1992-12R.Pdf
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Natural Communities of Michigan: Classification and Description
Natural Communities of Michigan: Classification and Description Prepared by: Michael A. Kost, Dennis A. Albert, Joshua G. Cohen, Bradford S. Slaughter, Rebecca K. Schillo, Christopher R. Weber, and Kim A. Chapman Michigan Natural Features Inventory P.O. Box 13036 Lansing, MI 48901-3036 For: Michigan Department of Natural Resources Wildlife Division and Forest, Mineral and Fire Management Division September 30, 2007 Report Number 2007-21 Version 1.2 Last Updated: July 9, 2010 Suggested Citation: Kost, M.A., D.A. Albert, J.G. Cohen, B.S. Slaughter, R.K. Schillo, C.R. Weber, and K.A. Chapman. 2007. Natural Communities of Michigan: Classification and Description. Michigan Natural Features Inventory, Report Number 2007-21, Lansing, MI. 314 pp. Copyright 2007 Michigan State University Board of Trustees. Michigan State University Extension programs and materials are open to all without regard to race, color, national origin, gender, religion, age, disability, political beliefs, sexual orientation, marital status or family status. Cover photos: Top left, Dry Sand Prairie at Indian Lake, Newaygo County (M. Kost); top right, Limestone Bedrock Lakeshore, Summer Island, Delta County (J. Cohen); lower left, Muskeg, Luce County (J. Cohen); and lower right, Mesic Northern Forest as a matrix natural community, Porcupine Mountains Wilderness State Park, Ontonagon County (M. Kost). Acknowledgements We thank the Michigan Department of Natural Resources Wildlife Division and Forest, Mineral, and Fire Management Division for funding this effort to classify and describe the natural communities of Michigan. This work relied heavily on data collected by many present and former Michigan Natural Features Inventory (MNFI) field scientists and collaborators, including members of the Michigan Natural Areas Council. -
Heuchera/X Heucherella/Tiarella
Heuchera/x Heucherella/Tiarella Mark Begick The family Saxifragaceae comprises chiefly north temperate plants and includes many alpine and arctic species of xerophytic habit. This makes them adaptable and able to survive under different conditions, which is the reason why saxifrages, in particular) are so often used for dry rockery plantings. The Saxifragaceae is a large family and includes many easily recognizable genera (e.g., Astilbe, Bergenia, Heuchera, Heucherella, Rogersia, Saxifraga, and Tiarella, just to name a few). Species and cultivars of Bergenia and Heuchera are tough and persistent, so make good border plants for cool climates. Heuchera – The Coral Bells The genus Heuchera is named after Johann Heinrich von Heucher, who was a German professor of medicine. Fifty to seventy species are native to North America but only H. sanguinea, coral bells, and hybrids have gained popularity in North American gardens. These plants are either evergreen or semi- evergreen. Most of the improved cultivars are hybrids between H. sanguinea, H. americana, and H. micrantha. Many of these hybridized plants are ornamentally chosen for their colorful foliage. A few do have ornamental flowers of white, pink, or red . Heucheras do best in rich, moist well-drained soils in partial shade. They are better adapted to cooler climates, and sometimes this can enhance leaf color, especially in fall. x Heucherella – The Foamy Bells Many examples of hybrids between species of a genus occur but there are a few between genera. x Heucherella (the x denotes an intergeneric cross but is not sounded) was produced in 1912 at Nancy in France between a Heuchera hybrid and Tiarella cordifolia. -
Outline of Angiosperm Phylogeny
