EARLY DEC PM D g 10 M37 E a h M36 L c 1 Moon near Venus and Mars at 11h UT (morning sky).
    [Show full text]
  • A Basic Requirement for Studying the Heavens Is Determining Where In
    Abasic requirement for studying the heavens is determining where in the sky things are. To specify sky positions, astronomers have developed several coordinate systems. Each uses a coordinate grid projected on to the celestial sphere, in analogy to the geographic coordinate system used on the surface of the Earth. The coordinate systems differ only in their choice of the fundamental plane, which divides the sky into two equal hemispheres along a great circle (the fundamental plane of the geographic system is the Earth's equator) . Each coordinate system is named for its choice of fundamental plane. The equatorial coordinate system is probably the most widely used celestial coordinate system. It is also the one most closely related to the geographic coordinate system, because they use the same fun­ damental plane and the same poles. The projection of the Earth's equator onto the celestial sphere is called the celestial equator. Similarly, projecting the geographic poles on to the celest ial sphere defines the north and south celestial poles. However, there is an important difference between the equatorial and geographic coordinate systems: the geographic system is fixed to the Earth; it rotates as the Earth does . The equatorial system is fixed to the stars, so it appears to rotate across the sky with the stars, but of course it's really the Earth rotating under the fixed sky. The latitudinal (latitude-like) angle of the equatorial system is called declination (Dec for short) . It measures the angle of an object above or below the celestial equator. The longitud inal angle is called the right ascension (RA for short).
    [Show full text]
  • List of Easy Double Stars for Winter and Spring  = Easy  = Not Too Difficult  = Difficult but Possible
    List of Easy Double Stars for Winter and Spring = easy = not too difficult = difficult but possible 1. Sigma Cassiopeiae (STF 3049). 23 hr 59.0 min +55 deg 45 min This system is tight but very beautiful. Use a high magnification (150x or more). Primary: 5.2, yellow or white Seconary: 7.2 (3.0″), blue 2. Eta Cassiopeiae (Achird, STF 60). 00 hr 49.1 min +57 deg 49 min This is a multiple system with many stars, but I will restrict myself to the brightest one here. Primary: 3.5, yellow. Secondary: 7.4 (13.2″), purple or brown 3. 65 Piscium (STF 61). 00 hr 49.9 min +27 deg 43 min Primary: 6.3, yellow Secondary: 6.3 (4.1″), yellow 4. Psi-1 Piscium (STF 88). 01 hr 05.7 min +21 deg 28 min This double forms a T-shaped asterism with Psi-2, Psi-3 and Chi Piscium. Psi-1 is the uppermost of the four. Primary: 5.3, yellow or white Secondary: 5.5 (29.7), yellow or white 5. Zeta Piscium (STF 100). 01 hr 13.7 min +07 deg 35 min Primary: 5.2, white or yellow Secondary: 6.3, white or lilac (or blue) 6. Gamma Arietis (Mesarthim, STF 180). 01 hr 53.5 min +19 deg 18 min “The Ram’s Eyes” Primary: 4.5, white Secondary: 4.6 (7.5″), white 7. Lambda Arietis (H 5 12). 01 hr 57.9 min +23 deg 36 min Primary: 4.8, white or yellow Secondary: 6.7 (37.1″), silver-white or blue 8.
    [Show full text]
  • Catalogue of Excitation Classes P for 750 Galactic Planetary Nebulae
    Catalogue of Excitation Classes p for 750 Galactic Planetary Nebulae Name p Name p Name p Name p NeC 40 1 Nee 6072 9 NeC 6881 10 IC 4663 11 NeC 246 12+ Nee 6153 3 NeC 6884 7 IC 4673 10 NeC 650-1 10 Nee 6210 4 NeC 6886 9 IC 4699 9 NeC 1360 12 Nee 6302 10 Nee 6891 4 IC 4732 5 NeC 1501 10 Nee 6309 10 NeC 6894 10 IC 4776 2 NeC 1514 8 NeC 6326 9 Nee 6905 11 IC 4846 3 NeC 1535 8 Nee 6337 11 Nee 7008 11 IC 4997 8 NeC 2022 12 Nee 6369 4 NeC 7009 7 IC 5117 6 NeC 2242 12+ NeC 6439 8 NeC 7026 9 IC 5148-50 6 NeC 2346 9 NeC 6445 10 Nee 7027 11 IC 5217 6 NeC 2371-2 12 Nee 6537 11 Nee 7048 11 Al 1 NeC 2392 10 NeC 6543 5 Nee 7094 12 A2 10 NeC 2438 10 NeC 6563 8 NeC 7139 9 A4 10 NeC 2440 10 NeC 6565 7 NeC 7293 7 A 12 4 NeC 2452 10 NeC 6567 4 Nee 7354 10 A 15 12+ NeC 2610 12 NeC 