Quantum Proteomics

Total Page:16

File Type:pdf, Size:1020Kb

Quantum Proteomics Quantum Proteomics Fabio Pichierria,b* aG-COE Laboratory, Department of Applied Chemistry, Graduate School of Engineering, Tohoku University, Aoba-yama 6-6-07, Sendai 980-8579, Japan bQuantum Proteomics Initiative (QPI) [Dated: July 29, 2011] Abstract We put forward the idea of establishing a novel interdisciplinary field of research at the interface between quantum mechanics and proteomics. The new field, called quantum proteomics, is defined as the large-scale study of the electronic structure of the proteins that define an organism’s proteome. The electronic structure of proteins is unveiled with the aid of linear-scaling quantum mechanical calculations. Such calculations provide information about the energy levels of the proteins, the charges of their amino acid side chains, their electrostatic potentials and permanent dipole moments (µ). Since the magnitude of the electric dipole moment of any protein is not null (µ≠0 Debye), the dipole moment can be employed to characterize the electronic structure of each protein that belongs to an organism’s proteome. As an example, we investigate six proteins from the thermophilic bacterium Methanobacterium thermoautotrophicum (Mth) whose atomic structures were characterized by solution NMR spectroscopy. Keywords: Proteomics; Quantum mechanics; Structural Biology; Proteins; Electronic structure * Corresponding author. Tel. & Fax: +81-22-795-4132 E-mail address: [email protected] (F. Pichierri) 1 Introduction Proteomics, the field of research concerned with the large-scale study of proteins, gained rapid momentum soon after the completion of the human genome project (HGP) in the early 2001 [1-3]. The identification of about 30,000 genes by HGP paved the way toward the identification and study of the proteins that are expressed by those genes, i.e. the proteome which is defined as the complement of the genome. According to the Human Proteome Project (HPP), the number of protein-coding genes is estimated being close to 20,300 [4]. As of July 2011, the atomic coordinates of more than 70,000 protein structures (from different organisms) have been determined by X-ray crystallography, NMR spectroscopy, and electron microscopy and their coordinates deposited into the Protein Data Bank (PDB) [5]. The determination of the structure of all proteins defining the human proteome as well as any other organism’s proteome is therefore still a very far sight but the large number of proteomics projects that have been started in many countries coupled to technological advances in crystallization and structure determination is speeding up the analysis of the human proteome. Besides the characterization of protein structures, important issues in proteomics research are represented by the study of protein-protein interactions, which define the so called interactome, and protein phosphorylation (phospho-proteomics) which is concerned to cell signaling [6]. Mass spectrometry (MS) is an important tool for proteomics research that, when coupled to computational studies (often grouped under the name of computational proteomics), is likely to advance the field even without 2 knowledge of the 3D structures of proteins [7]. On a different front, theoretical physicists are proposing that complex biological phenomena, mostly involving the interaction among different proteins and other biomolecules, are based on quantum mechanics (QM) [8]. For example, photosynthesis in plants and bacteria and the information processing in microtubules, which is responsible for brain function and emergent properties like consciousness, are suggested to occur as a result of QM being operative within biological environments [9-13]. Several theories and ideas in this field known as quantum biology [14] are still hotly debated and we do not enter into their merit here. Theoretical and computational chemists, on the other hand, started to study the electronic structure of whole protein molecules with the aid of quantum mechanical calculations (quantum biochemistry) [15]. The author, for instance, has recently investigated two membrane proteins, the KcsA potassium channel [16] and the LH2 complex of purple bacteria [17], both of which are characterized by giant, permanent dipole moments which indicate a strong polarization of electronic charge with respect to