Genetic Characterization of Freshwater Fishes in Bangladesh Using DNA Barcodes

Total Page:16

File Type:pdf, Size:1020Kb

Genetic Characterization of Freshwater Fishes in Bangladesh Using DNA Barcodes Genetic characterization of freshwater fishes in Bangladesh using DNA barcodes 1 2 2 1 Md. Mizanur Rahman ,Sven O. Kullander , Michael Norén and Abdur Rob Mollah ID 718 1Department of Zoology, University of Dhaka, Bangladesh. 2Department of Zoology, Swedish Museum of Natural History Stockholm, Sweden. IBOL 2017 Abstract The project focuses on genetic characterization of Bangladesh’s freshwater fish fauna in the form of a DNA barcode library composed of standardized well identified mitochondrial cytochrome c oxidase subunit I (COI) sequences and taxonomic revision. Development of a DNA based reference database is in progress. To date, >175 species of freshwater fishes was identified through obtained barcode sequences (COI) sequences in combination with classical taxonomic validation. Two new species, namely Danio annulosus (3.4% p- distance from the most similar species) and Garra mini (12 % p-distance from closely related taxa) were described and a good number of species are yet to be described as new species. A rapid expansion of several alien species (e.g. Trichopsis vittata, Pterygoplichthys disjunctivus) was also been detected. The barcode sequences from the present study along with traditional taxonomy have also confirmed the existence of many misidentifications in current literature. Background Study area: Covered different regions across country considering Bangladesh is a biogeographically important area in the heart of the diverse habitat including lowland and upland freshwater water hyper-diverse Indo-Burman region of South Asia but has one of the ecosystems of Bangladesh (shown on map). most taxonomically unresolved freshwater fish fauna in the world. Specimens collected water bodies: Rivers, streams, creeks, Although substantial progress has been made in documenting fish canals, pond and ditches species diversity Bangladesh based on morphological studies, the Collecting methods: Beach seine nets and local fishing gear and diversity of fish species has not been fully explored especially in the crafts, Fishermen catch and Fish market upland streams and creeks. This project aims for genetic characterization of Bangladesh’s freshwater through DNA barcodes composed of standardized well identified mitochondrial COI sequences and for taxonomic revision combining morphological and molecular data. We also aim to establish a stable nomenclature with Bangladeshi barcode voucher specimens through taxonomic revision. Morphological Identification Fish Specimens Storage: NRM, Swedish Museum of Natural History, Stockholm; DU, Zoology Department, University of Dhaka, Dhaka. Molecular Identification Measurements : Taken with digital callipers to a precision of 0.1 mm DNA Extraction: Thermo Scientific™ KingFisher™ fully automated following Fang (1997) and Kullander (2015). liquid-handling instrument, Counts: Fin-ray and vertebral counts were taken from X-radiographs Primer: The COI fragment was amplified using the fish barcoding made with a Philips MG-105 low voltage X-ray unit and Kodak EDR2 primers Fish-F1 and Fish-R1 (Ward et al. 2005). plates. Amplification: Performed with the puReTaq Ready-To-Go PCR kit Identification : Confirmed by existing taxonomic keys and relevant PCR cycling: 94°C 4min; 35 * (94°C 30s; 52°C 30s; 72°C 30s); Statistics were calculated using SYSTAT v. 13 (Systat Software, 2009) 72°C 8min). Sanger Sequencing: Sequencing of both strands of all fragments was Results carried out by Macrogen Europe (Holland). Currently, we have 504 completed Sequence Analysis: Proofread and assembly done using the software COI barcodes of Bangladeshi Geneious R8 (Kearse et al., 2012) and BLASTed against GenBank freshwater fishes, representing and BOLD nucleotide database. Sequences were aligned with 175 named species belong to 47 the MUSCLE (Edgar, 2004) and edges were manually trimmed families (Table 1) plus a minimum to around 650 basepairs. Phylogenetic analysis was performed of 5 currently undescribed using the software MrBayes v3.3 (Huelsenbeck & Ronquist, species. 