Chapter 3 Induction and Recursion
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
CS311H: Discrete Mathematics Recursive Definitions Recursive
Recursive Definitions CS311H: Discrete Mathematics I Should be familiar with recursive functions from programming: Recursive Definitions public int fact(int n) { if(n <= 1) return 1; return n * fact(n - 1); Instructor: I¸sıl Dillig } I Recursive definitions are also used in math for defining sets, functions, sequences etc. Instructor: I¸sıl Dillig, CS311H: Discrete Mathematics Recursive Definitions 1/18 Instructor: I¸sıl Dillig, CS311H: Discrete Mathematics Recursive Definitions 2/18 Recursive Definitions in Math Recursively Defined Functions I Consider the following sequence: I Just like sequences, functions can also be defined recursively 1, 3, 9, 27, 81,... I Example: I This sequence can be defined recursively as follows: f (0) = 3 f (n + 1) = 2f (n) + 3 (n 1) a0 = 1 ≥ an = 3 an 1 · − I What is f (1)? I First part called base case; second part called recursive step I What is f (2)? I Very similar to induction; in fact, recursive definitions I What is f (3)? sometimes also called inductive definitions Instructor: I¸sıl Dillig, CS311H: Discrete Mathematics Recursive Definitions 3/18 Instructor: I¸sıl Dillig, CS311H: Discrete Mathematics Recursive Definitions 4/18 Recursive Definition Examples Recursive Definitions of Important Functions I Some important functions/sequences defined recursively I Consider f (n) = 2n + 1 where n is non-negative integer I Factorial function: I What’s a recursive definition for f ? f (1) = 1 f (n) = n f (n 1) (n 2) · − ≥ I Consider the sequence 1, 4, 9, 16,... I Fibonacci numbers: 1, 1, 2, 3, 5, 8, 13, 21,... I What is a recursive -
Recursive Definitions and Structural Induction 1 Recursive Definitions
Massachusetts Institute of Technology Course Notes 6 6.042J/18.062J, Fall ’02: Mathematics for Computer Science Professor Albert Meyer and Dr. Radhika Nagpal Recursive Definitions and Structural Induction 1 Recursive Definitions Recursive definitions say how to build something from a simpler version of the same thing. They have two parts: • Base case(s) that don’t depend on anything else. • Combination case(s) that depend on simpler cases. Here are some examples of recursive definitions: Example 1.1. Define a set, E, recursively as follows: 1. 0 E, 2 2. if n E, then n + 2 E, 2 2 3. if n E, then n E. 2 − 2 Using this definition, we can see that since 0 E by 1., it follows from 2. that 0 + 2 = 2 E, and 2 2 so 2 + 2 = 4 E, 4 + 2 = 6 E, : : : , and in fact any nonegative even number is in E. Also, by 3., 2 2 2; 4; 6; E. − − − · · · 2 Is anything else in E? The definition doesn’t say so explicitly, but an implicit condition on a recursive definition is that the only way things get into E is as a consequence of 1., 2., and 3. So clearly E is exactly the set of even integers. Example 1.2. Define a set, S, of strings of a’s and b’s recursively as follows: 1. λ S, where λ is the empty string, 2 2. if x S, then axb S, 2 2 3. if x S, then bxa S, 2 2 4. if x; y S, then xy S. -
Mathematical Induction
Mathematical Induction Lecture 10-11 Menu • Mathematical Induction • Strong Induction • Recursive Definitions • Structural Induction Climbing an Infinite Ladder Suppose we have an infinite ladder: 1. We can reach the first rung of the ladder. 2. If we can reach a particular rung of the ladder, then we can reach the next rung. From (1), we can reach the first rung. Then by applying (2), we can reach the second rung. Applying (2) again, the third rung. And so on. We can apply (2) any number of times to reach any particular rung, no matter how high up. This example motivates proof by mathematical induction. Principle of Mathematical Induction Principle of Mathematical Induction: To prove that P(n) is true for all positive integers n, we complete these steps: Basis Step: Show that P(1) is true. Inductive Step: Show that P(k) → P(k + 1) is true for all positive integers k. To complete the inductive step, assuming the inductive hypothesis that P(k) holds for an arbitrary integer k, show that must P(k + 1) be true. Climbing an Infinite Ladder Example: Basis Step: By (1), we can reach rung 1. Inductive Step: Assume the inductive hypothesis that we can reach rung k. Then by (2), we can reach rung k + 1. Hence, P(k) → P(k + 1) is true for all positive integers k. We can reach every rung on the ladder. Logic and Mathematical Induction • Mathematical induction can be expressed as the rule of inference (P(1) ∧ ∀k (P(k) → P(k + 1))) → ∀n P(n), where the domain is the set of positive integers. -
Arxiv:1410.2193V1 [Math.CO] 8 Oct 2014 There Are No Coincidences