the membrane’s mean plane. All the above research indicates that there exist strong interdisciplinary research efforts that are ongoing at the interface between biology and the neighboring fields of physics and chemistry. Following these efforts toward understanding biological systems at a quantitative level, here we put forward the idea of establishing a novel interdisciplinary field of research termed quantum proteomics. We define quantum proteomics (QP) as the large-scale study of the electronic structure of the proteins that define an 3 organism’s proteome. The electronic structure of six proteins from Methanobacterium thermoautotrophicum (Mth) [18] is investigated with the aid of linear-scaling quantum mechanical calculations. Such calculations provide information about the energy levels of the proteins, the charges of their amino acid side chains, their electrostatic potentials and permanent dipole moments (µ). Since for any protein µ≠0 Debye, the electric dipole moment is here employed to characterize each protein of the Mth proteome. Methods Electronic structure calculations were performed with the MOPAC2009 software package [19]. This software implements MOZYME, a linear-scaling routine which employs the Lewis structure of the protein for the initial guess of the density matrix and localized orbitals for the self-consistent field (SCF) calculations [20], as shown schematically in Figure 1. The QM calculations employed the new semiempirical PM6 parameters of Stewart [21] which have been recently applied to the investigation of different proteins [22]. The effect of the solvent (water) environment was included with the Conductor-like Screening Model (COSMO) [23] by setting the dielectric constant of the medium to the value ε=78.4. The geometries of the six proteins investigated herein were obtained from the Protein Databank (PDB) [5]: Mth0637 (PDB id 1JRM), Mth0865 (PDB id 1IIO), Mth0895 (PDB id 1ILO), Mth1692 (PDB id 1JCU), Mth1743 (PDB id 1RYJ), and Mth1880 (PDB id 1IQS). Because the structures of these proteins were determined by solution NMR spectroscopy [18], no further geometry 4 optimization was carried out. Also, since all the above PDB structures contain hydrogen atoms, the protonation state of the experimental NMR structure determination was adopted in this study. For Mth1880 the average NMR structure was employed while for the other proteins the first conformer (denoted to as model 1 inside the corresponding PDB file) was employed. One should notice that the dipole moment of a charged protein can be computed with respect to its center of mass and by employing an accelerating frame of reference, as discussed by Stewart [19]. Figure 1. Flow chart showing the steps necessary to obtain the electronic structure of the protein starting from its 3D atomic coordinates downloaded from PDB. Modified and adapted from [20]. 5 Results and discussion Table 1 reports the results of our quantum mechanical calculations performed on six Mth proteins whose 3D structures were characterized by NMR spectroscopy [18]. These proteins differ in size as indicated by the number of atoms (NA parameter) that ranges from 1120 (Mth1743) to 3219 (Mth1692). This size effect is also reflected in the number of filled levels (NL parameter) or occupied molecular orbitals (MOs) which is larger than 4000 for Mth1692. The proteins are characterized by different net charges, positive (+3) for Mth0637, neutral for Mth1880, and negative for the others. In general, regardless of whether the protein bears or not a net charge, there will be a number of counterions interacting with the charged groups of the protein. These counterions, however, do not significantly alter the magnitude and direction of the dipole moment vector of the protein as shown by the author in recent quantum mechanical study of Charybdotoxin, a small venom peptide that interacts with the Kcsa potassium channel [24]. Table 1. Number of atoms (NA), number of filled levels (NL), net charge, and dipole moment (in Debye) of the six Mth proteins. _________________________________________________________________ Protein PDB id NA NL Charge µ(Debye) Mth0637 1JRM 1692 2321 +3 646 Mth0865 1IIO 1204 1695 −6 423 Mth0895 1ILO 1207 1653 −2 334 Mth1692 1JCU 3219 4438 −4 704 Mth1743 1RYJ 1120 1530 −5 290 Mth1880 1IQS 1429 1962 0 434 _________________________________________________________________ 