2001; Ronquist et al., 2014). New Species Described: Danio annulosus: Diagnosed by Table: Barcoded freshwater fishes of Bangladesh much shorter pectoral and pelvic fins, and a humeral spot that is Family Name No. of No. of Family Name No. of No. of Species Barcodes Species Barcodes slightly wider than deep instead Adrianichthyidae 02 06 Latidae 01 04 of round or deeper than wide. Ambassidae 02 08 Loricariidae 01 05 The mitochondria (COI) sequence Amblycipitidae 01 06 Mastacembelidae 03 20 separates it from the most similar Anabantidae 02 06 Megalopidae 01 05 species, D. catenatus by a p- Anguillidae 01 04 Mugilidae 02 08 Aplocheilidae 01 06 Nandidae 01 04 distance of 3.4%. and Badidae 02 10 Nemacheilidae 03 06 phylogenetic tree (Photo B). Bagridae 08 20 Notopteridae 02 09 (Kullander et al., 2015) Balitoridae 05 16 Olyridae 02 07 Garra mini Diagnosed by the Belonidae 01 04 Ophichthidae 01 03 Chacidae 01 03 Osphronemidae 04 07 numerous small predorsal scales Channidae 04 15 Pangasiidae 02 07 and the presence of a Cichlidae 01 03 Poeciliidae 01 04 contrasted dark stripe Clariidae 02 05 Polynemidae 01 07 along the middle Clupeidae 05 16 Psilorhynchidae 04 21 of the side, and also by Cobitidae 09 30 Schilbeidae 04 15 Cynoglossidae 01 03 Siluridae 02 08 the DNA barcode sequence ((12 % Cyprinidae 65 180 Sisoridae 05 20 p-distance from closely related Eleotrididae 02 06 Soleidae 01 03 taxa) (Photo A) Engraulididae 01 04 Syngnathidae 01 04 (Rahman et al., 2016) F ig. Bayesian majority-rule tree from analysis of Erethistidae 02 07 Teraponidae 01 03 mitochondrial COI DNA data Gobiidae 10 30 Tetraodontidae 01 03 Hemiramphidae 01 07 Zenarchopteridae 01 05 Distribution of Trichopsis vittata and Pseudosphromenus cupanus Horabagridae 01 07 Trichopsis vittata: Spread of this Croaking Gourami has been confirmed in Myanmar and Bangladesh. (Noren et al., 2017) Significance Pseudosphromenus cupanus: This fish has also been clarified that This is the first comprehensive attempt to develop a DNA based this species never existed in Bangladesh. (Kullander et al., 2015) reference library for freshwater fishes of Bangladesh that provides a several new species, new records, and high taxonomic resolution of References existing taxa improving on previous taxonomic identifications. This Rahman, M.M., Mollah, A. R., Norén, M.and Kullander, S. O. 2016. Garra mini, a new small species of study also underscores the scope of further investigation into rheophilic cyprinid fish(Teleostei: Cyprinidae) from southeastern hilly areas of Bangladesh. Ichthyol. Explor. Freshwaters, Vol. 27, No. 2, pp. 173-181. surveillance of fish species composition and invasive alien species Kullander S. O., Rahman M. M., Norén M. & Mollah, A R. 2015. Why is Pseudosphromenus cupanus using environmental DNA. (Teleostei: Osphronemidae) reported from Bangladesh, Indonesia, Malaysia, Myanmar, and Pakistan?Zootaxa 3990 (4): 575–583. Kullander S. O., Rahman M. M., Norén M. & Mollah, A R. 2015. Danio annulosus, a new species of chain Danio from the Shuvolong Falls in Bangladesh (Teleostei: Cyprinidae: Danioninae).Zootaxa. Acknowledgements 3994 (1): 053–068. Norén M, Kullander S.O, Rahman M.M, Mollah, A.R 2017).First records of Croaking Gourami, Swedish Research Council (Vetenskapsrådet) Trichopsis vittata (Cuvier, 1831) (Teleostei: Osphronemidae), from Myanmar and Bangladesh. Check List 13 (4): 81–85..
