Peano Axioms to Present a Rigorous Introduction to the Natural Numbers Would Take Us Too Far Afield

Total Page:16

File Type:pdf, Size:1020Kb

Peano Axioms to Present a Rigorous Introduction to the Natural Numbers Would Take Us Too Far Afield Peano Axioms To present a rigorous introduction to the natural numbers would take us too far afield. We will however, give a short introduction to one axiomatic approach that yields a system that is quite like the numbers that we use daily to count and pay bills. We will consider a set, N,tobecalledthenatural numbers, that has one primitive operation that of successor which is a function from N to N. We will think of this function as being given by Sx x 1(this will be our definition of addition by 1). We will only assume the following rules. 1.IfSx Sy then x y (we say that S is one to one). 2. There exists exactly one element, denoted 1,inN that is not of the form Sx for any x N. 3.IfX N is such that 1 X and furthermore, if x X then Sx X, then X N. These rules comprise the Peano Axioms for the natural numbers. Rule 3. is usually called the principle of mathematical induction As above, we write x 1 for Sx.We assert that the set of elements that are successors of successors consists of all elements of N except for 1 and S1 1 1. We will now prove this assertion. If z SSx then since 1 Su and S is one to one (rule 1.) z S1 and z 1.If z N 1,S1 then z Su by 2. and u 1 by 1. Thus u Sv by 2. Hence, z SSv. This small set of rules (axioms) allow for a very powerful system which seems to have all of the properties of our intuitive notion of natural numbers. We will now give evidence for this claim. We first show that we can use the successor function to inductively define addition. We define (as indicated above) x 1 to be Sx for all x N.Ifx N is fixed (but arbitrary) and y N is such that x y has been defined then define x Sy to be Sx y. We first prove that this defines an operartion on every pair of natural numbers. Let X be the set of all y N such that x y has been defined for all x N. Then 1 X and if y X then Sy X by definition. Thus 3. implies that X N. Let us look at what this means in examples before we derive additional properties of this addition. We started with x 1 Sx for all x N. We have not yet defined any other addition for all x N. Thus we must set x S1 Sx 1 SSx for all x N. Similarly, we must define x SS1 Sx S1 SSx 1 SSSx.This continues ad infinitum. We now show that this inductive definition of addition satisfies the basic rules of arithmetic. Theorem If x,y,z N then x y z x y z (associative rule for addition). If x,y N then x y y x (commutative rule for addition). Proof. We first prove the associative rule. Let Z be the set of all z N such that x y z x y z for all x,y N. We first show that 1 Z.Infact, x y 1 Sx y x Sy (this is our definition). Now x Sy x y 1.We have thus shown that x y 1 x y 1. Thus, 1 Z. Assume that z Z we will now show that Sz Z. Now we apply the definition of addition several times x y Sz Sx y z Sx y z x Sy z x y Sz. Thus Sz Z. This implies that Z N (rule 3.). We will next prove the commutative rule. We first show that 1 x x 1 for all x N. Let X be the set of all x N such that 1 x x 1. It is clear that 1 X.Now assume that x X. Then Sx 1 SSx Sx 1 S1 x (since x X). Now, S1 x 1 Sx by definition. This implies that if x X then Sx X. Thus X N by 3. At this point we have proved that x 1 1 x for all x N. Let Y denote the set of all y such that x y y x for all x N. Then we have just shown that 1 Y. We assume that y Y. We must show that Sy Y.Toprovethis we note that if x N then x Sy Sx y Sy x (y Y). Now Sy x y Sx y x 1 y x 1 (the associative rule). Now x y 1 1 y x (1 Y). Continuing, 1 y x 1 y x y 1 x Sy x. Putting this all together we have x Sy Sy x. Thus if y Y then Sy Y. Hence Y N by rule 3. Hence the commutative rule has been proved. The next step is to define multiplication. We wish to think of it as repeated addition. We first define 1 x x for all x N.Ifu x has been defined then we set Sux u x x. Thus 1 1x x x. Theorem 1. If x,y,z N then x yz x y z (associative rule for multiplication). 2. If x,y N then x y y x (commutative rule for multiplication). 