6 With the above considerations in mind, we selected the dipole moment as an index for characterizing the electronic structure of six proteins of the Mth proteome. The computed dipole moment vectors are shown in Figure 2. The dipole moment arises from the spatial distribution of charged residues within each protein as well as the contribution of the dipoles associated to each peptide linkage (~3.5 Debye) [25]. The presence of a dipole in a protein indicates that the electronic charge is polarized (the arrow’s tip represent the positive side of the dipole vector). This is important for biological recognition. Figure 2. The computed dipole moment vectors of six Mth proteins. The magnitude of the dipole moment vector is given in Debye and the base of the arrow is located on the center of mass of each protein (the arrow’s tip corresponds to the positive
Recommended publications
  • Standard Flow Multiplexed Proteomics (Sflompro) – an Accessible and Cost-Effective Alternative to Nanolc Workflows
    bioRxiv preprint doi: https://doi.org/10.1101/2020.02.25.964379; this version posted February 25, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Standard Flow Multiplexed Proteomics (SFloMPro) – An Accessible and Cost-Effective Alternative to NanoLC Workflows Conor Jenkins1 and Ben Orsburn2* 1Hood College Department of Biology, Frederick, MD 2University of Virginia Medical School, Charlottesville, VA *To whom correspondence should be addressed; [email protected] Abstract Multiplexed proteomics using isobaric tagging allows for simultaneously comparing the proteomes of multiple samples. In this technique, digested peptides from each sample are labeled with a chemical tag prior to pooling sample for LC-MS/MS with nanoflow chromatography (NanoLC). The isobaric nature of the tag prevents deconvolution of samples until fragmentation liberates the isotopically labeled reporter ions. To ensure efficient peptide labeling, large concentrations of labeling reagents are included in the reagent kits to allow scientists to use high ratios of chemical label per peptide. The increasing speed and sensitivity of mass spectrometers has reduced the peptide concentration required for analysis, leading to most of the label or labeled sample to be discarded. In conjunction, improvements in the speed of sample loading, reliable pump pressure, and stable gradient construction of analytical flow HPLCs has continued to improve the sample delivery process to the mass spectrometer. In this study we describe a method for performing multiplexed proteomics without the use of NanoLC by using offline fractionation of labeled peptides followed by rapid “standard flow” HPLC gradient LC-MS/MS.
    [Show full text]
  • Targeted Quantitative Proteomics Using Selected Reaction Monitoring
    Targeted Quantitative Proteomics Using Selected Reaction Monitoring (SRM)- Mass Spectrometry Coupled with an 18O-labeled Reference as Internal Standards Jong-Seo Kim, Errol Robinson, Boyd L. Champion, Brianne O. Petritis, Thomas L. Fillmore, Ronald J. Moore, Liu Tao, David G. Camp II, Richard D. Smith, and Wei-Jun Qian Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA Methods Results Effect of Q1 resolution Reproducibility 18O labeling efficiency Overview Patient Samples Conclusions Group A: • To address the need of stable isotope Group B: • The utility of 18O-labeled “universal” O area ratio O area Trypsin 18 Red error bars: label-free peak area ratio labeled internal standards for accurate (= each 16O area / average 18O area) reference as internal standards for targeted O/ digestion 16 18 quantification, we introduce the use of an 16 Green error bars: each pair area ratio of O/ O quantitative proteomics has been Patient peptide 18 Pooled reference ratio O area O-labeled reference as comprehensive samples sample 18 successfully demonstrated 16 18 LC-SRM-MS O/ Concentration ratio ( O/ O) internal standards for accurate SRM-MS- 18O labeling 16 – A linear dynamic range of quantification Concen. based quantification instead of using labeled 18 0.01 0.02 0.04 0.1 0.2 1 5 10 25 50 100 4 O-labeled “universal” Ratio ~ 10 in relative concentration synthetic peptides. reference 16O/18O 6.1 12.5 13.7 13.8 5.5 7.7 16.8 2.8 4.6 4.2 1.6 pairs – Better reproducibility than label-free 18 Label • O-labeling efficiency for most peptides is 39.2 23.4 47.5 26.5 19.3 10.6 31.2 3.2 10.7 4.8 3.5 Fig.
