Finite Topological Spaces with Maple
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Counterexamples in Topology
Counterexamples in Topology Lynn Arthur Steen Professor of Mathematics, Saint Olaf College and J. Arthur Seebach, Jr. Professor of Mathematics, Saint Olaf College DOVER PUBLICATIONS, INC. New York Contents Part I BASIC DEFINITIONS 1. General Introduction 3 Limit Points 5 Closures and Interiors 6 Countability Properties 7 Functions 7 Filters 9 2. Separation Axioms 11 Regular and Normal Spaces 12 Completely Hausdorff Spaces 13 Completely Regular Spaces 13 Functions, Products, and Subspaces 14 Additional Separation Properties 16 3. Compactness 18 Global Compactness Properties 18 Localized Compactness Properties 20 Countability Axioms and Separability 21 Paracompactness 22 Compactness Properties and Ts Axioms 24 Invariance Properties 26 4. Connectedness 28 Functions and Products 31 Disconnectedness 31 Biconnectedness and Continua 33 VII viii Contents 5. Metric Spaces 34 Complete Metric Spaces 36 Metrizability 37 Uniformities 37 Metric Uniformities 38 Part II COUNTEREXAMPLES 1. Finite Discrete Topology 41 2. Countable Discrete Topology 41 3. Uncountable Discrete Topology 41 4. Indiscrete Topology 42 5. Partition Topology 43 6. Odd-Even Topology 43 7. Deleted Integer Topology 43 8. Finite Particular Point Topology 44 9. Countable Particular Point Topology 44 10. Uncountable Particular Point Topology 44 11. Sierpinski Space 44 12. Closed Extension Topology 44 13. Finite Excluded Point Topology 47 14. Countable Excluded Point Topology 47 15. Uncountable Excluded Point Topology 47 16. Open Extension Topology 47 17. Either-Or Topology 48 18. Finite Complement Topology on a Countable Space 49 19. Finite Complement Topology on an Uncountable Space 49 20. Countable Complement Topology 50 21. Double Pointed Countable Complement Topology 50 22. Compact Complement Topology 51 23. -
A Structure Theorem in Finite Topology
Canad. Math. Bull. Vol. 26 (1), 1983 A STRUCTURE THEOREM IN FINITE TOPOLOGY BY JOHN GINSBURG ABSTRACT. Simple structure theorems or representation theorems make their appearance at a very elementary level in subjects such as algebra, but one infrequently encounters such theorems in elemen tary topology. In this note we offer one such theorem, for finite topological spaces, which involves only the most elementary con cepts: discrete space, indiscrete space, product space and homeomorphism. Our theorem describes the structure of those finite spaces which are homogeneous. In this short note we will establish a simple representation theorem for finite topological spaces which are homogeneous. We recall that a topological space X is said to be homogeneous if for all points x and y of X there is a homeomorphism from X onto itself which maps x to y. For any natural number k we let D(k) and I(k) denote the set {1, 2,..., k} with the discrete topology and the indiscrete topology respectively. As usual, if X and Y are topological spaces then XxY is regarded as a topological space with the product topology, which has as a basis all sets of the form GxH where G is open in X and H is open in Y. If the spaces X and Y are homeomorphic we write X^Y. The number of elements of a set S is denoted by \S\. THEOREM. Let X be a finite topological space. Then X is homogeneous if and only if there exist integers m and n such that X — D(m)x/(n). -
Finite Preorders and Topological Descent I George Janelidzea;1 , Manuela Sobralb;∗;2 Amathematics Institute of the Georgian Academy of Sciences, 1 M
Journal of Pure and Applied Algebra 175 (2002) 187–205 www.elsevier.com/locate/jpaa Finite preorders and Topological descent I George Janelidzea;1 , Manuela Sobralb;∗;2 aMathematics Institute of the Georgian Academy of Sciences, 1 M. Alexidze Str., 390093 Tbilisi, Georgia bDepartamento de Matematica,Ã Universidade de Coimbra, 3000 Coimbra, Portugal Received 28 December 2000 Communicated by A. Carboni Dedicated to Max Kelly in honour of his 70th birthday Abstract It is shown that the descent constructions of ÿnite preorders provide a simple motivation for those of topological spaces, and new counter-examples to open problems in Topological descent theory are constructed. c 2002 Published by Elsevier Science B.V. MSC: 18B30; 18A20; 18D30; 18A25 0. Introduction Let Top be the category of topological spaces. For a given continuous map p : E → B, it might be possible to describe the category (Top ↓ B) of bundles over B in terms of (Top ↓ E) using the pullback functor p∗ :(Top ↓ B) → (Top ↓ E); (0.1) in which case p is called an e)ective descent morphism. There are various ways to make this precise (see [8,9]); one of them is described in Section 3. ∗ Corresponding author. Dept. de MatemÃatica, Univ. de Coimbra, 3001-454 Coimbra, Portugal. E-mail addresses: [email protected] (G. Janelidze), [email protected] (M. Sobral). 1 This work was pursued while the ÿrst author was visiting the University of Coimbra in October=December 1998 under the support of CMUC=FCT. 2 Partial ÿnancial support by PRAXIS Project PCTEX=P=MAT=46=96 and by CMUC=FCT is gratefully acknowledged. -
