D3.1 5G Waveform Candidate Selection
Total Page:16
File Type:pdf, Size:1020Kb
The 5GNOW Project Consortium groups the following organizations: Partner Name Short name Country FRAUNHOFER-GESELLSCHAFT ZUR FOERDERUNG DER ANGEWANDTEN FORSCHUNG E.V. HHI Germany ALCATEL LUCENT DEUTSCHLAND AG ALUD Germany COMMISSARIAT A L ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES CEA France IS-WIRELESS ISW Poland NATIONAL INSTRUMENTS NI Hungary TECHNISCHE UNIVERSITÄT DRESDEN TUD Germany Abstract: 5G Waveform Candidate Selection The screening process of T3.1 will generate a candidate list of waveforms and signal formats, described in this IR3.1. D3.1 ‘5GNOW_D3.1_v1.0.docx’ Version: 1.0 Last Update: 3/3/2015 Distribution Level: CO Distribution level PU = Public, RE = Restricted to a group of the specified Consortium, PP = Restricted to other program participants (including Commission Services), CO= Confidential, only for members of the 5GNOW Consortium (including the Commission Services) D3.1 The 5GNOW Project Consortium groups the following organizations: Partner Name Short name Country FRAUNHOFER-GESELLSCHAFT ZUR FOERDERUNG DER ANGEWANDTEN FORSCHUNG E.V. HHI Germany ALCATEL-LUCENT DEUTSCHLAND AG ALUD Germany COMMISSARIAT À L’ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES CEA France IS-WIRELESS ISW Poland NATIONAL INSTRUMENTS NI Hungary TECHNISCHE UNIVERSITÄT DRESDEN TUD Germany Abstract: One of the main drivers for new waveforms is to enable efficient multiple access in the light of the requirements of future 5G wireless communication systems which will have to handle a very diverse variety of traffic types. The scenarios which are initiating those requirements and which are considered by the 5GNOW project (see D2.1) are driven by machine-type communication and the Tactile Internet, by coordinated multi-point (CoMP) and by fragmented spectrum. The 5GNOW project has developed here the vision of a unified frame structure and corresponding new waveforms which aims at handling as much different traffic types as possible within the same band and the same frame. This document introduces promising waveform candidates for 5G systems, explains the considered reference scenarios and the corresponding multiple access vision. Supporting simulation results are provided, stressing the potential of the candidate technologies. Selection criteria for the waveforms are provided and discussed. In conclusion, the introduced waveforms are much more capable than OFDM when relaxed synchronicity and orthogonality requirements shall be supported. Particularly, they allow dropping a large amount of signalling overhead present in today’s systems, when e.g. a large number of devices have to be supported. Future work of the 5GNOW project will investigate those waveform candidates in detail and propose a physical layer concept for next generation wireless communication systems Based on the waveform candidates in IR3.1, D3.1 contains selection criteria, benchmarking results and discussion of chosen candidate selection for 5G waveforms. Partner Author name Martin Kasparick Gerhard Wunder HHI Peter Jung Yejian Chen Frank Schaich ALUD Thorsten Wild Vincent Berg Nicolas Cassiau Jean-Baptiste Doré CEA Dimitri Kténas Marcin Dryjański ISW Slawomir Pietrzyk Ivan Simões Gaspar TUD Nicola Michailow 5GNOW Page: 2 of 111 FP7 – ICT– GA 318555 D3.1 “The research leading to these results has received funding from the European Community's Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 318555” 5GNOW Page: 3 of 111 FP7 – ICT– GA 318555 D3.1 Document Identity Title: 5G Waveform Candidate Selection WP: WP3 – Physical layer design WP Leader ALUD Main Editor Thorsten Wild Number: D3.1 File name: 5GNOW_D3.1_v1.0.docx Last Update: Tuesday, March 03, 20153 Revision History No. Version Edition Author(s) Date 1 0.1 Thorsten Wild (ALUD) 28.06.13 Comments: Provided initial template and skeleton 2 0.2 Input by all authors; Thorsten Wild 09.08.13 Comments: Merged partner inputs, added summary, conclusion and some guiding text 3 0.3 Thorsten Wild 14.08.13 Comments: Review comments by CEA, TUD and ISW taken into account and merged into one document 4 0.4 16.09.12 Comments: Reference added 5 0.5 Martin Kasparick 20.09.13 Comments: Polishing 6 v1.0 Gerhard Wunder (Coordinator) 23.09.2013 Comments: Final revision 7 Comments: 8 Comments: 9 Comments: 10 Comments: 11 Comments: 12 Comments: 13 Comments: 14 Comments: 15 Comments: 5GNOW Page: 4 of 111 FP7 – ICT– GA 318555 D3.1 Table of Contents 1 INTRODUCTION ....................................................................................................................................... 8 1.1 OVERVIEW ON 5GNOW AND RELATED 5G ACTIVITIES ..................................................................................... 8 1.2 5GNOW UNIFIED FRAME VISION ................................................................................................................. 9 1.3 OFDM – THE CHOICE OF 4G: LIMITATIONS AND ALTERNATIVES ....................................................................... 10 1.3.1 Uplink CoMP ....................................................................................................................................... 10 1.3.2 Tactile Internet ................................................................................................................................... 10 1.3.3 Downlink CoMP .................................................................................................................................. 10 1.3.4 Sporadic Access ................................................................................................................................... 11 1.3.5 Fragment Spectrum ............................................................................................................................ 11 2 OVERVIEW OF THE CONSIDERED WAVEFORM APPROACHES ................................................................ 12 2.1 GFDM ................................................................................................................................................. 12 2.1.1 Mathematical description of the GFDM transceiver ..................................................................... 13 2.2 UFMC ................................................................................................................................................. 15 2.3 FBMC .................................................................................................................................................. 20 2.3.1 Overview of FBMC ......................................................................................................................... 20 2.3.2 Frequency domain description of FBMC ........................................................................................ 21 2.3.3 Time synchronization .................................................................................................................... 22 2.4 BFDM.................................................................................................................................................. 25 2.4.1 Transmitter ......................................................................................................................................... 25 2.4.2 Pulse shaped PRACH ........................................................................................................................... 27 2.4.3 PUSCH ................................................................................................................................................. 30 2.4.4 Receiver .............................................................................................................................................. 31 2.4.5 Simulation Results .............................................................................................................................. 32 3 MULTIPLE ACCESS VISION AND IMPACT ON WAVEFORMS .................................................................... 34 3.1 UNIFIED FRAME STRUCTURE ..................................................................................................................... 35 3.1.1 General concept ............................................................................................................................ 35 3.1.2 Simulation results .......................................................................................................................... 37 3.2 LAYERING .............................................................................................................................................. 38 3.3 SPARSITY AWARE RANDOM ACCESS ............................................................................................................ 44 3.3.1 Introduction ................................................................................................................................... 44 3.3.2 Sparse structured signals .............................................................................................................. 45 3.3.3 System model ................................................................................................................................ 45 3.3.4 MAC-SC in standard PRACH ........................................................................................................... 46 3.3.5 MAC-SC with non-standard PRACH ............................................................................................... 49 4 REFERENCE SCENARIOS ........................................................................................................................