3. If x,y,z N then x y z x y x z (the distributive rule for multiplication over addition). Proof. We will prove part 3. of the theorem first by using (what else?) the principle of mathematical induction. Let X be the set of all x N such that x y z x y x z for all y,z N. Then 1 X. Assume that x X.Wemust show that Sx X. As before we will use a chain of equalities. Sxy z x y z y z by the definition. Since x X, x y z x y x z. Thus Sxy z x y x z y z. If we now apply the associative law for addition we have x y x z y z x y x z y z. Inside the first set of braces we apply the commutative rule for addition and have x y x z y z y x y x z z y x y x z z by the associative law of addition applied inside the parentheses. We now apply the commutative law of addition within the parentheses and the associative law of addition to find y x y x z z x y y x z z. By definition the last expression is Sxy Sxz. Thus Z N and the distributive law is proved. We now prove the commutative rule for multiplication by induction. Let Y y N;y x x y for all x N. We first show that 1 Y. That is to say we must show that 1 x x 1 for all x N.Since1 x x for all x N, we must show that x 1 x for all x N. We show this by showing that the set W of elements x N such that x 1 x is equal to N. We first observe that 1 W. Assume that x W then we must show that Sx W.NowSx1 x 1 1 by the definition. Since x W, x 1 x. Thus x 1 1 x 1 Sx. Thus W N. This implies that 1 Y.Now assume that y Y we must show that Sy Y.NowSyx y x x x y x. Also x Sy x y 1 x y x 1 x y x. Thus Syx x Sy. Last we prove the associative rule. Let Z be the set of all x N such that x y z x yz for all y,z N. Then 1 Z.Since1 y z y z and 1 yz y z. Assume that x Z. Then Sxy z x y z y z x yz y z z x y z y z x y y z Sxy Sxyz. This completes the proof. We will usually write xy x y. We note that there is a specific structure that we have followed in our proofs. We have an assertion for every natural number. If the assertion is true for 1 and whenever it is true for x it is true for x 1 then it is true for all natural numbers. Let us give an example of this approach. Theorem If x,y,z N and x y x z then y z. (The cancellation rule for addition.) Proof. The assertion for x is that if y,z N and if x y x z then y z.Ifx 1 then the assertion says that if 1 y 1 z then y z. The commutative rule says that we may formulate this as if y 1 z 1 then y z. This says that if Sy Sz then y z. This is true since it is rule 1. above. Now suppose that we have shown, for x, that if x y x z then y z. Suppose that Sx y Sx z. Then y Sx z Sx. Thus Sy x Sz x. Hence y x z x by rule 1. But then x y x z. Hence y z. The theorem is therefore true. The associative rule for addition allows us to introduce an order on N.Ifx,y N then we say that x y (or y x) if there exists u N such that x y u.
Recommended publications
  • Chapter 3 Induction and Recursion
    Chapter 3 Induction and Recursion 3.1 Induction: An informal introduction This section is intended as a somewhat informal introduction to The Principle of Mathematical Induction (PMI): a theorem that establishes the validity of the proof method which goes by the same name. There is a particular format for writing the proofs which makes it clear that PMI is being used. We will not explicitly use this format when introducing the method, but will do so for the large number of different examples given later. Suppose you are given a large supply of L-shaped tiles as shown on the left of the figure below. The question you are asked to answer is whether these tiles can be used to exactly cover the squares of an 2n × 2n punctured grid { a 2n × 2n grid that has had one square cut out { say the 8 × 8 example shown in the right of the figure. 1 2 CHAPTER 3. INDUCTION AND RECURSION In order for this to be possible at all, the number of squares in the punctured grid has to be a multiple of three. It is. The number of squares is 2n2n − 1 = 22n − 1 = 4n − 1 ≡ 1n − 1 ≡ 0 (mod 3): But that does not mean we can tile the punctured grid. In order to get some traction on what to do, let's try some small examples. The tiling is easy to find if n = 1 because 2 × 2 punctured grid is exactly covered by one tile. Let's try n = 2, so that our punctured grid is 4 × 4.