The Range of Ultrametrics, Compactness, and Separability
The range of ultrametrics, compactness, and separability Oleksiy Dovgosheya,∗, Volodymir Shcherbakb aDepartment of Theory of Functions, Institute of Applied Mathematics and Mechanics of NASU, Dobrovolskogo str. 1, Slovyansk 84100, Ukraine bDepartment of Applied Mechanics, Institute of Applied Mathematics and Mechanics of NASU, Dobrovolskogo str. 1, Slovyansk 84100, Ukraine Abstract We describe the order type of range sets of compact ultrametrics and show that an ultrametrizable infinite topological space (X, τ) is compact iff the range sets are order isomorphic for any two ultrametrics compatible with the topology τ. It is also shown that an ultrametrizable topology is separable iff every compatible with this topology ultrametric has at most countable range set. Keywords: totally bounded ultrametric space, order type of range set of ultrametric, compact ultrametric space, separable ultrametric space 2020 MSC: Primary 54E35, Secondary 54E45 1. Introduction In what follows we write R+ for the set of all nonnegative real numbers, Q for the set of all rational number, and N for the set of all strictly positive integer numbers. Definition 1.1. A metric on a set X is a function d: X × X → R+ satisfying the following conditions for all x, y, z ∈ X: (i) (d(x, y)=0) ⇔ (x = y); (ii) d(x, y)= d(y, x); (iii) d(x, y) ≤ d(x, z)+ d(z,y) . + + A metric space is a pair (X, d) of a set X and a metric d: X × X → R . A metric d: X × X → R is an ultrametric on X if we have d(x, y) ≤ max{d(x, z), d(z,y)} (1.1) for all x, y, z ∈ X. -
FINITE TOPOLOGICAL SPACES 1. Introduction: Finite Spaces And
FINITE TOPOLOGICAL SPACES NOTES FOR REU BY J.P. MAY 1. Introduction: finite spaces and partial orders Standard saying: One picture is worth a thousand words. In mathematics: One good definition is worth a thousand calculations. But, to quote a slogan from a T-shirt worn by one of my students: Calculation is the way to the truth. The intuitive notion of a set in which there is a prescribed description of nearness of points is obvious. Formulating the “right” general abstract notion of what a “topology” on a set should be is not. Distance functions lead to metric spaces, which is how we usually think of spaces. Hausdorff came up with a much more abstract and general notion that is now universally accepted. Definition 1.1. A topology on a set X consists of a set U of subsets of X, called the “open sets of X in the topology U ”, with the following properties. (i) ∅ and X are in U . (ii) A finite intersection of sets in U is in U . (iii) An arbitrary union of sets in U is in U . A complement of an open set is called a closed set. The closed sets include ∅ and X and are closed under finite unions and arbitrary intersections. It is very often interesting to see what happens when one takes a standard definition and tweaks it a bit. The following tweaking of the notion of a topology is due to Alexandroff [1], except that he used a different name for the notion. Definition 1.2. A topological space is an A-space if the set U is closed under arbitrary intersections. -
Metric and Topological Spaces
METRIC AND TOPOLOGICAL SPACES Part IB of the Mathematical Tripos of Cambridge This course, consisting of 12 hours of lectures, was given by Prof. Pelham Wilson in Easter Term 2012. This LATEX version of the notes was prepared by Henry Mak, last revised in June 2012, and is available online at http://people.pwf.cam.ac.uk/hwhm3/. Comments and corrections to [email protected]. No part of this document may be used for profit. Course schedules Metrics: Definition and examples. Limits and continuity. Open sets and neighbourhoods. Characterizing limits and continuity using neighbourhoods and open sets. [3] Topology: Definition of a topology. Metric topologies. Further examples. Neighbourhoods, closed sets, convergence and continuity. Hausdorff spaces. Homeomorphisms. Topological and non-topological properties. Completeness. Subspace, quotient and product topologies. [3] Connectedness: Definition using open sets and integer-valued functions. Examples, in- cluding intervals. Components. The continuous image of a connected space is connected. Path-connectedness. Path-connected spaces are connected but not conversely. Connected open sets in Euclidean space are path-connected. [3] Compactness: Definition using open covers. Examples: finite sets and Œ0; 1. Closed subsets of compact spaces are compact. Compact subsets of a Hausdorff space must be closed. The compact subsets of the real line. Continuous images of compact sets are compact. Quotient spaces. Continuous real-valued functions on a compact space are bounded and attain their bounds. The product of -