Recommended publications
  • Badis Britzi, a New Percomorph Fish (Teleostei: Badidae) from the Western Ghats of India
    Zootaxa 3941 (3): 429–436 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2015 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.3941.3.9 http://zoobank.org/urn:lsid:zoobank.org:pub:A4916102-7DF3-46D8-98FF-4C83942C63C9 Badis britzi, a new percomorph fish (Teleostei: Badidae) from the Western Ghats of India NEELESH DAHANUKAR1,2, PRADEEP KUMKAR3, UNMESH KATWATE4 & RAJEEV RAGHAVAN2,5, 6 1Indian Institute of Science Education and Research, G1 Block, Dr. Homi Bhabha Road, Pashan, Pune 411 008, India 2Systematics, Ecology and Conservation Laboratory, Zoo Outreach Organization, 96 Kumudham Nagar, Vilankurichi Road, Coim- batore, Tamil Nadu 641 035, India 3Department of Zoology, Modern College of Arts, Science and Commerce, Ganeshkhind, Pune 411 016, India 4Bombay Natural History Society (BNHS), Hornbill House, Opp. Lion Gate, Shaheed Bhagat Singh Road, Mumbai, Maharashtra 400 001, India 5Conservation Research Group (CRG), Department of Fisheries, St. Albert’s College, Kochi, Kerala 682 018, India 6Corresponding author. E-mail: [email protected] Abstract Badis britzi, the first species of the genus endemic to southern India, is described from the Nagodi tributary of the west- flowing Sharavati River in Karnataka. It is distinguished from congeners by a combination of characters including a slen- der body, 21–24 pored lateral-line scales and a striking colour pattern consisting of 11 bars and a mosaic of black and red pigmentation on the side of the body including the end of caudal peduncle, and the absence of cleithral, opercular, or cau- dal-peduncle blotches, or an ocellus on the caudal-fin base.
    [Show full text]
  • Housing, Husbandry and Welfare of a “Classic” Fish Model, the Paradise Fish (Macropodus Opercularis)
    animals Article Housing, Husbandry and Welfare of a “Classic” Fish Model, the Paradise Fish (Macropodus opercularis) Anita Rácz 1,* ,Gábor Adorján 2, Erika Fodor 1, Boglárka Sellyei 3, Mohammed Tolba 4, Ádám Miklósi 5 and Máté Varga 1,* 1 Department of Genetics, ELTE Eötvös Loránd University, Pázmány Péter stny. 1C, 1117 Budapest, Hungary; [email protected] 2 Budapest Zoo, Állatkerti krt. 6-12, H-1146 Budapest, Hungary; [email protected] 3 Fish Pathology and Parasitology Team, Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungária krt. 21, 1143 Budapest, Hungary; [email protected] 4 Department of Zoology, Faculty of Science, Helwan University, Helwan 11795, Egypt; [email protected] 5 Department of Ethology, ELTE Eötvös Loránd University, Pázmány Péter stny. 1C, 1117 Budapest, Hungary; [email protected] * Correspondence: [email protected] (A.R.); [email protected] (M.V.) Simple Summary: Paradise fish (Macropodus opercularis) has been a favored subject of behavioral research during the last decades of the 20th century. Lately, however, with a massively expanding genetic toolkit and a well annotated, fully sequenced genome, zebrafish (Danio rerio) became a central model of recent behavioral research. But, as the zebrafish behavioral repertoire is less complex than that of the paradise fish, the focus on zebrafish is a compromise. With the advent of novel methodologies, we think it is time to bring back paradise fish and develop it into a modern model of Citation: Rácz, A.; Adorján, G.; behavioral and evolutionary developmental biology (evo-devo) studies. The first step is to define the Fodor, E.; Sellyei, B.; Tolba, M.; housing and husbandry conditions that can make a paradise fish a relevant and trustworthy model.
    [Show full text]
  • Training Manual Series No.15/2018
    DBTR-H D Indian Council of Agricultural Research Ministry of Science and Technology Central Marine Fisheries Research Institute Department of Biotechnology CMFRI Training Manual Series No.15/2018 Training Manual In the frame work of the project: DBT sponsored Three Months National Training in Molecular Biology and Biotechnology for Fisheries Professionals 2015-18 Training Manual In the frame work of the project: DBT sponsored Three Months National Training in Molecular Biology and Biotechnology for Fisheries Professionals 2015-18 Training Manual This is a limited edition of the CMFRI Training Manual provided to participants of the “DBT sponsored Three Months National Training in Molecular Biology and Biotechnology for Fisheries Professionals” organized by the Marine Biotechnology Division of Central Marine Fisheries Research Institute (CMFRI), from 2nd February 2015 - 31st March 2018. Principal Investigator Dr. P. Vijayagopal Compiled & Edited by Dr. P. Vijayagopal Dr. Reynold Peter Assisted by Aditya Prabhakar Swetha Dhamodharan P V ISBN 978-93-82263-24-1 CMFRI Training Manual Series No.15/2018 Published by Dr A Gopalakrishnan Director, Central Marine Fisheries Research Institute (ICAR-CMFRI) Central Marine Fisheries Research Institute PB.No:1603, Ernakulam North P.O, Kochi-682018, India. 2 Foreword Central Marine Fisheries Research Institute (CMFRI), Kochi along with CIFE, Mumbai and CIFA, Bhubaneswar within the Indian Council of Agricultural Research (ICAR) and Department of Biotechnology of Government of India organized a series of training programs entitled “DBT sponsored Three Months National Training in Molecular Biology and Biotechnology for Fisheries Professionals”. The scope of this training is to promote development of trained human resource for application of molecular tools to research problems in fisheries and aquaculture, to help them adapt to such facilities and work programs and to include analyses that comply with worldwide regulatory acts in the field of biotechnology.