Outline of angiosperm phylogeny: orders, families, and representative genera with emphasis on Oregon native plants Priscilla Spears December 2013 The following listing gives an introduction to the phylogenetic classification of the flowering plants that has emerged in recent decades, and which is based on nucleic acid sequences as well as morphological and developmental data. This listing emphasizes temperate families of the Northern Hemisphere and is meant as an overview with examples of Oregon native plants. It includes many exotic genera that are grown in Oregon as ornamentals plus other plants of interest worldwide. The genera that are Oregon natives are printed in a blue font. Genera that are exotics are shown in black, however genera in blue may also contain non-native species. Names separated by a slash are alternatives or else the nomenclature is in flux. When several genera have the same common name, the names are separated by commas. The order of the family names is from the linear listing of families in the APG III report. For further information, see the references on the last page. Basal Angiosperms (ANITA grade) Amborellales Amborellaceae, sole family, the earliest branch of flowering plants, a shrub native to New Caledonia – Amborella Nymphaeales Hydatellaceae – aquatics from Australasia, previously classified as a grass Cabombaceae (water shield – Brasenia, fanwort – Cabomba) Nymphaeaceae (water lilies – Nymphaea; pond lilies – Nuphar) Austrobaileyales Schisandraceae (wild sarsaparilla, star vine – Schisandra; Japanese -
Saxifragaceae Saxifrage Family
Saxifragaceae Page | 921 saxifrage family About 700 species in 40 genera comprise this family of herbs and shrubs. Nova Scotia has several representative species, ranging from the highland saxifrages to deciduous forest mitreworts. Calyx and corolla are 4-5-merous. Sepals appear to be lobes of the hypanthium. Petals are variable in size and dissection. Stamens are equal in number or double the number of sepals and petals. Pistils number one or three; carpels 2–5, united basally to form a compound ovary, which may be deeply lobed. Fruit is dehiscent. Leaves are alternate with or without stipules, basal or cauline. Several genera are cultivated, but not persisting outside of cultivation. Key to genera A. Leaves opposite, cauline; plant sprawling; flowers 4-merous; petals absent. Chrysosplenium aa. Leaves mostly in a basal rosette, or very small and alternate; plants erect; B flowers 5-merous; petals present. B. Flowers solitary; stamens equal in number to the petals. Parnassia bb. Flowers several to numerous; stamens double the number of petals. C C. Leaves small, crowded, sessile or nearly so. Saxifraga cc. Leaves mostly basal, on long petioles. D D. Leaves serrate; petals entire; capsule beak Tiarella acute. dd. Leaves crenate; petals finely cleft; capsule beak Mitella obtuse. Chrysosplenium L. Plants of cool regions, all 40 species have minute flowers. Petals are absent; calyx is four-merous. Flowers are perfect and perigynous. Hypanthium has eight lobes in its centre, with 4–8 stamens attached. Perennial creeping herbs, they are freely branched, their leaves simple. 3-81 Saxifragaceae Page | 922 Chrysosplenium americanum Schwein. Golden saxifrage; dorine d'Amérique A smooth, nearly succulent plant, it has many trailing branches, forming thick mats. -
Winter 2014-2015 (22:3) (PDF)
Contents NATIVE NOTES Page Fern workshop 1-2 Wavey-leaf basket Grass 3 Names Cacalia 4 Trip Report Sandstone Falls 5 Kate’s Mountain Clover* Trip Report Brush Creek Falls 6 Thank yous memorial 7 WEST VIRGINIA NATIVE PLANT SOCIETY NEWSLETTER News of WVNPS 8 VOLUME 22:3 WINTER 2014-15 Events, Dues Form 9 Judy Dumke-Editor: [email protected] Phone 740-894-6859 Magnoliales 10 e e e visit us at www.wvnps.org e e e . Fern Workshop University of Charleston Charleston WV January 17 2015, bad weather date January 24 2015 If you have thought about ferns, looked at them, puzzled over them or just want to know more about them join the WVNPS in Charleston for a workshop led by Mark Watson of the University of Charleston. The session will start at 10 A.M. with a scheduled end point by 12:30 P.M. A board meeting will follow. The sessions will be held in the Clay Tower Building (CTB) room 513, which is the botany lab. If you have any pressed specimens to share, or to ask about, be sure to bring them with as much information as you have on the location and habitat. Even photographs of ferns might be of interest for the session. If you have a hand lens that you favor bring it along as well. DIRECTIONS From the North: Travel I-77 South or 1-79 South into Charleston. Follow the signs to I-64 West. Take Oakwood Road Exit 58A and follow the signs to Route 61 South (MacCorkle Ave.). -