There are no Coincidences Tanya Khovanova October 21, 2018 Abstract This paper is inspired by a seqfan post by Jeremy Gardiner. The post listed nine sequences with similar parities. In this paper I prove that the similarities are not a coincidence but a mathematical fact. 1 Introduction Do you use your Inbox as your implicit to-do list? I do. I delete spam and cute cats. I reply, if I can. I deal with emails related to my job. But sometimes I get a message that requires some thought or some serious time to process. It sits in my Inbox. There are 200 messages there now. This method creates a lot of stress. But this paper is not about stress management. Let me get back on track. I was trying to shrink this list and discovered an email I had completely forgotten about. The email was sent in December 2008 to the seqfan list by Jeremy Gardiner [1]. The email starts: arXiv:1410.2193v1 [math.CO] 8 Oct 2014 It strikes me as an interesting coincidence that the following se- quences appear to have the same underlying parity. Then he lists six sequences with the same parity: • A128975 The number of unordered three-heap P-positions in Nim. • A102393, A wicked evil sequence. • A029886, Convolution of the Thue-Morse sequence with itself. 1 • A092524, Binary representation of n interpreted in base p, where p is the smallest prime factor of n. • A104258, Replace 2i with ni in the binary representation of n. n • A061297, a(n)= Pr=0 lcm(n, n−1, n−2,...,n−r+1)/ lcm(1, 2, 3,...,r). -
Chapter 4 Induction and Recursion
Chapter 4 Induction and Recursion 4.1 Induction: An informal introduction This section is intended as a somewhat informal introduction to The Principle of Mathematical Induction (PMI): a theorem that establishes the validity of the proof method which goes by the same name. There is a particular format for writing the proofs which makes it clear that PMI is being used. We will not explicitly use this format when introducing the method, but will do so for the large number of different examples given later. Suppose you are given a large supply of L-shaped tiles as shown on the left of the figure below. The question you are asked to answer is whether these tiles can be used to exactly cover the squares of an 2n × 2n punctured grid { a 2n × 2n grid that has had one square cut out { say the 8 × 8 example shown in the right of the figure. 1 2 CHAPTER 4. INDUCTION AND RECURSION In order for this to be possible at all, the number of squares in the punctured grid has to be a multiple of three. By direct calculation we can see that it is true when n = 1; 2 or 3, and these are the cases we're interested in here. It turns out to be true in general; this is easy to show using congruences, which we will study later, and also can be shown using methods in this chapter. But that does not mean we can tile the punctured grid. In order to get some traction on what to do, let's try some small examples. -
Math 280 Incompleteness 1. Definability, Representability and Recursion
Math 280 Incompleteness 1. Definability, Representability and Recursion We will work with the language of arithmetic: 0_; S;_ +_ ; ·_; <_ . We will be sloppy and won't write dots. When we say \formula,"\satisfaction,"\proof,"everything will refer to this language. We will use the standard model of arithmetic N = (!; 0; S; +; ·; <). 1.1 Definition: (i) A bounded existential quantification is a quantification of the form (9z)(z < x ^ φ) which we will abbreviate by (9z < x)φ. (ii) A bounded universal quantification has the form (8z)(z < x ! φ) which we will abbreviate by (8z < x)φ. 1.2 Fact: The formulae (8z < x)φ $ :(9z < x):φ (9z < x)φ $ :(8z < x):φ are provable in predicate calculus. Proof: Exercise. 1.3 Definition: (i) A formula is bounded iff all definitions of this formula are bounded. We also say “Σ0"or “∆0"for bounded. (ii) A formula is Σn iff it has the form (9x1; :::; x1 )(8x2; :::; x2 )(9x3; :::; x3 ) ··· (Q(xn; :::; xn )) 1 l1 1 l2 1 l3 1 ln where is bounded. (iii) Πn formulae are defined dually. Here we start with a block of universal quantifiers. (iv) So Σn and Πn can be defined inductively: φ is Σn+1 iff φ has the form (9x1) ··· (9xl) where is Πn. Dually for Πn+1. 1.4 Definition: n A relation R(x1; :::; xn) ⊆ ( N) is Σl−definable iff R has a Σl−definition over N i.e. iff there is a Σl n formula φ(x1; :::; xl) such that for all a1; :::; an 2 ( N), R(a1; :::; an) iff N φ[a1; :::; an]: Similarly: R is Πl iff it has a Πl definition over N. -
Chapter 7. Induction and Recursion