6572 7 NeC 7662 10 A 20 12+ NeC 2792 11 NeC 6578 2 Ie 289 12 A 21 1 NeC 2818 11 NeC 6620 8 IC 351 10 A 23 4 NeC 2867 9 NeC 6629 5 Ie 418 1 A 24 1 NeC 2899 10 Nee 6644 7 IC 972 10 A 30 12+ NeC 3132 9 NeC 6720 10 IC 1295 10 A 33 11 NeC 3195 9 NeC 6741 9 IC 1297 9 A 35 1 NeC 3211 10 NeC 6751 9 Ie 1454 10 A 36 12+ NeC 3242 9 Nee 6765 10 IC1747 9 A 40 2 NeC 3587 8 NeC 6772 9 IC 2003 10 A 41 1 NeC 3699 9 NeC 6778 9 IC 2149 2 A 43 2 NeC 3918 9 NeC 6781 8 IC 2165 10 A 46 2 NeC 4071 11 NeC 6790 4 IC 2448 9 A 49 4 NeC 4361 12+ NeC 6803 5 IC 2501 3 A 50 10 NeC 5189 10 NeC 6804 12 IC 2553 8 A 51 12 NeC 5307 9 NeC 6807 4 IC 2621 9 A 54 12 NeC 5315 2 NeC 6818 10 Ie 3568 3 A 55 4 NeC 5873 10 NeC 6826 11 Ie 4191 6 A 57 3 NeC 5882 6 NeC 6833 2 Ie 4406 4 A 60 2 NeC 5879 12 NeC 6842 2 IC 4593 6 A
    [Show full text]
  • The Evening Sky
    I N E D R I A C A S T N E O D I T A C L E O R N I G D S T S H A E P H M O O R C I . Z N O o l P l u & x r , o w t O N s e a r e C Z , c y o I C g n o s l R I i o d R e h O t r C e y H d m L p E k E a e t e H ( r r o T F G n O f s D o R NORTH a N i s M n E n A t i X O s w A H t o C M T f e . I s h P e t N L S a E , E f s Z P a e r “ e E SOUTHERN HEMISPHERE m A N r i H s O t . M T R t n T Y N e H E i c ” K E ) n W S . a . T Capella T n E U I W B R N The Evening Sky Map W D LYNX E T T FEBRUARY 2011 WH T A h E C FREE* EACH MONTH FOR YOU TO EXPLORE, LEARN & ENJOY THE NIGHT SKY e O S L n K a Y E m R M e A A AURIGA SKY MAP SHOWS HOW A Get Sky Calendar on Twitter S P T l p .
    [Show full text]
  • The Evening Sky
    I N E D R I A C A S T N E O D I T A C L E O R N I G D S T S H A E P H M O O R C I . Z N O e d b l A a r , a l n e O , g N i C R a , Z p s e u I l i C l r a i , R I S C f R a O o s C t p H o L u r E e E & d H P a ( o T F m l O l s u i D R NORTH x ” , N M n E a A o n O X g d A H a x C P M T e r . I o P Polaris H N c S L r y E E e o P Z t n “ n E . EQUATORIAL EDITION i A N H O W T M “ R e T Y N H h E T ” K E ) W S . T T E U W B R N The Evening Sky Map W D E T T . FEBRUARY 2011 WH r A e E C t M82 FREE* EACH MONTH FOR YOU TO EXPLORE, LEARN & ENJOY THE NIGHT SKY O s S L u K l T Y c E CASSIOPEIA h R e r M a A S t A SKY MAP SHOWS HOW i s η M81 Get Sky Calendar on Twitter S P c T s k C A l e e E CAMELOPARDALIS R d J Sky Calendar – February 2011 a O http://twitter.com/skymaps i THE NIGHT SKY LOOKS s B y U O a H N L s D e t A h NE a I t I EARLY FEB 9 PM r T T f S p 1 Moon near Mercury (16° from Sun, morning sky) at 17h UT.
    [Show full text]
  • SAA 100 Club
    S.A.A. 100 Observing Club Raleigh Astronomy Club Version 1.2 07-AUG-2005 Introduction Welcome to the S.A.A. 100 Observing Club! This list started on the USENET newsgroup sci.astro.amateur when someone asked about everyone’s favorite, non-Messier objects for medium sized telescopes (8-12”). The members of the group nominated objects and voted for their favorites. The top 100 objects, by number of votes, were collected and ranked into a list that was published. This list is a good next step for someone who has observed all the objects on the Messier list. Since it includes objects in both the Northern and Southern Hemispheres (DEC +72 to -72), the award has two different levels to accommodate those observers who aren't able to travel. The first level, the Silver SAA 100 award requires 88 objects (all visible from North Carolina). The Gold SAA 100 Award requires all 100 objects to be observed. One further note, many of these objects are on other observing lists, especially Patrick Moore's Caldwell list. For convenience, there is a table mapping various SAA100 objects with their Caldwell counterparts. This will facilitate observers who are working or have worked on these lists of objects. We hope you enjoy looking at all the great objects recommended by other avid astronomers! Rules In order to earn the Silver certificate for the program, the applicant must meet the following qualifications: 1. Be a member in good standing of the Raleigh Astronomy Club. 2. Observe 80 Silver observations. 3. Record the time and date of each observation.
    [Show full text]