Amorpha Canescens Pursh Leadplant
leadplant, Page 1 Amorpha canescens Pursh leadplant State Distribution Best Survey Period Photo by Susan R. Crispin Jan Feb Mar Apr May Jun Jul Aug Sept Oct Nov Dec Status: State special concern the Mississippi valley through Arkansas to Texas and in the western Great Plains from Montana south Global and state rank: G5/S3 through Wyoming and Colorado to New Mexico. It is considered rare in Arkansas and Wyoming and is known Other common names: lead-plant, downy indigobush only from historical records in Montana and Ontario (NatureServe 2006). Family: Fabaceae (pea family); also known as the Leguminosae. State distribution: Of Michigan’s more than 50 occurrences of this prairie species, the vast majority of Synonym: Amorpha brachycarpa E.J. Palmer sites are concentrated in southwest Lower Michigan, with Kalamazoo, St. Joseph, and Cass counties alone Taxonomy: The Fabaceae is divided into three well accounting for more than 40 of these records. Single known and distinct subfamilies, the Mimosoideae, outlying occurrences have been documented in the Caesalpinioideae, and Papilionoideae, which are last two decades from prairie remnants in Oakland and frequently recognized at the rank of family (the Livingston counties in southeast Michigan. Mimosaceae, Caesalpiniaceae, and Papilionaceae or Fabaceae, respectively). Of the three subfamilies, Recognition: Leadplant is an erect, simple to sparsely Amorpha is placed within the Papilionoideae (Voss branching shrub ranging up to ca. 1 m in height, 1985). Sparsely hairy plants of leadplant with greener characterized by its pale to grayish color derived from leaves have been segregated variously as A. canescens a close pubescence of whitish hairs that cover the plant var. -
Diptera: Syrphidae)
A revision of Nearctic Dasysyrphus (Diptera: Syrphidae) Michelle Mary Locke A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfillment of the requirements for the degree of Master of Science in Biology Carleton University Ottawa, Ontario ©2012 Michelle Mary Locke Library and Archives Bibliotheque et Canada Archives Canada Published Heritage Direction du Branch Patrimoine de I'edition 395 Wellington Street 395, rue Wellington Ottawa ON K1A0N4 Ottawa ON K1A 0N4 Canada Canada Your file Votre reference ISBN: 978-0-494-91543-1 Our file Notre reference ISBN: 978-0-494-91543-1 NOTICE: AVIS: The author has granted a non L'auteur a accorde une licence non exclusive exclusive license allowing Library and permettant a la Bibliotheque et Archives Archives Canada to reproduce, Canada de reproduire, publier, archiver, publish, archive, preserve, conserve, sauvegarder, conserver, transmettre au public communicate to the public by par telecommunication ou par I'lnternet, preter, telecommunication or on the Internet, distribuer et vendre des theses partout dans le loan, distrbute and sell theses monde, a des fins commerciales ou autres, sur worldwide, for commercial or non support microforme, papier, electronique et/ou commercial purposes, in microform, autres formats. paper, electronic and/or any other formats. The author retains copyright L'auteur conserve la propriete du droit d'auteur ownership and moral rights in this et des droits moraux qui protege cette these. Ni thesis. Neither the thesis nor la these ni des extraits substantiels de celle-ci substantial extracts from it may be ne doivent etre imprimes ou autrement printed or otherwise reproduced reproduits sans son autorisation. -
Revision of Nearctic Dasysyrphus Enderlein (Diptera: Syrphidae)
Zootaxa 3660 (1): 001–080 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Monograph ZOOTAXA Copyright © 2013 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.3660.1.1 http://zoobank.org/urn:lsid:zoobank.org:pub:95ADD39C-98BE-4879-B070-34A5D86BD67B ZOOTAXA 3660 Revision of Nearctic Dasysyrphus Enderlein (Diptera: Syrphidae) MICHELLE M. LOCKE1,2,3 & JEFFREY H. SKEVINGTON1,2 1Canadian National Collection of Insects, Arachnids and Nematodes, Agriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, ON K1A 0C6, Canada Email: [email protected]; [email protected] 2Department of Biology, 209 Nesbitt Building, Carleton University, 1125 Colonel By