Chapter 7. Induction and Recursion Part 1. Mathematical Induction The principle of mathematical induction is this: to establish an infinite sequence of propositions P1,P2,P3,...,Pn,... (or, simply put, Pn (n 1)), it is enough to verify the following two things ≥ (1) P1, and (2) Pk Pk ; (that is, assuming Pk vaild, we can rpove the validity of Pk ). ⇒ + 1 + 1 These two things will give a “domino effect” for the validity of all Pn (n 1). Indeed, ≥ step (1) tells us that P1 is true. Applying (2) to the case n = 1, we know that P2 is true. Knowing that P2 is true and applying (2) to the case n = 2 we know that P3 is true. Continue in this manner, we see that P4 is true, P5 is true, etc. This argument can go on and on. Now you should be convinced that Pn is true, no matter how big is n. We give some examples to show how this induction principle works. Example 1. Use mathematical induction to show 1 + 3 + 5 + + (2n 1) = n2. ··· − (Remember: in mathematics, “show” means “prove”.) Answer: For n = 1, the identity becomes 1 = 12, which is obviously true. Now assume the validity of the identity for n = k: 1 + 3 + 5 + + (2k 1) = k2. ··· − For n = k + 1, the left hand side of the identity is 1 + 3 + 5 + + (2k 1) + (2(k + 1) 1) = k2 + (2k + 1) = (k + 1)2 ··· − − which is the right hand side for n = k + 1. The proof is complete. 1 Example 2. Use mathematical induction to show the following formula for a geometric series: 1 xn+ 1 1 + x + x2 + + xn = − . -
3 Mathematical Induction
Hardegree, Metalogic, Mathematical Induction page 1 of 27 3 Mathematical Induction 1. Introduction.......................................................................................................................................2 2. Explicit Definitions ..........................................................................................................................2 3. Inductive Definitions ........................................................................................................................3 4. An Aside on Terminology.................................................................................................................3 5. Induction in Arithmetic .....................................................................................................................3 6. Inductive Proofs in Arithmetic..........................................................................................................4 7. Inductive Proofs in Meta-Logic ........................................................................................................5 8. Expanded Induction in Arithmetic.....................................................................................................7 9. Expanded Induction in Meta-Logic...................................................................................................8 10. How Induction Captures ‘Nothing Else’...........................................................................................9 11. Exercises For Chapter 3 .................................................................................................................11 -
Structural Induction 4.4 Recursive Algorithms
University of Hawaii ICS141: Discrete Mathematics for Computer Science I Dept. Information & Computer Sci., University of Hawaii Jan Stelovsky based on slides by Dr. Baek and Dr. Still Originals by Dr. M. P. Frank and Dr. J.L. Gross Provided by McGraw-Hill ICS 141: Discrete Mathematics I – Fall 2011 13-1 University of Hawaii Lecture 22 Chapter 4. Induction and Recursion 4.3 Recursive Definitions and Structural Induction 4.4 Recursive Algorithms ICS 141: Discrete Mathematics I – Fall 2011 13-2 University of Hawaii Review: Recursive Definitions n Recursion is the general term for the practice of defining an object in terms of itself or of part of itself. n In recursive definitions, we similarly define a function, a predicate, a set, or a more complex structure over an infinite domain (universe of discourse) by: n defining the function, predicate value, set membership, or structure of larger elements in terms of those of smaller ones. ICS 141: Discrete Mathematics I – Fall 2011 13-3 University of Hawaii Full Binary Trees n A special case of extended binary trees. n Recursive definition of full binary trees: n Basis step: A single node r is a full binary tree. n Note this is different from the extended binary tree base case. n Recursive step: If T1, T2 are disjoint full binary trees with roots r1 and r2, then {(r, r1), (r, r2)} ∪ T1 ∪ T2 is an full binary tree. ICS 141: Discrete Mathematics I – Fall 2011 13-4 University of Hawaii Building Up Full Binary Trees ICS 141: Discrete Mathematics I – Fall 2011 13-5 University of Hawaii Structural Induction n Proving something about a recursively defined object using an inductive proof whose structure mirrors the object’s definition. -
Chapt. 3.1 Recursive Definition