    [Show full text]
  • The Consistency of Arithmetic
    The Consistency of Arithmetic Timothy Y. Chow July 11, 2018 In 2010, Vladimir Voevodsky, a Fields Medalist and a professor at the Insti- tute for Advanced Study, gave a lecture entitled, “What If Current Foundations of Mathematics Are Inconsistent?” Voevodsky invited the audience to consider seriously the possibility that first-order Peano arithmetic (or PA for short) was inconsistent. He briefly discussed two of the standard proofs of the consistency of PA (about which we will say more later), and explained why he did not find either of them convincing. He then said that he was seriously suspicious that an inconsistency in PA might someday be found. About one year later, Voevodsky might have felt vindicated when Edward Nelson, a professor of mathematics at Princeton University, announced that he had a proof not only that PA was inconsistent, but that a small fragment of primitive recursive arithmetic (PRA)—a system that is widely regarded as implementing a very modest and “safe” subset of mathematical reasoning—was inconsistent [11]. However, a fatal error in his proof was soon detected by Daniel Tausk and (independently) Terence Tao. Nelson withdrew his claim, remarking that the consistency of PA remained “an open problem.” For mathematicians without much training in formal logic, these claims by Voevodsky and Nelson may seem bewildering. While the consistency of some axioms of infinite set theory might be debatable, is the consistency of PA really “an open problem,” as Nelson claimed? Are the existing proofs of the con- sistency of PA suspect, as Voevodsky claimed? If so, does this mean that we cannot be sure that even basic mathematical reasoning is consistent? This article is an expanded version of an answer that I posted on the Math- Overflow website in response to the question, “Is PA consistent? do we know arXiv:1807.05641v1 [math.LO] 16 Jul 2018 it?” Since the question of the consistency of PA seems to come up repeat- edly, and continues to generate confusion, a more extended discussion seems worthwhile.
    [Show full text]
  • Mathematical Induction
    Mathematical Induction Lecture 10-11 Menu • Mathematical Induction • Strong Induction • Recursive Definitions • Structural Induction Climbing an Infinite Ladder Suppose we have an infinite ladder: 1. We can reach the first rung of the ladder. 2. If we can reach a particular rung of the ladder, then we can reach the next rung. From (1), we can reach the first rung. Then by applying (2), we can reach the second rung. Applying (2) again, the third rung. And so on. We can apply (2) any number of times to reach any particular rung, no matter how high up. This example motivates proof by mathematical induction. Principle of Mathematical Induction Principle of Mathematical Induction: To prove that P(n) is true for all positive integers n, we complete these steps: Basis Step: Show that P(1) is true. Inductive Step: Show that P(k) → P(k + 1) is true for all positive integers k. To complete the inductive step, assuming the inductive hypothesis that P(k) holds for an arbitrary integer k, show that must P(k + 1) be true. Climbing an Infinite Ladder Example: Basis Step: By (1), we can reach rung 1. Inductive Step: Assume the inductive hypothesis that we can reach rung k. Then by (2), we can reach rung k + 1. Hence, P(k) → P(k + 1) is true for all positive integers k. We can reach every rung on the ladder. Logic and Mathematical Induction • Mathematical induction can be expressed as the rule of inference (P(1) ∧ ∀k (P(k) → P(k + 1))) → ∀n P(n), where the domain is the set of positive integers.
    [Show full text]
  • Arxiv:1311.3168V22 [Math.LO] 24 May 2021 the Foundations Of
    The Foundations of Mathematics in the Physical Reality Doeko H. Homan May 24, 2021 It is well-known that the concept set can be used as the foundations for mathematics, and the Peano axioms for the set of all natural numbers should be ‘considered as the fountainhead of all mathematical knowledge’ (Halmos [1974] page 47). However, natural numbers should be defined, thus ‘what is a natural number’, not ‘what is the set of all natural numbers’. Set theory should be as intuitive as possible. Thus there is no ‘empty set’, and a single shoe is not a singleton set but an individual, a pair of shoes is a set. In this article we present an axiomatic definition of sets with individuals. Natural numbers and ordinals are defined. Limit ordinals are ‘first numbers’, that is a first number of the Peano axioms. For every natural number m we define ‘ωm-numbers with a first number’. Every ordinal is an ordinal with a first ω0-number. Ordinals with a first number satisfy the Peano axioms. First ωω-numbers are defined. 0 is a first ωω-number. Then we prove a first ωω-number notequal 0 belonging to ordinal γ is an impassable barrier for counting down γ to 0 in a finite number of steps. 1 What is a set? At an early age you develop the idea of ‘what is a set’. You belong to a arXiv:1311.3168v22 [math.LO] 24 May 2021 family or a clan, you belong to the inhabitants of a village or a particular region. Experience shows there are objects that constitute a set.