On the Folding of Finite Topological Space
International Mathematical Forum, Vol. 7, 2012, no. 15, 745 - 752 On the Folding of Finite Topological Space M. Basher1 Department of Mathematics, College of Science Qassim University, P.O. Box 6644, Buraidah 51452 Kingdom of Saudi Arabia m e [email protected] Abstract In this paper the representation of finite topology by transitive di- rected graph is investigated. Also, the folding of finite topological space is studied. Mathematics Subject Classification: Primary 54C05, 54A05; Sec- ondary 05C20 Keywords: Folding, Finite topology, Directed graph 1 Introduction The notion of isometric folding has been introduced by S. A. Robertson who studied the stratification determined by the folds or singularities [10]. The conditional foldings of manifolds have been defined by M. El-Ghoul [6]. Some applications on the folding of a manifold into it self was introduced by P. Di. Francesco [8]. Also a graph folding has been introduced by E. El-Kholy [3]. Then the theory of isometric foldings has been pushed and also different types of foldings have been discussed by E. El-Kholy and others [1,2,4,5,7]. 2 Finite topologies and directed graphs Let X be a set of order n, i.e. |X| = n. Then we have the following one-to-one correspondence which we will explain below: {topologies on X}↔{relations on X that are reflexive and transitive}. 1Permanent affiliation: Department of Mathematics, Faculty of Science in Suez, Suez Canal University, Egypt 746 M. Basher Relations that are reflexive and transitive are known as ”preorders”. Given a topology τ on X, define a preorder ≤ on X by: x ≤ y if and only if every open set containing x also contains y. -
Chapter 8 Ordered Sets
Chapter VIII Ordered Sets, Ordinals and Transfinite Methods 1. Introduction In this chapter, we will look at certain kinds of ordered sets. If a set \ is ordered in a reasonable way, then there is a natural way to define an “order topology” on \. Most interesting (for our purposes) will be ordered sets that satisfy a very strong ordering condition: that every nonempty subset contains a smallest element. Such sets are called well-ordered. The most familiar example of a well-ordered set is and it is the well-ordering property that lets us do mathematical induction in In this chapter we will see “longer” well ordered sets and these will give us a new proof method called “transfinite induction.” But we begin with something simpler. 2. Partially Ordered Sets Recall that a relation V\ on a set is a subset of \‚\ (see Definition I.5.2 ). If ÐBßCÑ−V, we write BVCÞ An “order” on a set \ is refers to a relation on \ that satisfies some additional conditions. Order relations are usually denoted by symbols such asŸ¡ß£ , , or . Definition 2.1 A relation V\ on is called: transitive ifÀ a +ß ,ß - − \ Ð+V, and ,V-Ñ Ê +V-Þ reflexive ifÀa+−\+V+ antisymmetric ifÀ a +ß , − \ Ð+V, and ,V+ Ñ Ê Ð+ œ ,Ñ symmetric ifÀ a +ß , − \ +V, Í ,V+ (that is, the set V is “symmetric” with respect to thediagonal ? œÖÐBßBÑÀB−\ש\‚\). Example 2.2 1) The relation “œ\ ” on a set is transitive, reflexive, symmetric, and antisymmetric. Viewed as a subset of \‚\, the relation “ œ ” is the diagonal set ? œÖÐBßBÑÀB−\×Þ 2) In ‘, the usual order relation is transitive and antisymmetric, but not reflexive or symmetric. -
2-Dimension from the Topological Viewpoint 3 Points
2-Dimension from the topological viewpoint Jonathan Ariel Barmak, Elias Gabriel Minian Departamento de Matem´atica. FCEyN, Universidad de Buenos Aires. Buenos Aires, Argentina Abstract In this paper we study the 2-dimension of a finite poset from the topological point of view. We use homotopy theory of finite topological spaces and the concept of a beat point to improve the classical results on 2-dimension, giving a more complete answer to the problem of all possible 2-dimensions of an n-point poset. 2000 Mathematics Subject Classification. 06A06, 06A07, 54A10, 54H99. Key words and phrases. Posets, Finite Topological Spaces, 2-dimension. 1 Introduction It is well known that finite topological spaces and finite preorders are intimately related. More explicitly, given a finite set X, there exists a 1−1 correspondence between topologies and preorders on X [1]. Moreover, T0-topologies correspond to orders. One can consider this way finite posets as finite T0-spaces and vice versa. Combinatorial techniques based on finite posets together with topological properties can result in stronger theorems [2, 6, 7, 8, 10, 14]. A basic result in topology says that a topological space X is T0 if and only if it is a subspace of a product of copies of S, the Sierpinski space. Furthermore, if X is in addition finite, it is a subspace of a product of finitely many copies of S. Using the correspondence between T0-spaces and posets, this result can be expressed as follows: A finite preorder X is a poset if and only if it is a subpreorder of 2n for some n. -