    [Show full text]
  • Fisheries and Aquaculture
    Ministry of Agriculture, Livestock and Irrigation 7. GOVERNMENT OF THE REPUBLIC OF THE UNION OF MYANMAR Formulation and Operationalization of National Action Plan for Poverty Alleviation and Rural Development through Agriculture (NAPA) Working Paper - 4 FISHERIES AND AQUACULTURE Yangon, June 2016 5. MYANMAR: National Action Plan for Agriculture (NAPA) Working Paper 4: Fisheries and Aquaculture TABLE OF CONTENTS ACRONYMS 3 1. INTRODUCTION 4 2. BACKGROUND 5 2.1. Strategic value of the Myanmar fisheries industry 5 3. SPECIFIC AREAS/ASPECTS OF THEMATIC AREA UNDER REVIEW 7 3.1. Marine capture fisheries 7 3.2. Inland capture fisheries 17 3.3. Leasable fisheries 22 3.4 Aquaculture 30 4. DETAILED DISCUSSIONS ON EACH CULTURE SYSTEM 30 4.1. Freshwater aquaculture 30 4.2. Brackishwater aquaculture 36 4.3. Postharvest processing 38 5. INSTITUTIONAL ENVIRONMENT 42 5.1. Management institutions 42 5.2. Human resource development 42 5.3. Policy 42 6. KEY OPPORTUNITIES AND CONSTRAINTS TO SECTOR DEVELOPMENT 44 6.1. Marine fisheries 44 6.2. Inland fisheries 44 6.3. Leasable fisheries 45 6.4. Aquaculture 45 6.5. Departmental emphasis on management 47 6.6. Institutional fragmentation 48 6.7. Human resource development infrastructure is poor 49 6.8. Extension training 50 6.9. Fisheries academies 50 6.10. Academia 50 7. KEY OPPORTUNITIES FOR SECTOR DEVELOPMENT 52 i MYANMAR: National Action Plan for Agriculture (NAPA) Working Paper 4: Fisheries and Aquaculture 7.1. Empowerment of fishing communities in marine protected areas (mpas) 52 7.2. Reduction of postharvest spoilage 52 7.3. Expansion of pond culture 52 7.4.
    [Show full text]
  • Wainwright-Et-Al.-2012.Pdf
    Copyedited by: ES MANUSCRIPT CATEGORY: Article Syst. Biol. 61(6):1001–1027, 2012 © The Author(s) 2012. Published by Oxford University Press, on behalf of the Society of Systematic Biologists. All rights reserved. For Permissions, please email: [email protected] DOI:10.1093/sysbio/sys060 Advance Access publication on June 27, 2012 The Evolution of Pharyngognathy: A Phylogenetic and Functional Appraisal of the Pharyngeal Jaw Key Innovation in Labroid Fishes and Beyond ,∗ PETER C. WAINWRIGHT1 ,W.LEO SMITH2,SAMANTHA A. PRICE1,KEVIN L. TANG3,JOHN S. SPARKS4,LARA A. FERRY5, , KRISTEN L. KUHN6 7,RON I. EYTAN6, AND THOMAS J. NEAR6 1Department of Evolution and Ecology, University of California, One Shields Avenue, Davis, CA 95616; 2Department of Zoology, Field Museum of Natural History, 1400 South Lake Shore Drive, Chicago, IL 60605; 3Department of Biology, University of Michigan-Flint, Flint, MI 48502; 4Department of Ichthyology, American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024; 5Division of Mathematical and Natural Sciences, Arizona State University, Phoenix, AZ 85069; 6Department of Ecology and Evolution, Peabody Museum of Natural History, Yale University, New Haven, CT 06520; and 7USDA-ARS, Beneficial Insects Introduction Research Unit, 501 South Chapel Street, Newark, DE 19713, USA; ∗ Correspondence to be sent to: Department of Evolution & Ecology, University of California, One Shields Avenue, Davis, CA 95616, USA; E-mail: [email protected]. Received 22 September 2011; reviews returned 30 November 2011; accepted 22 June 2012 Associate Editor: Luke Harmon Abstract.—The perciform group Labroidei includes approximately 2600 species and comprises some of the most diverse and successful lineages of teleost fishes.