    [Show full text]
  • Quantitative Proteomics Reveals the Selectivity of Ubiquitin-Binding Autophagy Receptors in the Turnover of Damaged Lysosomes by Lysophagy
    bioRxiv preprint doi: https://doi.org/10.1101/2021.07.19.452535; this version posted July 19, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Quantitative proteomics reveals the selectivity of ubiquitin-binding autophagy receptors in the turnover of damaged lysosomes by lysophagy Vinay Eapen1,*, Sharan Swarup1,*, Melissa Hoyer1,*, Joao Paolo1 and J. Wade Harper 1 1Department of Cell Biology, Harvard Medical School, Boston MA 02115 *, Equal Contribution Send correspondence to: [email protected] ABSTRACT Removal of damaged organelles via the process of selective autophagy constitutes a major form of cellular quality control. Damaged organelles are recognized by a dedicated surveillance machinery, leading to the assembly of an autophagosome around the damaged organelle, prior to fusion with the degradative lysosomal compartment. Lysosomes themselves are also prone to damage and are degraded through the process of lysophagy. While early steps involve recognition of ruptured lysosomal membranes by glycan-binding Galectins and ubiquitylation of transmembrane lysosomal proteins, many steps in the process, and their inter-relationships, remain poorly understood, including the role and identity of cargo receptors required for completion of lysophagy. Here, we employ quantitative organelle capture and proximity biotinylation proteomics of autophagy adaptors, cargo receptors, and Galectins in response to acute lysosomal damage, thereby revealing the landscape of lysosomal proteome remodeling during lysophagy. Among proteins dynamically recruited to damaged lysosomes were ubiquitin-binding autophagic cargo receptors.
    [Show full text]
  • Mass Spectrometry and Proteomics Using R/Bioconductor
    Mass spectrometry and proteomics Using R/Bioconductor Laurent Gatto CSAMA - Bressanone - 25 July 2019 1 / 40 Slides available at: http://bit.ly/20190725csama These slides are available under a creative common CC-BY license. You are free to share (copy and redistribute the material in any medium or format) and adapt (remix, transform, and build upon the material) for any purpose, even commercially . 2 / 40 On the menu Morning lecture: 1. Proteomics in R/Bioconductor 2. How does mass spectrometry-based proteomics work? 3. Quantitative proteomics 4. Quantitative proteomics data processing and analysis Afternoon lab: Manipulating MS data (raw and identification data) Manipulating quantitative proteomics data Data processing and DE 3 / 40 4 / 40 1. Proteomics and mass spectrometry packages, questions and workow in Bioconductor. 5 / 40 2. How does mass spectrometry work? (applies to proteomics and metabolomics) 6 / 40 Overview 7 / 40 How does MS work? 1. Digestion of proteins into peptides - as will become clear later, the features we measure in shotgun (or bottom-up) proteomics are peptides, not proteins. 2. On-line liquid chromatography (LC-MS) 3. Mass spectrometry (MS) is a technology that separates charged molecules (ions, peptides) based on their mass to charge ratio (M/Z). 8 / 40 Chromatography MS is generally coupled to chromatography (liquid LC, but can also be gas- based GC). The time an analytes takes to elute from the chromatography column is the retention time. 9 / 40 An mass spectrometer is composed of three components: 1. The source, that ionises the molecules: examples are Matrix-assisted laser desorption/ionisation (MALDI) or electrospray ionisation (ESI).
    [Show full text]
  • Quantitative Assay of Targeted Proteome in Tomato Trichome
    Takemori et al. Plant Methods (2019) 15:40 https://doi.org/10.1186/s13007-019-0427-7 Plant Methods METHODOLOGY Open Access Quantitative assay of targeted proteome in tomato trichome glandular cells using a large-scale selected reaction monitoring strategy Ayako Takemori1, Taiken Nakashima2, Hisashi Ômura3, Yuki Tanaka4, Keisuke Nakata1, Hiroshi Nonami1,5,6 and Nobuaki Takemori4,6* Abstract Background: Glandular trichomes found in vascular plants are called natural cell factories because they synthesize and store secondary metabolites in glandular cells. To systematically understand the metabolic processes in glandular cells, it is indispensable to analyze cellular proteome dynamics. The conventional proteomics methods based on mass spectrometry have enabled large-scale protein analysis, but require a large number of trichome samples for in-depth analysis and are not suitable for rapid and sensitive quantifcation of targeted proteins. Results: Here, we present a high-throughput strategy for quantifying targeted proteins in specifc trichome glandular cells, using selected reaction monitoring (SRM) assays. The SRM assay platform, targeting proteins in type VI trichome gland cells of tomato as a model system, demonstrated its efectiveness in quantifying multiple proteins from a lim- ited amount of sample. The large-scale SRM assay uses a triple quadrupole mass spectrometer connected online to a nanofow liquid chromatograph, which accurately measured the expression levels of 221 targeted proteins con- tained in the glandular cell sample recovered from 100 glandular trichomes within 120 min. Comparative quantitative proteomics using SRM assays of type VI trichome gland cells between diferent organs (leaves, green fruits, and calyx) revealed specifc organ-enriched proteins. Conclusions: We present a targeted proteomics approach using the established SRM assays which enables quantif- cation of proteins of interest with minimum sampling efort.