    [Show full text]
  • Upper and Lower Bounds on Continuous-Time Computation
    Upper and lower bounds on continuous-time computation Manuel Lameiras Campagnolo1 and Cristopher Moore2,3,4 1 D.M./I.S.A., Universidade T´ecnica de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal [email protected] 2 Computer Science Department, University of New Mexico, Albuquerque NM 87131 [email protected] 3 Physics and Astronomy Department, University of New Mexico, Albuquerque NM 87131 4 Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, New Mexico 87501 Abstract. We consider various extensions and modifications of Shannon’s General Purpose Analog Com- puter, which is a model of computation by differential equations in continuous time. We show that several classical computation classes have natural analog counterparts, including the primitive recursive functions, the elementary functions, the levels of the Grzegorczyk hierarchy, and the arithmetical and analytical hierarchies. Key words: Continuous-time computation, differential equations, recursion theory, dynamical systems, elementary func- tions, Grzegorczyk hierarchy, primitive recursive functions, computable functions, arithmetical and analytical hierarchies. 1 Introduction The theory of analog computation, where the internal states of a computer are continuous rather than discrete, has enjoyed a recent resurgence of interest. This stems partly from a wider program of exploring alternative approaches to computation, such as quantum and DNA computation; partly as an idealization of numerical algorithms where real numbers can be thought of as quantities in themselves, rather than as strings of digits; and partly from a desire to use the tools of computation theory to better classify the variety of continuous dynamical systems we see in the world (or at least in its classical idealization).
    [Show full text]
  • The Continuum Hypothesis, Part I, Volume 48, Number 6
    fea-woodin.qxp 6/6/01 4:39 PM Page 567 The Continuum Hypothesis, Part I W. Hugh Woodin Introduction of these axioms and related issues, see [Kanamori, Arguably the most famous formally unsolvable 1994]. problem of mathematics is Hilbert’s first prob- The independence of a proposition φ from the axioms of set theory is the arithmetic statement: lem: ZFC does not prove φ, and ZFC does not prove φ. ¬ Cantor’s Continuum Hypothesis: Suppose that Of course, if ZFC is inconsistent, then ZFC proves X R is an uncountable set. Then there exists a bi- anything, so independence can be established only ⊆ jection π : X R. by assuming at the very least that ZFC is consis- → tent. Sometimes, as we shall see, even stronger as- This problem belongs to an ever-increasing list sumptions are necessary. of problems known to be unsolvable from the The first result concerning the Continuum (usual) axioms of set theory. Hypothesis, CH, was obtained by Gödel. However, some of these problems have now Theorem (Gödel). Assume ZFC is consistent. Then been solved. But what does this actually mean? so is ZFC + CH. Could the Continuum Hypothesis be similarly solved? These questions are the subject of this ar- The modern era of set theory began with Cohen’s ticle, and the discussion will involve ingredients discovery of the method of forcing and his appli- from many of the current areas of set theoretical cation of this new method to show: investigation. Most notably, both Large Cardinal Theorem (Cohen). Assume ZFC is consistent. Then Axioms and Determinacy Axioms play central roles.