    [Show full text]
  • A Fossil Climbing Perch from the Oligocene of Tibet Helps Solve The
    Science Bulletin 64 (2019) 455–463 Contents lists available at ScienceDirect Science Bulletin journal homepage: www.elsevier.com/locate/scib Article Into Africa via docked India: a fossil climbing perch from the Oligocene of Tibet helps solve the anabantid biogeographical puzzle ⇑ ⇑ Feixiang Wu a,b, , Dekui He c, , Gengyu Fang d, Tao Deng a,b,d a Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China b Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing 100101, China c Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China d College of Earth Sciences, University of Chinese Academy of Sciences, Beijing 100049, China article info abstract Article history: The northward drift of the Indian Plate and its collision with Eurasia have profoundly impacted the evo- Received 7 March 2019 lutionary history of the terrestrial organisms, especially the ones along the Indian Ocean rim. Climbing Received in revised form 22 March 2019 perches (Anabantidae) are primary freshwater fishes showing a disjunct south Asian-African distribution, Accepted 22 March 2019 but with an elusive paleobiogeographic history due to the lack of fossil evidence. Here, based on an Available online 28 March 2019 updated time-calibrated anabantiform phylogeny integrating a number of relevant fossils, the divergence between Asian and African climbing perches is estimated to have occurred in the middle Eocene (ca. Keywords: 40 Ma, Ma: million years ago), a time when India had already joined with Eurasia. The key fossil lineage Climbing perches is yEoanabas, the oldest anabantid known so far, from the upper Oligocene of the Tibetan Plateau.
    [Show full text]
  • Badis Britzi, a New Percomorph Fish (Teleostei: Badidae) from the Western Ghats of India
    Zootaxa 3941 (3): 429–436 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2015 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.3941.3.9 http://zoobank.org/urn:lsid:zoobank.org:pub:A4916102-7DF3-46D8-98FF-4C83942C63C9 Badis britzi, a new percomorph fish (Teleostei: Badidae) from the Western Ghats of India NEELESH DAHANUKAR1,2, PRADEEP KUMKAR3, UNMESH KATWATE4 & RAJEEV RAGHAVAN2,5, 6 1Indian Institute of Science Education and Research, G1 Block, Dr. Homi Bhabha Road, Pashan, Pune 411 008, India 2Systematics, Ecology and Conservation Laboratory, Zoo Outreach Organization, 96 Kumudham Nagar, Vilankurichi Road, Coim- batore, Tamil Nadu 641 035, India 3Department of Zoology, Modern College of Arts, Science and Commerce, Ganeshkhind, Pune 411 016, India 4Bombay Natural History Society (BNHS), Hornbill House, Opp. Lion Gate, Shaheed Bhagat Singh Road, Mumbai, Maharashtra 400 001, India 5Conservation Research Group (CRG), Department of Fisheries, St. Albert’s College, Kochi, Kerala 682 018, India 6Corresponding author. E-mail: [email protected] Abstract Badis britzi, the first species of the genus endemic to southern India, is described from the Nagodi tributary of the west- flowing Sharavati River in Karnataka. It is distinguished from congeners by a combination of characters including a slen- der body, 21–24 pored lateral-line scales and a striking colour pattern consisting of 11 bars and a mosaic of black and red pigmentation on the side of the body including the end of caudal peduncle, and the absence of cleithral, opercular, or cau- dal-peduncle blotches, or an ocellus on the caudal-fin base.