    [Show full text]
  • Novel Insights Into Quantitative Proteomics from an Innovative
    Novel Insights into Quantitative Proteomics from an Innovative Bottom-Up Simple Light Isotope Metabolic (bSLIM) Labeling Data Processing Strategy Nicolas Sénécaut, Gelio Alves, Hendrik Weisser, Laurent Lignières, Samuel Terrier, Lilian Yang-Crosson, Pierre Poulain, Gaëlle Lelandais, Yi-Kuo Yu, Jean-Michel Camadro To cite this version: Nicolas Sénécaut, Gelio Alves, Hendrik Weisser, Laurent Lignières, Samuel Terrier, et al.. Novel Insights into Quantitative Proteomics from an Innovative Bottom-Up Simple Light Isotope Metabolic (bSLIM) Labeling Data Processing Strategy. Journal of Proteome Research, American Chemical Society, 2021, 20 (3), pp.1476-1487. 10.1021/acs.jproteome.0c00478. hal-03266586 HAL Id: hal-03266586 https://hal.archives-ouvertes.fr/hal-03266586 Submitted on 21 Jun 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives| 4.0 International License pubs.acs.org/jpr Article Novel Insights into Quantitative Proteomics from an Innovative Bottom-Up Simple Light Isotope Metabolic (bSLIM) Labeling Data Processing Strategy Nicolas Sénécaut, Gelio Alves, Hendrik Weisser, Laurent Lignieres,̀ Samuel Terrier, Lilian Yang-Crosson, Pierre Poulain, Gaellë Lelandais, Yi-Kuo Yu, and Jean-Michel Camadro* Cite This: J.
    [Show full text]
  • Introduction to Label-Free Quantification
    SeqAn and OpenMS Integration Workshop Temesgen Dadi, Julianus Pfeuffer, Alexander Fillbrunn The Center for Integrative Bioinformatics (CIBI) Mass-spectrometry data analysis in KNIME Julianus Pfeuffer, Alexander Fillbrunn OpenMS • OpenMS – an open-source C++ framework for computational mass spectrometry • Jointly developed at ETH Zürich, FU Berlin, University of Tübingen • Open source: BSD 3-clause license • Portable: available on Windows, OSX, Linux • Vendor-independent: supports all standard formats and vendor-formats through proteowizard • OpenMS TOPP tools – The OpenMS Proteomics Pipeline tools – Building blocks: One application for each analysis step – All applications share identical user interfaces – Uses PSI standard formats • Can be integrated in various workflow systems – Galaxy – WS-PGRADE/gUSE – KNIME Kohlbacher et al., Bioinformatics (2007), 23:e191 OpenMS Tools in KNIME • Wrapping of OpenMS tools in KNIME via GenericKNIMENodes (GKN) • Every tool writes its CommonToolDescription (CTD) via its command line parser • GKN generates Java source code for nodes to show up in KNIME • Wraps C++ executables and provides file handling nodes Installation of the OpenMS plugin • Community-contributions update site (stable & trunk) – Bioinformatics & NGS • provides > 180 OpenMS TOPP tools as Community nodes – SILAC, iTRAQ, TMT, label-free, SWATH, SIP, … – Search engines: OMSSA, MASCOT, X!TANDEM, MSGFplus, … – Protein inference: FIDO Data Flow in Shotgun Proteomics Sample HPLC/MS Raw Data 100 GB Sig. Proc. Peak 50 MB Maps Data Reduction 1
    [Show full text]
  • Integrated Identification and Quantification Error Probabilities For