Drive, Ottawa, Ont., Canada K1S 5B6 3Corresponding author Magnolia Press Auckland, New Zealand Accepted by D. Bickel: 8 Apr. 2013; published: 22 May 2013 Licensed under a Creative Commons Attribution License http://creativecommons.org/licenses/by/3.0 MICHELLE M. LOCKE & JEFFREY H. SKEVINGTON Revision of Nearctic Dasysyrphus Enderlein (Diptera: Syrphidae) (Zootaxa 3660) 80 pp.; 30 cm. 22 May 2013 ISBN 978-1-77557-174-2 (paperback) ISBN 978-1-77557-175-9 (Online edition) FIRST PUBLISHED IN 2013 BY Magnolia Press P.O. Box 41-383 Auckland 1346 New Zealand e-mail: [email protected] http://www.mapress.com/zootaxa/ © 2013 Magnolia Press ISSN 1175-5326 (Print edition) ISSN 1175-5334 (Online edition) 2 · Zootaxa 3660 (1) © 2013 Magnolia Press LOCKE & SKEVINGTON Table of contents Abstract . 3 Introduction . 3 Materials and Methods . 6 Results . 18 Phylogenetic Analysis . 18 Species Concepts and Key . 23 Dasysyrphus Enderlein 1938 . 28 Key to Species of Nearctic Dasysyrphus Enderlein 1938 . -
Plant-Hummingbird Interactions and Temporal Nectar Availability in a Restinga from Brazil
Anais da Academia Brasileira de Ciências (2015) 87(4): 2163-2175 (Annals of the Brazilian Academy of Sciences) Printed version ISSN 0001-3765 / Online version ISSN 1678-2690 http://dx.doi.org/10.1590/0001-3765201520140349 www.scielo.br/aabc Plant-hummingbird interactions and temporal nectar availability in a restinga from Brazil LORENA C.N. FONSECA1,5, JEFERSON VIZENTIN-BUGONI2,6, ANDRÉ R. RECH3 and MARIA ALICE S. ALVES4 1Programa de Pós-Graduação em Ecologia, Universidade Federal do Rio de Janeiro/ UFRJ, CCS, IB, Caixa Postal 68020, 21941-590 Rio de Janeiro, RJ, Brasil 2Programa de Pós-Graduação em Ecologia, Instituto de Biologia, Universidade Estadual de Campinas/ UNICAMP, Rua Monteiro Lobato, 970, Barão Geraldo, 13083-970 Campinas, SP, Brasil 3Instituto de Biologia, Universidade Federal de Uberlândia/UFU, Av. Pará, 1720, Campus Umuarama, 38405-320 Uberlândia, MG, Brasil 4Departamento de Ecologia, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro/UERJ, Rua São Francisco Xavier, 524, Maracanã, 20550-011 Rio de Janeiro, RJ, Brasil 5Companhia Ambiental do Estado de São Paulo/CETESB, Av. Professor Frederico Hermann Jr, 345, Pinheiros, 05459-900 São Paulo, SP, Brasil 6Center for Macroecology, Evolution and Climate, Natural History Museum of Denmark, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen Ø, Denmark Manuscript received on July 10, 2014; accepted for publication on April 27, 2015 ABSTRACT Hummingbirds are the most important and specialized group of pollinating birds in the Neotropics and their interactions with plants are key components to many communities. In the present study we identified the assemblage of plants visited by hummingbirds and investigated the temporal availability of floral resources in an area of restinga, sandy plain coastal vegetation associated with the Atlantic forest, in Southeastern Brazil. -
Grace Goode's Miniature Neoregelia Hybrids
Bromeliaceae VOLUME XLI - No. 6 - NOV/DEC 2007 The Bromeliad Society of Queensland Inc. P. O. Box 565, Fortitude Valley Queensland, Australia 4006, Home Page www.bromsqueensland.com OFFICERS PRESIDENT Olive Trevor (07) 3351 103 VICE PRESIDENT Barry Kable PAST PRESIDENT Bob Reilly (07) 3870 809 SECRETARY Chris Coulthard TREASURER Glenn Bernoth (07) 4661 3 634 BROMELIACEAE EDITOR Ross Stenhouse SHOW ORGANISER Bob Cross COMMITTEE David Rees, Paul Dunstan, Ann McBur- nie, Arnold James,Viv Duncan MEMBERSHIP SECRETARY Roy Pugh (07) 363 5057 SEED BANK CO-ORDINATOR Doug Parkinson (07) 5497 50 AUDITOR Anna Harris Accounting Services SALES AREA STEWARD Pat Barlow FIELD DAY CO-ORDINATOR Nancy Kickbusch LIBRARIAN Evelyn Rees ASSISTANT SHOW ORGANISER Phil Beard SUPPER STEWARDS Nev Ryan, Barry Genn PLANT SALES Nancy Kickbusch (Convenor) N. Poole (Steward) COMPETITION STEWARDS Dorothy Cutcliffe, Alan Phythian CHIEF COMPETITION STEWARD Jenny Cakurs HOSTESS Gwen Parkinson BSQ WEBMASTER Ross Stenhouse LIFE MEMBERS Grace Goode OAM Peter Paroz, Michael O’Dea Editors Email Address: [email protected] The Bromeliad Society of Queensland Inc. gives permission to all Bromeliad Societies to re- print articles in their journals provided proper acknowledgement is given to the original author and the Bromeliaceae, and no contrary direction is published in Bromeliaceae. This permission does not apply to any other person or organisation without the prior permission of the author. Opinions expressed in this publication are those of the individual contributor and may not neces- sarily reflect the opinions of the Bromeliad Society of Queensland or of the Editor Authors are responsible for the accuracy of the information in their articles. -