    [Show full text]
  • Journal of Threatened Taxa
    PLATINUM The Journal of Threatened Taxa (JoTT) is dedicated to building evidence for conservaton globally by publishing peer-reviewed artcles online OPEN ACCESS every month at a reasonably rapid rate at www.threatenedtaxa.org. All artcles published in JoTT are registered under Creatve Commons Atributon 4.0 Internatonal License unless otherwise mentoned. JoTT allows allows unrestricted use, reproducton, and distributon of artcles in any medium by providing adequate credit to the author(s) and the source of publicaton. Journal of Threatened Taxa Building evidence for conservaton globally www.threatenedtaxa.org ISSN 0974-7907 (Online) | ISSN 0974-7893 (Print) Short Communication New record of Blue Perch Badis badis (Anabantiformes: Badidae) from Godavari River basin of Telangana State, India Kante Krishna Prasad & Chelmala Srinivasulu 26 July 2019 | Vol. 11 | No. 9 | Pages: 14212–14215 DOI: 10.11609/jot.4820.11.9.14212-14215 For Focus, Scope, Aims, Policies, and Guidelines visit htps://threatenedtaxa.org/index.php/JoTT/about/editorialPolicies#custom-0 For Artcle Submission Guidelines, visit htps://threatenedtaxa.org/index.php/JoTT/about/submissions#onlineSubmissions For Policies against Scientfc Misconduct, visit htps://threatenedtaxa.org/index.php/JoTT/about/editorialPolicies#custom-2 For reprints, contact <[email protected]> The opinions expressed by the authors do not refect the views of the Journal of Threatened Taxa, Wildlife Informaton Liaison Development Society, Zoo Outreach Organizaton, or any of the partners. The journal,
    [Show full text]
  • Evolution and Ecology in Widespread Acoustic Signaling Behavior Across Fishes
    bioRxiv preprint doi: https://doi.org/10.1101/2020.09.14.296335; this version posted September 14, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 Evolution and Ecology in Widespread Acoustic Signaling Behavior Across Fishes 2 Aaron N. Rice1*, Stacy C. Farina2, Andrea J. Makowski3, Ingrid M. Kaatz4, Philip S. Lobel5, 3 William E. Bemis6, Andrew H. Bass3* 4 5 1. Center for Conservation Bioacoustics, Cornell Lab of Ornithology, Cornell University, 159 6 Sapsucker Woods Road, Ithaca, NY, USA 7 2. Department of Biology, Howard University, 415 College St NW, Washington, DC, USA 8 3. Department of Neurobiology and Behavior, Cornell University, 215 Tower Road, Ithaca, NY 9 USA 10 4. Stamford, CT, USA 11 5. Department of Biology, Boston University, 5 Cummington Street, Boston, MA, USA 12 6. Department of Ecology and Evolutionary Biology and Cornell University Museum of 13 Vertebrates, Cornell University, 215 Tower Road, Ithaca, NY, USA 14 15 ORCID Numbers: 16 ANR: 0000-0002-8598-9705 17 SCF: 0000-0003-2479-1268 18 WEB: 0000-0002-5669-2793 19 AHB: 0000-0002-0182-6715 20 21 *Authors for Correspondence 22 ANR: [email protected]; AHB: [email protected] 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.09.14.296335; this version posted September 14, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
    [Show full text]
  • Export Trend of Indian Ornamental Fish Industry
    AGRICULTURE AND BIOLOGY JOURNAL OF NORTH AMERICA ISSN Print: 2151-7517, ISSN Online: 2151-7525, doi:10.5251/abjna.2012.3.11.439.451 © 2012, ScienceHuβ, http://www.scihub.org/ABJNA Export trend of Indian ornamental fish industry Liya Jayalal *, A. Ramachandran School of Industrial Fisheries, Cochin University of Science and Technology, Cochin-682 016, India. *[email protected], [email protected] ABSTRACT Inspite of having two hotspots of biodiversity India is way long back in the ornamental fish trade. Large number of species can only foster the needs of the industry. The study aims to (1) to find the various indigenous, exotic ornamental fish species and ornamental shrimp species being exported from India, (2) to provide an overview of the trends in the Indian ornamental fish export industry. 287 indigenous fish species, 92 exotic fish species and 44 ornamental shrimps have been found to get exported from India. The export trend of the industry for the past ten years shows a declining state which is also reflected in the annual and compound annual growth rate. Ornamental fish industry has enormous potential in tropical countries like India. To expand trade, new technologies and policies will have to be developed which will help in attaining a sustainable industry. Keywords: India, Export, Annual Growth Rate, Compound Growth Rate INTRODUCTION importers to have trade with India initially. But the condition has changed with the introduction of Aquarium fish keeping as a hobby has a long history Tetraodon travancoricus, Scarlet badis and Drape fin dating back to many centuries. Introduction of civil barbs as reported by the same author.