    bioRxiv preprint doi: https://doi.org/10.1101/357285; this version posted June 28, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Integrated identification and quantification error probabilities for shotgun proteomics Matthew The1 and Lukas K¨all1 1Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, Royal Institute of Technology { KTH, Box 1031, 17121 Solna, Sweden June 27, 2018 Abstract Protein quantification by label-free shotgun proteomics experiments is plagued by a multitude of error sources. Typical pipelines for identifying differentially expressed proteins use intermediate filters in an attempt to control the error rate. However, they often ignore certain error sources and, moreover, regard filtered lists as completely correct in subsequent steps. These two indiscretions can easily lead to a loss of control of the false discovery rate (FDR). We propose a probabilistic graphical model, Triqler, that propagates error information through all steps, employing distributions in favor of point estimates, most notably for missing value imputation. The model outputs posterior probabilities for fold changes between treatment groups, highlighting uncertainty rather than hiding it. We analyzed 3 engineered datasets and achieved FDR control and high sensitivity, even for truly absent proteins. In a bladder cancer clinical dataset we discovered 35 proteins at 5% FDR, with the original study discovering none at this threshold. Compellingly, these proteins showed enrichment for functional annotation terms. The model executes in minutes and is freely available at https://pypi.org/project/triqler/.
    [Show full text]
  • Quantitative Proteomics Reveals the Protective Effects of ESD Against
    bioRxiv preprint doi: https://doi.org/10.1101/2020.07.15.204552; this version posted July 15, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Quantitative proteomics reveals the protective effects of ESD against 2 osteoarthritis via attenuating inflammation and modulating immune 3 response 4 5 Ying Hao1,4,#, Yang Wu1,#, Shanglong Wang2,#, Chungguo Wang3, Sihao Qu1, Li Li2, Guohua Yu1, 6 Zimin Liu2, Zhen Zhao4, Pengcheng Fan5,*, Zengliang Zhang2,6,*, Yuanyuan Shi1,* 7 1 School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102488, China 8 2 Chenland Nutritionals, Inc, Irvine, CA, 92614, USA 9 3 Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, 10 Beijing 100029, China 11 4 Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, New York, 12 10065, USA 13 5 State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Institute of 14 Lifeomics, Beijing 102206, China 15 6 Traditional Chinese Medicine College, Inner Mongolia Medical University, Jinshan 16 Development Zone Hohhot, Inner Mongolia 010110,China 17 18 #These authors contributed equally to this work as co-first authors. 19 *Correspondence to: Yuanyuan Shi, [email protected]; Zengliang Zhang, 20 [email protected]; Pengcheng Fan, [email protected]. 21 22 Abstract 23 Epimedium, Salvia miltiorrhiza, and Dioscorea nipponica Makino (ESD) have been combined to 24 treat osteoarthritis (OA) for a long time.