On the Number of Open Sets of Finite Topologies
JOURNAL OF COMBINATORIAL THEORY 10, 74-79 (1971) On the Number of Open Sets of Finite Topologies RICHARD P. STANLEY Department of Mathematics, Harvard University, Cambridge, Massachusetts 02138 Communicated by Gian-Carlo Rota Received March 26, 1969 ABSTRACT Recent papers of Sharp [4] and Stephen [5] have shown that any finite topology with n points which is not discrete contains <(3/4)2” open sets, and that this inequality is best possible. We use the correspondence between finite TO-topologies and partial orders to find all non-homeomorphic topologies with n points and >(7/16)2” open sets. We determine which of these topologies are TO, and in the opposite direction we find finite T0 and non-T, topologies with a small number of open sets. The corresponding results for topologies on a finite set are also given. IfXis a finite topological space, thenXis determined by the minimal open sets U, containing each of its points x. X is a TO-space if and only if U, = U, implies x = y for all points x, y in X. If X is not To , the space 8 obtained by identifying all points x, y E X such that U, = U, , is a To- space with the same lattice of open sets as X. Topological properties of the operation X-+x are discussed by McCord [3]. Thus for the present we restrict ourselves to To -spaces. If X is a finite TO-space, define x < y for x, y E X whenever U, C U, . This defines a partial ordering on X. -
Reconstruction of Compacta by Finite Approximations and Inverse
Reconstruction of compacta by finite approximations and1 Inverse Persistence2 Departamento de Matemática Aplicada y Estadística Diego Mondéjar Ruiz and Manuel A. Morón 1 Universidad San Pablo CEU, Madrid, Spain [email protected] Departamento de Álgebra,Geometría y Topología 2 Universidad Complutense de Madrid and Instituto de Matematica Interdisciplinar, Madrid, Spain [email protected] Abstract The aim of this paper is to show how the homotopy type of compact metric spaces can be reconstructed by the inverse limit of an inverse sequence of finite approximations of the corresponding space. This recovering allows us to define inverse persistence as a new kind of persistence process. 1 Introduction In this paper we deal with approximations of metric compacta. The approximation and reconstruction of topological spaces using simpler ones is an old theme in geometric topology. One would like to construct a very simple space as similar as possible to the original space. Since it is very difficult (or does not make sense) to obtain arXiv:1802.04331v3 [math.GT] 27 Feb 2018 a homeomorphic copy, the goal will be to find an space preserving some (algebraic) topological properties such as compactness, connectedness, separation axioms, homotopy type, homotopy and homology groups, etc. The first candidates to act as the simple spaces reproducing some properties of the original space are polyhedra. See the survey [41] for the main results. In the very beginnings of this idea, we must recall the studies of Alexandroff around 1920, relating the dimension of compact metric spaces with dimension of polyhedra by means of maps Mathematics Subject Classification. -
Review of Set Theory
Appendix A: Review of Set Theory In this book, as in most modern mathematics, mathematical statements are couched in the language of set theory. We give here a brief descriptive summary of the parts of set theory that we use, in the form that is commonly called “naive set theory.” The word naive should be understood in the same sense in which it is used by Paul Halmos in his classic text Naive Set Theory [Hal74]: the assumptions of set theory are to be viewed much as Euclid viewed his geometric axioms, as intuitively clear statements of fact from which reliable conclusions can be drawn. Our description of set theory is based on the axioms of Zermelo–Fraenkel set theory together with the axiom of choice (commonly known as ZFC), augmented with a notion of classes (aggregations that are too large to be considered sets in ZFC), primarily for use in category theory. We do not give a formal axiomatic treat- ment of the theory; instead, we simply give the definitions and list the basic types of sets whose existence is guaranteed by the axioms. For more details on the subject, consult any good book on set theory, such as [Dev93,Hal74,Mon69,Sup72,Sto79]. We leave it to the set theorists to explore the deep consequences of the axioms and the relationships among different axiom systems. Basic Concepts A set is just a collection of objects, considered as a whole. The objects that make up the set are called its elements or its members. For our purposes, the elements of sets are always “mathematical objects”: integers, real numbers, complex numbers, and objects built up from them such as ordered pairs, ordered n-tuples, functions, sequences, other sets, and so on.