    [Show full text]
  • Journal of the Bombay Natural History Society
    JOURNAL OF THE BOMBAY NATURAL HISTORY SOCIETY DECEMBER 2009 VOL. 106 (3) IV^pvl O CONSERVING II IL/lClNAlURE SINCE 1 883 . JOURNAL OF THE BOMBAY NATURAL HISTORY SOCIETY Hornbill House, Shaheed Bhagat Singh Marg, Mumbai 400 001 Executive Edttor Asad R. Rahmani, Ph. D. Bombay Natural History Society, Mumbai Copy and Production Eduor Vibhuti Dedhia, M. Sc. Editorial Board Ajith Kumar, Ph. D. Aasheesh Pittie, B. Com. National Centre for Biological Sciences, Bird Watchers Society of Andhra Pradesh, GKVK Campus, Hebbal, Bengaluru Hyderabad C.R. Babu, Ph. D. as. Rawat, Ph. D. Professor, Centre for Environmental Management Wildlife Institute of India, Dehradun of Degraded Ecosystems, University of Delhi, New Delhi K. Rema Devi, Ph. D. M.K. Chandrashekaran, Ph. D., D. Sc. Zoological Survey of India, Chennai Professor, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru J.S. Singh, Ph. D. Professor, Banaras Hindu University Anwaruddin Choudhury, Ph. D., D. Sc. Varanasi The Rhino Foundation for Nature, Guwahati S. Subramanya, Ph. D. Indraneil Das, D. Phil. University of Agricultural Sciences, GKVK, Institute of Biodiversity and Environmental Conservation, Hebbal, Bengaluru Universiti Malaysia, Sarawak, Malaysia R. Sukumar, Ph. D. Y.V. Jhala, Ph. D. Professor, Centre for Ecological Sciences, Wildlife Institute of India, Dehradun Indian Institute of Science, Bengaluru K. Ullas Karanth, Ph. D. Romulus Whitaker, B. Sc. Wildlife Conservation Society - India Program, Reptile Park Crocodile Trust, Bengaluru, Karnataka Madras and Bank Tamil Nadu T.C. Narendran, Ph. D., D. Sc. S.R. Yadav, Ph. D. Professor, Department of Zoology, Shivaji University, Kolhapur University of Calicut, Kerala Senior Consultant Editor J.C.
    [Show full text]
  • Marine and Estuarine Fish Fauna of Tamil Nadu, India
    Proceedings of the International Academy of Ecology and Environmental Sciences, 2018, 8(4): 231-271 Article Marine and estuarine fish fauna of Tamil Nadu, India 1,2 3 1 1 H.S. Mogalekar , J. Canciyal , D.S. Patadia , C. Sudhan 1Fisheries College and Research Institute, Thoothukudi - 628 008, Tamil Nadu, India 2College of Fisheries, Dholi, Muzaffarpur - 843 121, Bihar, India 3Central Inland Fisheries Research Institute, Barrackpore, Kolkata - 700 120, West Bengal, India E-mail: [email protected] Received 20 June 2018; Accepted 25 July 2018; Published 1 December 2018 Abstract Varied marine and estuarine ecosystems of Tamil Nadu endowed with diverse fish fauna. A total of 1656 fish species under two classes, 40 orders, 191 families and 683 geranra reported from marine and estuarine waters of Tamil Nadu. In the checklist, 1075 fish species were primary marine water and remaining 581 species were diadromus. In total, 128 species were reported under class Elasmobranchii (11 orders, 36 families and 70 genera) and 1528 species under class Actinopterygii (29 orders, 155 families and 613 genera). The top five order with diverse species composition were Perciformes (932 species; 56.29% of the total fauna), Tetraodontiformes (99 species), Pleuronectiforms (77 species), Clupeiformes (72 species) and Scorpaeniformes (69 species). At the family level, the Gobiidae has the greatest number of species (86 species), followed by the Carangidae (65 species), Labridae (64 species) and Serranidae (63 species). Fishery status assessment revealed existence of 1029 species worth for capture fishery, 425 species worth for aquarium fishery, 84 species worth for culture fishery, 242 species worth for sport fishery and 60 species worth for bait fishery.
    [Show full text]