Montane Cliff (Mafic Subtype)
MONTANE CLIFF (MAFIC SUBTYPE) Concept: Montane Cliffs are steep to vertical, sparsely vegetated rock outcrops on river bluffs, lower slopes, and other topographically sheltered locations. This range of sites is narrower than the features that are commonly called cliffs; vertical outcrops on ridge tops and upper slopes are classified as Rocky Summit communities. Some of the communities called cliffs in the 3rd Approximation have been removed to the new glade types. The Mafic Subtype covers examples occurring on mafic rock substrates or mixed substrates containing plant species characteristic of higher base status conditions. Distinguishing Features: Montane Cliffs are distinguished from forest and shrubland communities by having contiguous rock outcroppings large enough to form a canopy break. They are distinguished from Low Elevation Acidic Glades and Low Elevation Basic Glades by having vertical rock more prominent and by having only limited area of soil mats with herbaceous vegetation. The herbaceous and woody vegetation that is present on Montane Cliffs is primarily rooted on bare rock or in crevices or deep pockets rather than in thin soil mats. See the Montane Cliff (Acidic Herb Subtype) for more details on distinguishing Montane Cliffs from other rock outcrop communities. The Mafic Subtype is distinguished by the presence of plants that indicate basic soil conditions but without those indicative of stronger calcareous conditions. Cystopteris protrusa, Micranthes (Saxifraga) careyana, Micranthes (Saxifraga) caroliniana, Asplenium trichomanes, Asplenium rhizophyllum, Aquilegia canadensis, Hydrangea arborescens, Philadelphus inodorus, Ulmus rubra, or species of Rich Cove Forests indicate high base status. Indicator plants are often low in abundance, with more widespread species of rock outcrops or of surrounding forests more common. -
1 Supplemental Methods
Supplemental methods for: Geographic range dynamics drove hybridization in a lineage of angiosperms 1 1 1 2 1 R.A. FOLK , C.J. VISGER , P.S. SOLTIS , D.E. SOLTIS , R. GURALNICK 1Florida Museum of Natural History 2Biology, University of Florida 3Author for correspondence: [email protected] 1 Sequencing: Sequencing followed previously developed methods1 with the following modifications: library preparation was performed by RAPiD Genomics (Gainesville, FL; using TruSeq-like adapters as in Folk et al. 2015), the targeted insert size was > 200 bp, and sequencing used a 300-cyle (150 bp read) kit for a HiSeq 3000 instrument. The overall outgroup sampling (21 taxa total; Supplementary Table S1) was improved > 5 fold.2 This includes several representatives each of all lineages that have been hypothesized to undergo hybridization in the Heuchera group of genera. For the transcriptomes, reads were assembled against the low-copy nuclear loci from our targeted enrichment experiment, where the targets stripped of intronic sequence but assembly methods otherwise followed a previously developed BWA-based approach1. Transcriptomic reads were also mapped to a Heuchera parviflora var. saurensis chloroplast genome reference1 which was stripped of intronic and intergenic sequence. Assembly methods for target-enriched data followed the BWA-based approach1 directly. In practice, intronic sequence can be recovered from RNAseq data,3 but has consistently lower coverage (pers. obs.); moreover non-coding read dropout can be expected to be high for more divergent outgroups added here. For this reason, only coding reference sequences were used to assemble transcriptomic taxa. For nuclear analyses, reads were assembled with 277 references comprising the gene sequences used for bait design, with intronic sequences stripped.