    [Show full text]
  • Hyperoperations and Nopt Structures
    Hyperoperations and Nopt Structures Alister Wilson Abstract (Beta version) The concept of formal power towers by analogy to formal power series is introduced. Bracketing patterns for combining hyperoperations are pictured. Nopt structures are introduced by reference to Nept structures. Briefly speaking, Nept structures are a notation that help picturing the seed(m)-Ackermann number sequence by reference to exponential function and multitudinous nestings thereof. A systematic structure is observed and described. Keywords: Large numbers, formal power towers, Nopt structures. 1 Contents i Acknowledgements 3 ii List of Figures and Tables 3 I Introduction 4 II Philosophical Considerations 5 III Bracketing patterns and hyperoperations 8 3.1 Some Examples 8 3.2 Top-down versus bottom-up 9 3.3 Bracketing patterns and binary operations 10 3.4 Bracketing patterns with exponentiation and tetration 12 3.5 Bracketing and 4 consecutive hyperoperations 15 3.6 A quick look at the start of the Grzegorczyk hierarchy 17 3.7 Reconsidering top-down and bottom-up 18 IV Nopt Structures 20 4.1 Introduction to Nept and Nopt structures 20 4.2 Defining Nopts from Nepts 21 4.3 Seed Values: “n” and “theta ) n” 24 4.4 A method for generating Nopt structures 25 4.5 Magnitude inequalities inside Nopt structures 32 V Applying Nopt Structures 33 5.1 The gi-sequence and g-subscript towers 33 5.2 Nopt structures and Conway chained arrows 35 VI Glossary 39 VII Further Reading and Weblinks 42 2 i Acknowledgements I’d like to express my gratitude to Wikipedia for supplying an enormous range of high quality mathematics articles.
    [Show full text]
  • Chapter 4 Induction and Recursion
    Chapter 4 Induction and Recursion 4.1 Induction: An informal introduction This section is intended as a somewhat informal introduction to The Principle of Mathematical Induction (PMI): a theorem that establishes the validity of the proof method which goes by the same name. There is a particular format for writing the proofs which makes it clear that PMI is being used. We will not explicitly use this format when introducing the method, but will do so for the large number of different examples given later. Suppose you are given a large supply of L-shaped tiles as shown on the left of the figure below. The question you are asked to answer is whether these tiles can be used to exactly cover the squares of an 2n × 2n punctured grid { a 2n × 2n grid that has had one square cut out { say the 8 × 8 example shown in the right of the figure. 1 2 CHAPTER 4. INDUCTION AND RECURSION In order for this to be possible at all, the number of squares in the punctured grid has to be a multiple of three. By direct calculation we can see that it is true when n = 1; 2 or 3, and these are the cases we're interested in here. It turns out to be true in general; this is easy to show using congruences, which we will study later, and also can be shown using methods in this chapter. But that does not mean we can tile the punctured grid. In order to get some traction on what to do, let's try some small examples.
    [Show full text]
  • On the Successor Function
    On the successor function Christiane Frougny LIAFA, Paris Joint work with Valérie Berthé, Michel Rigo and Jacques Sakarovitch Numeration Nancy 18-22 May 2015 Pierre Liardet Groupe d’Etude sur la Numération 1999 Peano The successor function is a primitive recursive function Succ such that Succ(n)= n + 1 for each natural number n. Peano axioms define the natural numbers beyond 0: 1 is defined to be Succ(0) Addition on natural numbers is defined recursively by: m + 0 = m m + Succ(n)= Succ(m)+ n Odometer The odometer indicates the distance traveled by a vehicule. Odometer The odometer indicates the distance traveled by a vehicule. Leonardo da Vinci 1519: odometer of Vitruvius Adding machine Machine arithmétique Pascal 1642 : Pascaline The first calculator to have a controlled carry mechanism which allowed for an effective propagation of multiple carries. French currency system used livres, sols and deniers with 20 sols to a livre and 12 deniers to a sol. Length was measured in toises, pieds, pouces and lignes with 6 pieds to a toise, 12 pouces to a pied and 12 lignes to a pouce. Computation in base 6, 10, 12 and 20. To reset the machine, set all the wheels to their maximum, and then add 1 to the rightmost wheel. In base 10, 999999 + 1 = 000000. Subtractions are performed like additions using 9’s complement arithmetic. Adding machine and adic transformation An adic transformation is a generalisation of the adding machine in the ring of p-adic integers to a more general Markov compactum. Vershik (1985 and later): adic transformation based on Bratteli diagrams: it acts as a successor map on a Markov compactum defined as a lexicographically ordered set of infinite paths in an infinite labeled graph whose transitions are provided by an infinite sequence of transition matrices.