Chapt. 3.1 Recursive Definition Reading: 3.1 Next Class: 3.2 1 Motivations Proofs by induction allow to prove properties of infinite, partially ordered sets of objects. In many cases the order is only given implicitly and we have to find it and write it explicitly in terms of the indices. In the inductive step in these proofs we have to relate the property for one object to the ones of previous objects. This often involves defining P(n + 1) in terms of P(n). Recursive Definitions 1 2 Terminologies A sequence is a list of objects that are enumerated in some order. A set of objects is a collection of objects on which no ordering is imposed. Inductive Definition/Recursive Definition: a definition in which the item being defined appears as part of the definition. Two parts: a basis step and an inductive/recursive step. As in the case of mathematical induction, both parts are required to give a complete definition. Recursive Definitions 3 Recursive Sequences Definition: A sequence is defined recursively by explicitly naming the first value (or the first few values) in the sequence and then defining later values in the sequence in terms of earlier values. Many sequences are easier to define recursively: Examples: S(1) = 2 S(n) = 2S(n-1) for n 2 • Sequence S 2, 4, 8, 16, 32,…. Fibonacci Sequence F(1) = 1 F(2) = 1 F(n) = F(n-1) + F(n-2) for n > 2 • Sequence F 1, 1, 2, 3, 5, 8, 13,…. Recursive Definitions 2 4 Recursive Sequences (cont’d) T(1) = 1 T(n) = T(n-1) + 3 for n 2 • Sequence T 1, 4, 7, 10, 13,…. -
Computer Science 250 - Project 4 Recursive Exponentiation in MIPS
Computer Science 250 - Project 4 Recursive Exponentiation in MIPS Due: Fri. Dec. 6, at the beginning of class The end of this handout contains a C program that prompts the user to enter two non-negative numbers, and than raises the first number to the power of the second using the recursive definition of exponentiation that we discussed in class. The program uses only C operations that correspond to MIPS instructions that we are familiar with. Translate this program into a MIPS assembly language program that does the same thing. Here is the recursive definition of exponentiation you will be implement- ing. 8 1 b = 0 > b < b b a = a 2 · a 2 b even > b−1 b−1 :> a · a 2 · a 2 b odd Follow these implementation guidelines: • Write a MIPS procedure for each C-function. • Local variables are unchanged by function calls, so you should store any values that correspond to local variables in $s-registers. • Create an activation record for each function, if the function needs to spill preserved registers. What to turn in: When you are ready to turn your program in, send me an email with your assembler source code as an attachment. The subject of your email message should be <Lastname> - <Section Number> - CS 250 - Project 4. Then, print out a copy of the source to submit in class. 1 /* Prompt user for two non-negative integers. Raised the first to the power of the second and print it. */ #include <stdio.h> #include <stdlib.h> #define TRUE 1 #define FALSE 0 /* Is the parameter even? */ int is_even (int n); /* Return a*b. -
Chapter 3 Recursion and Recurrence Relations
Chapter 3 Recursion and Recurrence Relations CS 130 – Discrete Structures Recursive Examples CS 130 – Discrete Structures 2 Recursion • Recursive definitions: define an entity in terms of itself. • There are two parts: – Basic case (basis): the most primitive case(s) of the entity are defined without reference to the entity. – Recursive (inductive) case: new cases of the entity are defined in terms of simpler cases of the entity. • Recursive sequences – A sequence is an ordered list of objects, which is potentially infinite. s(k) denotes the kth object in the sequence. – A sequence is defined recursively by explicitly naming the first value (or the first few values) in the sequence and then define later values in the sequence in terms of earlier values. CS 130 – Discrete Structures 3 Examples of Recursive Sequence • A recursively defined sequence: – S(1) = 2 …… basis case – S(n) = 2 * S(n-1), for n >= 2 …… recursive case – what does the sequence look like? – T(1) =1 …… basis case – T(n) = T(n-1) + 3, for n >= 2 …… recursive case – what does the sequence look like? CS 130 – Discrete Structures 4 Fibonacci Sequence • The Fibonacci Sequence is defined by: • F(1) = 1, F(2) = 1 …… basis case • F(n) = F(n-2) + F(n-1), for n > 2 …… recursive case • the sequence? • http://www.mcs.surrey.ac.uk/Personal/R.Knott/Fibonacci/fibnat.html#Rabbits CS 130 – Discrete Structures 5 Proofs Related To Recursively Defined Sequence • Proofs of properties about recursively defined entities are typically inductive proofs. • Prove directly from the definition •