    [Show full text]
  • When 2D Is Not Enough, Go for an Extra Dimension. Rabilloud T.Proteomics
    This is the author version of the following article: When 2D is not enough, go for an extra dimension. Rabilloud T.Proteomics. 2013 Jul;13(14):2065-8. doi: 10.1002/pmic.201300215, which has been published in final form at http://onlinelibrary.wiley.com/doi/10.1002/pmic.201300215/abstract;jsessionid=715B 759B04B94BC957971B3A6206D994.f03t01 When 2D is not enough, go for an extra dimension Thierry Rabilloud 1,2,3 1: CNRS, Laboratory of Chemistry and Biology of Metals (LCBM), UMR 5249, Grenoble, France 2: Univ. Grenoble Alpes, LCBM, Grenoble, France 3: CEA, iRTSV/LCBM, Grenoble France Postal address Pro-MD team, UMR CNRS-CEA-UJF 5249, iRTSV/LCBM, CEA Grenoble, 17 rue des martyrs, 38054 Grenoble CEDEX 9, France email: [email protected] Abstract The use of an extra SDS separation in a different buffer system provide a technique for deconvoluting 2D gel spots made of several proteins [Colignon et al. Proteomics, 2013, 13: xxx-yyy]. This technique keeps the quantitative analysis of the protein amounts and combines it with a strongly improved identification process by mass spectrometry, removing identification ambiguities in most cases. In some favorable cases, post-translational variants can be separated by this procedure. This versatile and easy to use technique is anticipated to be a very valuable addition to the toolbox used in 2D gel-based proteomics. Main text Because of its robustness, capacity to handle large sample series, easy interface with many other biochemical techniques and above all its unique ability to analyse complete proteins, 2D gel electrophoresis is still a relevant approach in many proteomic studies [1, 2].
    [Show full text]
  • Quantitative Proteomics Links the LRRC59 Interactome to Mrna Translation on the ER Membrane
    bioRxiv preprint doi: https://doi.org/10.1101/2020.03.04.975474; this version posted March 5, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Quantitative proteomics links the LRRC59 interactome to mRNA translation on the ER membrane Molly M. Hannigan1,†, Alyson M. Hoffman2,†, J. Will Thompson3,4, Tianli Zheng1, and Christopher V. Nicchitta1,2* Departments of Cell Biology1, Biochemistry2 and Pharmacology and Cancer Biology3 Duke Proteomics and Metabolomics Shared Resource4 Duke University School of Medicine Durham, North Carolina, 27710 USA * To whom correspondence should be addressed: ORCID: 0000-0001-7889-1155 E-mail: [email protected] Department of Cell Biology, Box 3709 Duke University School of Medicine Durham, NC 27705 USA †: Equal first authors Condensed title: Spatial organization of the endoplasmic reticulum 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.03.04.975474; this version posted March 5, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Summary 2 Hannigan et al. characterize the protein interactomes of four ER ribosome-binding 3 proteins, providing evidence that ER-bound ribosomes reside in distinct molecular 4 environments. Their data link SEC62 to ER redox regulation and chaperone trafficking, 5 and suggest a role for LRRC59 in SRP-coupled protein synthesis.
    [Show full text]
  • Applications of Modern Proteomics in Biology and Medicine
    Applications of Modern Proteomics in Biology and Medicine Namrata Udeshi Broad Institute of MIT and Harvard “NexGen” proteomics has arrived: 4-5 fold increased detection/ quantification of proteins, PTMs in cells/tissues over past 3 yrs • Appropriate study design Unprecedented definition of proteins in cells and tissues • Robust sample processing methods • 10K – 12K distinct proteins • Precise and reproducible • Quantitative labeling of peptides for multiplexed anal. • Higher throughput • Data acquired with state-of-the- Deep and broad PTM coverage art LC-MS technology • >25K phosphosites • Statistically rigorous data • >20K ubiquitinated peps analysis • >10K acetylation sites • The number of proteins observed in tissues now begins to approximate the expressed proteome • PTM analysis provide window into function and pathogenesis not accessible by genomic methods Precise measurement of proteins, their modifications and interaction partners is essential complement to genomics Understand disease biology, cell circuitry and signaling Connect genes to physiology Define the targets and mechanism of action of drugs High throughput quantitative biology (Hasmik Keshishian) Current Large Scale Quantitative Proteomics Workflow (95%) 8-12 bRP fractions PTMs (5%) 24 bRP fractions Proteome High Resolution UPLC-HCD-MS/MS Rep 2 Rep 1 Data Analysis Statistical Analysis Important PTMs currently amenable to large-scale mass spectrometry analysis PTM Mass Amino acids Frequency Enrichment methods Coverage shi (Δm ;Da ) Phosphorylaon 79.9663 Ser, Thr, Tyr 3.1%
    [Show full text]