    [Show full text]
  • Chapter 7. Induction and Recursion
    Chapter 7. Induction and Recursion Part 1. Mathematical Induction The principle of mathematical induction is this: to establish an infinite sequence of propositions P1,P2,P3,...,Pn,... (or, simply put, Pn (n 1)), it is enough to verify the following two things ≥ (1) P1, and (2) Pk Pk ; (that is, assuming Pk vaild, we can rpove the validity of Pk ). ⇒ + 1 + 1 These two things will give a “domino effect” for the validity of all Pn (n 1). Indeed, ≥ step (1) tells us that P1 is true. Applying (2) to the case n = 1, we know that P2 is true. Knowing that P2 is true and applying (2) to the case n = 2 we know that P3 is true. Continue in this manner, we see that P4 is true, P5 is true, etc. This argument can go on and on. Now you should be convinced that Pn is true, no matter how big is n. We give some examples to show how this induction principle works. Example 1. Use mathematical induction to show 1 + 3 + 5 + + (2n 1) = n2. ··· − (Remember: in mathematics, “show” means “prove”.) Answer: For n = 1, the identity becomes 1 = 12, which is obviously true. Now assume the validity of the identity for n = k: 1 + 3 + 5 + + (2k 1) = k2. ··· − For n = k + 1, the left hand side of the identity is 1 + 3 + 5 + + (2k 1) + (2(k + 1) 1) = k2 + (2k + 1) = (k + 1)2 ··· − − which is the right hand side for n = k + 1. The proof is complete. 1 Example 2. Use mathematical induction to show the following formula for a geometric series: 1 xn+ 1 1 + x + x2 + + xn = − .
    [Show full text]
  • 3 Mathematical Induction
    Hardegree, Metalogic, Mathematical Induction page 1 of 27 3 Mathematical Induction 1. Introduction.......................................................................................................................................2 2. Explicit Definitions ..........................................................................................................................2 3. Inductive Definitions ........................................................................................................................3 4. An Aside on Terminology.................................................................................................................3 5. Induction in Arithmetic .....................................................................................................................3 6. Inductive Proofs in Arithmetic..........................................................................................................4 7. Inductive Proofs in Meta-Logic ........................................................................................................5 8. Expanded Induction in Arithmetic.....................................................................................................7 9. Expanded Induction in Meta-Logic...................................................................................................8 10. How Induction Captures ‘Nothing Else’...........................................................................................9 11. Exercises For Chapter 3 .................................................................................................................11
    [Show full text]
  • THE PEANO AXIOMS 1. Introduction We Begin Our Exploration
    CHAPTER 1: THE PEANO AXIOMS MATH 378, CSUSM. SPRING 2015. 1. Introduction We begin our exploration of number systems with the most basic number system: the natural numbers N. Informally, natural numbers are just the or- dinary whole numbers 0; 1; 2;::: starting with 0 and continuing indefinitely.1 For a formal description, see the axiom system presented in the next section. Throughout your life you have acquired a substantial amount of knowl- edge about these numbers, but do you know the reasons behind your knowl- edge? Why is addition commutative? Why is multiplication associative? Why does the distributive law hold? Why is it that when you count a finite set you get the same answer regardless of the order in which you count the elements? In this and following chapters we will systematically prove basic facts about the natural numbers in an effort to answer these kinds of ques- tions. Sometimes we will encounter more than one answer, each yielding its own insights. You might see an informal explanation and then a for- mal explanation, or perhaps you will see more than one formal explanation. For instance, there will be a proof for the commutative law of addition in Chapter 1 using induction, and then a more insightful proof in Chapter 2 involving the counting of finite sets. We will use the axiomatic method where we start with a few axioms and build up the theory of the number systems by proving that each new result follows from earlier results. In the first few chapters of these notes there will be a strong temptation to use unproved facts about arithmetic and numbers that are so familiar to us that they are practically part of our mental DNA.
    [Show full text]